
Model-Driven Development of Security-Aware
GUIs for Data-Centric Applications

David Basin1, Manuel Clavel2,3, Marina Egea2, Miguel A. Garćıa de Dios2,
Carolina Dania2, Gonzalo Ortiz2, and Javier Valdazo2

1 ETH Zürich, Switzerland
basin@inf.ethz.ch

2 IMDEA Software Institute, Madrid, Spain
[manuel.clavel,marina.egea,miguelangel.garcia]@imdea.org

[carolina.dania,gonzalo.ortiz,javier.valdazo]@imdea.org
3 Universidad Complutense, Madrid, Spain

clavel@sip.ucm.es

Abstract. In this tutorial we survey a very promising instance of model-
driven security: the full generation of security-aware graphical user in-
terfaces (GUIs) from models for data-centric applications with access
control policies. We describe the modeling concepts and languages em-
ployed and how model transformation can be used to automatically lift
security policies from data models to GUI models. We work through a
case study where we generate a security-aware GUI for a chatroom ap-
plication. We also present a toolkit that supports the construction of
security, data, and GUI models and generates complete, deployable, web
applications from these models.

1 Introduction

Model building is at the heart of system design. This is true in many engineering
disciplines and is increasingly the case in software engineering. Model-driven en-
gineering (MDE) [7] is a software development methodology that focuses on cre-
ating models of different system views from which system artifacts such as code
and configuration data are automatically generated. Proponents of model-driven
engineering have in the past been guilty of making overambitious claims: posi-
tioning it as the Holy Grail of software engineering where modeling completely
replaces programming. This vision is, of course, unrealizable in its entirety for
simple complexity-theoretic reasons. If the modeling languages are sufficiently
expressive then basic problems such as the consistency of the different models or
views of a system become undecidable. However, there are specialized domains
where MDE can truly deliver its full potential: in our opinion, security-aware
GUIs for data-centric applications is one of them.

Data-centric applications are applications that manage information, typically
stored in a database. In many cases, users access this information through graph-
ical user interfaces (GUIs). Informally, a GUI consists of widgets (e.g., windows,
text-fields, lists, and combo-boxes), which are visual elements that display and

store information and support events (like “clicking-on” or “typing-in”). A GUI
defines the layout for the widgets, as well as the actions that the widgets’ events
trigger either on the application’s database (e.g., to create, delete, or update
information) or upon other widgets (e.g., to open or close a window).

There is an important, but little explored, link between visualization and
security: When the application data is protected by an access control policy, the
application GUI should be aware of and respect this policy. For example, the
GUI should not display options to users for actions (e.g., to read or update in-
formation) that they are not authorized to execute on application data. This, of
course, prevents the users from getting (often cryptic) security warnings or error
messages directly from the database management system. It also prevents user
frustration, for example from filling out a long electronic form only to have the
server reject it because the user lacks a permission to execute some associated
action on the application data. However, manual encoding the application’s se-
curity policy within the GUI code is cumbersome and error prone. Moreover, the
resulting code is difficult to maintain, since any changes in the security policy
will require manual changes to the GUI code.

In this tutorial we spell out our model-driven engineering approach for de-
veloping security-aware GUIs for data-centric applications. The backbone of this
approach, illustrated in Figure 1, is a model transformation that automatically
lifts the access control policy modeled at the level of the data to the level of
the GUI [2]. More precisely, given a security model (specifying the access con-
trol policy on the application data) and a GUI model (specifying the actions
triggered by the events supported by the GUI’s widgets), our model transforma-
tion generates a GUI model that is security-aware. The key idea underlying this
transformation is that the link between visualization and security is ultimately
defined in terms of data actions, since data actions are both controlled by the
security policy and triggered by the events supported by the GUI. Thus, under
our approach, the process of modeling and generating security-aware GUIs has
the following parts:

1. Software engineers specify the application-data model.
2. Security engineers specify the security-design model.
3. GUI designers specify the application GUI model.
4. A model transformation automatically generates a security-aware GUI model

from the security model and the GUI model.
5. A code generator automatically produces a security-aware GUI from the

security-aware model.

The other key components of this approach are the languages that we pro-
pose for modeling the data (ComponentUML), the access control policy (Se-
cureUML), and the GUI (ActionGUI). These languages are defined by their
corresponding metamodels and support the rigorous modeling of a large class
of data models, security models, and GUI models. For data models, the main
modeling elements are entities, along with their attributes and associations; for
security models, these elements are roles, permissions (possibly constrained at

Data
Model

Security
Engineer

Software
Engineer

GUI
Engineer

Model Transformation

Code Generation

GUI
Model

Security
Model

Security-aware
GUI Model

Security-aware
GUI Application

Fig. 1. Model-driven development of security-aware GUIs.

runtime to satisfy given properties), and the actions associated to these permis-
sions. For GUI models, these elements are widgets, the (possibly conditional)
events associated to these widgets, and the (possibly conditional) actions asso-
ciated to these events. The constraint language OCL [10] is used in all of these
models. For security models, OCL is used to formalize the constraints on the
permissions. For GUI models, it is used to formalize the conditions on the ac-
tions, as well as to specify the information to be displayed in widgets, updated
in the database, or passed from one widget to another.

To support a full model-driven engineering development process, we have
built a toolkit, named the ActionGUI Toolkit. This features specialized model
editors for data, security, and GUI models, and implements the aforementioned
model transformation to automatically generate security-aware GUI models.
Moreover, our toolkit includes a code generator that, given a security-aware
GUI model, automatically produces a complete web application, ready to be de-
ployed in web containers such as Tomcat or GlassFish. A key component of this
code generator is our translator from OCL to an SQL-based query language [5],
which handles the OCL expressions appearing in the security-aware GUI mod-
els. More information about our ActionGUI Toolkit can be found at the URL
http://www.bm1software.com/actiongui.html.

Overall, we see the full generation of security-aware GUIs from models for
data-centric applications as a very promising application for model-driven en-
gineering. By working with models and using code-generators to produce the
final products, GUI designers can focus on the GUI’s layout and behavior, in-
stead of wrestling with the different, often complex, technologies that are used
to implement them. Moreover, by using model transformations, the problem of
establishing the link between visualization and security is successfully addressed.

To appreciate this last point, consider the standard alternative: the default,
“ad-hoc” solution of directly hard-coding the security policy within the GUI.
This is clearly disadvantageous. First, the GUI designer is often unaware of
the application data security policy. Second, even if the designer is aware of it,
manual hard-coding the application data security policy within the GUI code
is cumbersome and error-prone. Finally, any changes in the security policy will
require manual changes to the GUI code that implements this policy, which again
is cumbersome and error-prone.

Organization

We explain in this tutorial our approach for developing security-aware GUIs for
data-centric applications and present a toolkit, named ActionGUI, supporting
this approach. We begin in Sections 2–4 by introducing our modeling languages
for data models (ComponentUML), security models (SecureUML), and GUI
models (ActionGUI). We also introduce our running example: a basic chatroom
application. In Section 5, we discuss the problem of lifting the security require-
ments from data models to GUI models, and we present our solution: a model
transformation that automatically transforms a GUI model into a security-aware
GUI model with respect to the security requirements imposed on the underlying
data model. We conclude this tutorial with a discussion on current and future
work. All of the models we present here (and many more) are available at the
ActionGUI home page. The interested reader can also evaluate there the code
generated by the ActionGUI Toolkit from these models.

2 Data models: ComponentUML

In this and the next two sections, we introduce the modeling languages that
we use for the model-driven development of security-aware GUIs for data cen-
tric applications. These languages are: ComponentUML, for modeling data; Se-
cureUML, for modeling the access control policy; and ActionGUI, for modeling
the application’s GUI. To illustrate the main modeling concepts and relation-
ships provided by these languages, we work through a running example: a simple
chat application named ChitChat, which supports multiple chat rooms where
users can converse with each other in different chat rooms. We begin then with
ComponentUML, which is the language that we use for modeling the applica-
tion data. ComponentUML also gives us a context to introduce the constraint

language OCL [10], which we intensively use in our approach when modeling
both access control policies and the application’s GUIs.

Data models provide a data-oriented view of a system. Typically they are
used to specify how data is structured, the format of data items, and their logical
organization, i.e., how data items are grouped and related. ComponentUML
essentially provides a subset of UML class models where entities (classes) can
be related by associations and may have attributes and methods. Attributes and
association-ends have types (either primitive types or entity types). As expected,
the type associated to an attribute is the type of the attribute’s values, and the
type associated to an association-end is the type of the objects which may be
linked at this end of the association. The ComponentUML metamodel is shown
in Figure 2.

Fig. 2. The ComponentUML metamodel.

The ChitChat data model. In our ChitChat application, each user has a nick-
name, a password, an e-mail address, a mood message, and a status. The user
may participate and be invited to participate in any number of chat rooms. Each
chat room is created by a user, has a name, a starting and ending date, and it
manages the messages sent by its participants.

The table shown in Figure 3 specifies the data model of the ChitChat ap-
plication, using the concepts and relationships provided by ComponentUML.
Each row in this table corresponds to an entity, and shows its attributes and
association-ends, with their corresponding types. Notice that we also indicate,
for each association-end, the association-end which corresponds to the other end
of the association. The reader can find on the ActionGUI home page the graph-
ical representation of the ChitChat data model using the concrete syntax for
ComponentUML that is supported by the ActionGUI Toolkit.

Entity Attribute Type AssocEnd Type Other end

nickname String msgSent ChatMessage from
password String participates ChatRoom participants
email String owns ChatRoom ownedBy

ChatUser moodMsg String invitedTo ChatRoom invitees
status String

name String messages ChatMessage chat
ChatRoom start Date participants ChatUser participates

end Date ownedBy ChatUser owns
invitees ChatUser invitedTo

body String from ChatUser msgSent
ChatMessage chat ChatRoom messages

Fig. 3. The ChitChat data specification.

OCL: constraints and queries

The Object Constraint Language (OCL) [10] is a specification language for ex-
pressing constraints and queries using a textual notation. As part of the UML
standard, it was originally intended for modeling properties that could not be
easily or naturally captured using graphical notation (e.g., class invariants in a
UML class diagram). In fact, OCL expressions are always written in the context
of a model, and they are evaluated on an instance of this model. This evaluation
returns a value but does not change anything; OCL is a side-effect free language.

We summarize here the main elements of the OCL language which are used
in this tutorial. OCL is a strongly type language. Expressions either have a
primitive type (namely, Boolean, Integer, Real, and String), a class type, or a col-
lection type, whose base type is either a primitive type or a class type. OCL
provides the standard operators on primitive types and on collections. For ex-
ample, the operator includes checks whether an object is part of a collection, and
the operator isEmpty checks whether a collection is empty. More interestingly,
OCL provides a dot-operator to access the values of the objects’ attributes and
association-ends. For example, let u be an object of the class ChatUser. Then, the
expression u.nickname refers to the value of the attribute nickname for the ChatUser

u, and the expression u.participates refers to the objects linked to the ChatUser u
through the association-end participates. Furthermore, OCL provides the opera-
tor allInstances to access to all the objects of a class. For example, the expression
ChatRoom.allInstances() refers to all the objects of the class ChatRoom. Finally,
OCL provides operators to iterate on collections. These are forAll, exists, select,
reject, and collect. For example, ChatUser.allInstances()−>select(u|u.status=’on−line’)

refers to the collection of objects of the class ChatUsers whose attribute status has
the value “on-line”.

ChitChat’s entity invariants. To illustrate the syntax (and the semantics) of the
OCL language, we formalize here some entity (class) invariants for ChitChat’s

data model. For example, the following OCL expression formalizes that users’
nicknames must be unique:

ChatUser.allInstances()−>forall(u1,u2| u1 <> u2 implies u1.nickname <> u2.nickname).

Similarly, we can formalize that the status of a ChitChat user is either “off-
line” or “on-line” using the following OCL expression:

ChatUser.allInstances() −>forall(u|u.status=’on−line’ or u.status=’off−line’).

Finally, we can formalize that each message has exactly one sender:

ChatMessage.allInstances()−>forAll(m|m.from−>size()= 1).

3 Security models: SecureUML+ComponentUML

SecureUML [3] is a modeling language for formalizing access control require-
ments that is based on RBAC [6]. In RBAC, permissions specify which roles are
allowed to perform given operations. These roles typically represent job func-
tions within an organization. Users are granted permissions by being assigned
to the appropriate roles based on their competencies and responsibilities in the
organization. RBAC additionally allows one to organize the roles in a hierarchy
where roles can inherit permissions along the hierarchy. In this way, the security
policy can be described in terms of the hierarchical structure of an organiza-
tion. However, it is not possible in RBAC to specify policies that depend on
dynamic properties of the system state, for example, to allow an operation only
during weekdays. SecureUML extends RBAC with authorization constraints to
overcome this limitation.

SecureUML provides a language for specifying access control policies for ac-
tions on protected resources. However, it leaves open what the protected re-
sources are and which actions they offer to actors. These are specified in a
so-called “dialect”. Figure 4 shows the SecureUML metamodel. Essentially, it
provides a language for modeling roles (with their hierarchies), permissions, ac-
tions, resources, and authorization constraints, along with their assignments, i.e.,
which permissions are assigned to a role, which actions are allowed by a permis-
sion, which resource is affected by the actions allowed by a permission, which
constraints need to be satisfied for granting a permission, and, finally, which
resource is affected by an action.

In our approach, we use a specific dialect of SecureUML, named Secure-
UML+ComponentUML, for modeling the access control policy on data models.
The SecureUML+ComponentUML metamodel provides the connection between
SecureUML and ComponentUML. Essentially, in this dialect of SecureUML, the
protected resources are the entities, along with their attributes, methods, and
association-ends (but not the associations as such), and the actions that they
offer to the actors are those shown in Figure 5. Essentially, there are two classes of
actions: atomic and composite. The atomic actions are intended to map directly

Fig. 4. The SecureUML metamodel.

onto actual operations on the database. These actions are: create and delete for
entities; read and update for attributes; create and delete for association-ends;
and execute for methods. The underlined actions are the composite actions,
which hierarchically group lower-level actions. Composite actions allow modelers
to conveniently specify permissions for sets of actions. For example, the full
access action for an attribute groups together the read and update actions for
this attribute.

Resource Actions

Entity create, read, update, delete, full access

Attribute read, update, full access
Method execute
AssociationEnd read, create, delete, full access

Fig. 5. The SecureUML+ComponentUML actions on protected resources.

Finally, in SecureUML+ComponentUML, authorization constraints are spec-
ified using OCL, extended by four keywords, self, caller, value, and target. These
keywords have the following meanings:

– self refers to the root resource upon which the action will be performed, if the
permission is granted. The root resource of an attribute, an association-end,
or a method is the entity to which it belongs.

– caller refers to the actor that will perform the action, if the permission is
granted.

– value refers to the value that will be used to update an attribute, if the
permission is granted.

– target refers to the object that will be linked at the end of an association, if
the permission is granted.

The ChitChat access control policy. For the sake of our running example, consider
the following (partial) access control policy for the ChitChat application:

– Only administrators can create or delete users;
– Administrators can read any user’s nickname, email, mood message, and

status.
– Any user can read and update its own nickname, password, email, mood

message, and status.
– Any user can read other users’ nicknames, mood messages, and status.
– Users can join a chat room by invitation only, but they can leave at any

time.

The table shown in Figure 6 specifies this (partial) access control policy, using
the concepts and relationships provided by SecureUML+ComponentUML. Each
row in this table corresponds to a role, and shows its permissions. Moreover,
for each permission it shows the actions allowed by the permission, the resource
affected by each of these actions, and the constraint that must be satisfied for the
permission to be granted. For example, the permission DisjointChat authorizes
any user to leave a chat room at any anytime. More precisely, it allows any
user caller to delete a participates-link between a user self and a chat room target

(meaning that the user self leaves the chat room target), but only if the user caller

is indeed the user self (that is, the user caller is the one leaving the chat room
target), and also the chat room target indeed belongs to the collection of chat
rooms linked to the user caller through the association-end participates (that is,
the caller is actually participating in the chat room target). The reader can find
in the ActionGUI home page the graphical representation of ChitChat’s access
control policy using the concrete syntax for SecureUML+ComponentUML that
is supported by the ActionGUI Toolkit.

4 GUI models: ActionGUI

ActionGUI is a modeling language for formalizing the GUIs of a rich class of
data-centric applications. The ActionGUI metamodel is shown in Figure 7. In a
nutshell, ActionGUI provides a language to model widgets (e.g., windows, text-
fields, buttons, lists, and tables), events (e.g., clicking-on, typing-in), and actions,
which can be on data (e.g., to update a property of an element in the database)
or on other widgets, (e.g., to open a window), as well as the associations that link
the widgets with the events that they support and the events with the actions
that they trigger. In addition, ActionGUI provides support to formally model
the following features:

– Widgets can be displayed in containers, which are also widgets (e.g., a win-
dow can contain other widgets).

Role Permission Action Resource Authorization Constraint

create, delete ChatUser
read nickname

Admin AnyUser read email true
read moodMsg
read status

read, update nickname
read, update password

User SelfUser read, update email caller=self
read, update moodMsg
read, update status
read nickname

OtherUser read moodMsg true
read status

JointChat create participates self=caller and
caller.invitedTo−>includes(target)

DisjointChat delete participates self=caller and
caller.participates−>includes(target)

Fig. 6. The ChitChat access control policy (partial).

– Widgets may own variables, which are in charge of storing information for
later use.

– Events may be only supported upon the satisfaction of specific conditions,
whose truth value can depend on the information stored in the widgets’
variables or in the database.

– Actions may be only triggered upon the satisfaction of specific conditions,
whose truth value can depend on the information stored in the widgets’
variables or in the database.

– Actions may take their arguments (values that instantiate their parameters)
from the information stored in the widgets’ variables or in the database.

The ActionGUI metamodel’s invariants specify: (i) for each type of widget, the
“default” variables that widgets of this type always own; (ii) for each type of
widget, the type of events that widgets of this type may support; and (iii) for
each type of action, the arguments that actions of this type require, as well as
the arguments (if any) that these actions may additionally take. In particular,
the invariants of ActionGUI’s metamodel formalize, among others, the following
constraints about the different types of widgets:

– Windows. They can contain any type of widget, except windows. Windows
are not contained in any widget.

– Text-field. They can be typed-in. By default, each text-field owns a variable
text of type string, which stores the last string typed-in by the user. The
value of the variable text is permanently displayed in the text-field.

– Button. They can be clicked-on.
– List. They contain exactly one text-field. By default, each list owns a vari-

able rows of type collection. A list displays as many rows as elements are in

Fig. 7. The ActionGUI metamodel.

the collection stored by the variable rows, each row containing exactly one
instance of the text-field contained by the list. By default, each instance of
this text-field owns a variable row whose value is the element associated to
this row from those stored by the variable rows. Finally, by default, each list
owns a variable selected that holds the element associated to the last row
selected by the user.

– Combo-box. They are similar to lists, except that rows are displayed in a
drop-down box.

– Table. They are similar to lists, except that they can contain any number of
text-fields, buttons, lists, or even tables.

Also, the invariants of ActionGUI’s metamodel formalize, among others, the
following invariants about the different types of actions:

– Create. It creates a data item in the database. It takes two arguments: the
type of the new data item (type) and the variable that will store this element
for later reference (variable).

– Delete (entities). It deletes a data item in the database. It takes as argument
the element to be deleted (object).

– Read. It reads the value of a data item’s attribute in the database. It takes
three arguments: the data item whose property is to be read (object); the
property to be read (attribute); and the variable that will store, for later
reference, the value read (variable).

– Update. It modifies the value of a data item’s attribute in the database.
It takes three arguments: the data item whose attribute is to be modified
(object); the attribute to be modified (attribute); and the new value (value).

– Create (association-ends). It creates a new link in the database between two
data items. It takes three arguments: the source data item (sourceObject);
the target data item (targetObject); and the association-end (associationEnd)
through which the target data item will be linked to the source data item.

– Delete (association-ends). It deletes a link in the database between two data
items. It takes three arguments: the source data item (sourceObject); the
target data item (targetObject); and the association-end (associationEnd) from
where the target data item will be removed.

– Open. It opens a window. It takes as argument the window to be opened
(target); additionally, for any of this window’s variables, it can take as argu-
ment a value to be assigned to this variable when opening the window.

– Back. It goes back to the window from which a window was open.
– Set. It assigns a new value to a widget’s variable. It takes two arguments:

the variable (target) and the value to be assigned to this variable (value).

Finally, actions’ conditions and arguments are specified in ActionGUI mod-
els using OCL, extended with the widget’s variables (always enclosed in square
brackets). As expected, when evaluating an OCL expression that contains a wid-
get’s variable, the value of the corresponding subexpression is the value currently
stored in the variable. In case of ambiguity, a widget’s variable is denoted by its
name, prefixed by the name of its widget (followed by a dot). Also, in case of
ambiguity, the name of a widget is prefixed by the name of its container (followed
by a dot). Notice that, within the same containers, widgets have unique names.
Moreover, a widget’s variable can only be used within the window that contains
its widget, either directly or indirectly.

The ChitChat login window. To continue with our running example, consider
the following interface for allowing a registered user to login into the ChitChat
application: a window (loginWi) containing:

– a writable text-field (nicknameEn), for the user to type its nickname in;
– a writable text-field (passwordEn), for the user to type its password in; and
– a clickable button (loginBu), for the user to login, using as its nickname

and password the strings that it typed in the text-fields nicknameEn and
passwordEn, respectively. Upon successful authentication, the user will be
directed to the application’s main menu window (menuWi) as the logged-in
user (caller).

The table shown in Figure 8 specifies this login window, using the concepts
and relationships provided by ActionGUI. Each row in this table correspond to a
widget, where the containment relationship is denoted by displaying the widgets
using tree-like notation. For each widget, we show the variables owned by the
widget and the events that it supports. Moreover, for each event, we show the
actions triggered by this event, as well as its arguments, indicating the values

for each of the actions’ parameters. However, we neither show in this table the
“default” widget’s variables nor the events supported by the widgets when they
do not trigger any action.

Widgets Variables Events Actions Arguments

loginWi

|nicknameEn

|passwordEn

|loginBu click-on open(?) window = menuWi
| menuWi.caller =
| authenticated user
(?) Upon successful authentication.

Fig. 8. The ChitChat login window.

Notice also that there are two elements that we have intentionally left unde-
fined in this table: the value to be assigned to the menuWi’s variable caller when
opening the window menuWi, and the condition for this action. We now describe
how both elements can be defined using ActionGUI’s extension of OCL.

– The authenticated user should be the registered user in the database whose
nickname and password coincide with the values of the text-variables owned,
respectively, by text-fields nicknameEn and passwordEn. Using our extended
OCL, we can define the authenticated user as follows:

ChatUser.allInstances()−>any(u|
u.nickname= [nicknameEn.text] and u.password=[passwordEn.text])

Notice that, as one of the invariants of the ChitChat data model, we specified
that nicknames shall be unique. Thus, although the any-iterator will return
any registered user satisfying the body of the any-iterator, there will be at
most one such registered users.

– The condition for opening the window menuWi should be the existence in the
database of a registered user whose nickname and password coincide with
the values of the text-variables owned, respectively, by text-fields nicknameEn

and passwordEn. We can define this condition as follows:

ChatUser.allInstances()−>exists(u|
u.nickname= [nicknameEn.text] and u.password=[passwordEn.text])

The reader can find in the ActionGUI home page the graphical representation
of ChitChat’s login window using the concrete syntax for ActionGUI that is
supported by the ActionGUI Toolkit.

The ChitChat menu window. Consider now the following interface for allowing
a logged-in user to choose an option from ChitChat’s main menu: a window
(menuWi), owning a variable caller which stores the logged-in user, and containing:

– a selectable list (usersLi) with as many rows as registered users are online,
each of these rows containing an unwritable text-field (nicknameLa) showing
the nickname of the registered user associated to this row;

– a clickable button (editProfileBu) for the caller to access the interface for edit-
ing the profile (i.e., name, password, email, mood message, and status) of
the user selected in the list usersLi;

– a clickable button (createChatBu) for the caller to access the interface for
creating a new chat room; and

– a clickable button (closeChatBu) for the caller to close the window.

The table shown in Figure 9 specifies this menu window, using the concepts
and relationships provided by ActionGUI. Notice that the collection of data
items to be displayed in the list usersLi, namely, the online users, is not formally
defined in this table. Using ActionGUI’s extension of OCL, we can define this
collection as follows:

ChatUser.allInstances()−>select(u|u.status= ’on−line’)

The reader can find in the ActionGUI home page the graphical representation
of ChitChat’s menu window using the concrete syntax for ActionGUI that is
supported by the ActionGUI Toolkit.

Widgets Variables Events Actions Arguments

menuWi caller

| usersLi on-create set target = rows
| value = on-line users

| | nicknameLa on-create read object = [UsersLi.row]
| | attribute = nickname
| | variable = text

| editProfileBu click-on open window = editProfileWi
| editProfileWi.selectedUser
| = [UsersLi.selected]

| createChatBu click-on open window = createChatWi

| closeChatBu click-on close

Fig. 9. The ChitChat menu window.

5 Security-aware ActionGUI models

In this section, we propose our solution to what we believe is the key challenge
when modeling security-aware GUIs for data-centric applications: Which method

should the GUI designer use for establishing the link between visualization and
security? In other words, how should the GUI designer model their GUIs so
as to make them aware of and respect the access control policy that protects
the application data? As mentioned before, establishing this link is crucial when
modeling security-aware GUIs for data-centric applications. Basically, a GUI
should not display options to users for actions (e.g., to read or update informa-
tion) that they are not authorized to execute on application data. This prevents
the users from getting security warnings or cryptic error messages directly from
the database management system. It also prevents user frustration from filling
out a long electronic form only to have the server reject it because the user lacks
a permission to execute some associated action on the application data.

As we will motivate in this section, manually modeling (and even worse,
manually encoding) the application’s security policy within the GUI model is
cumbersome, error prone, and scales poorly to large applications. Moreover, the
resulting models are difficult to maintain, since any changes in the security policy
will require manual changes to the GUI models. Our solution to this problem uses
a standard technique in model-driven development: model transformation. In
particular, we introduce a model transformation that automatically transforms
a GUI model into a security-aware GUI model with respect to the access control
policy imposed on the underlying data model. One additional and substantial
advantage of our solution is that, by keeping the security models and the GUI
model apart, the security engineers and the GUI designers can independently
model what they know best and maintain their models independently.

The ChitChat edit-profile window. To motivate the problem faced by a GUI
designer when modeling a security-aware GUI, let us continue with our running
example. Consider the interface for allowing a logged-in user (caller) to edit the
profile of a previously chosen user (selectedUser), which may of course be the caller

itself. More specifically, this interface shall consist of a window such that:

1. The current values of the selectedUser’s profile are displayed when opening
the window.

2. The caller can type in the new values (if any) for the selectedUser’s profile.
3. The selectedUser’s profile is updated with the new values typed in by the caller

when he or she clicks on a designated button.

Recall that a registered user’s profile is composed of the following attributes:
nickname, password, mood message, email, and status. Recall also that the access
control policy for reading and updating users’ profiles, as specified in Figure 6,
is the following:

4. A user is always allowed to read and update its own nickname, password,
mood message, email, and status.

5. A user is allowed to read another user’s nickname, mood message, and status,
but not the user’s password or email.

6. An administrator is always allowed to read a user’s nickname, mood message,
status, and email, but not the user’s password.

Now, if the GUI designer only takes into consideration the functional re-
quirements (1–3), the ChitChat edit-profile window can be modeled as shown in
Figure 10. Namely, a window editProfileWi, which owns the variable selectedUser

and caller, and contains:

– A writable text-field nicknameEn, for the caller to type in the new value (if
any) with which to update the selectedUser’s nickname. Notice that when the
text-field nicknameEn is created, its “default” variable text will be assigned
the current value of the selectedUser’s nickname, and therefore this value will
be the string initially displayed in the text-field nicknameEn, as requested.

– Analogous writable text-fields for each of the other elements in a registered
user’s profile: password, mood message, email, and status.

– A clickable button updateBu for the caller to trigger the sequence of actions
that will update, as requested, the selectedUser’s nickname, password, mood
message, and status, with the new values (if any) typed by the caller in the
corresponding text-fields.

Obviously, the edit-profile window modeled in Figure 10 does not satisfy the
security requirements (4–6). Any caller can read and update any value contained
in the profile of any selectedUser! So how can the GUI designer model the edit-
profile window to make it aware of and respect the security requirements (4–6)?

There are essentially two solutions available. Unfortunately both of them, if
applied manually, are cumbersome and error prone and therefore impractical for
large applications with complex security policies. To understand the challenge
that faces a GUI designer when modeling security-aware GUIs, let us first high-
light the knowledge that he or she must acquire to accomplish this task. We
decompose this into two steps.

Step 1 For each action triggered by an event, and for each role considered by
the access control policy, the GUI designer must determine (i) the condi-
tions under which the given action can be securely executed by a user with
the given role. This depends, of course, on the underlying access control pol-
icy, and, more specifically, on the authorization constraints assigned to the
permissions which grant access to execute the given action for the given role.
Also, recall that permissions are inherited along the role hierarchy.
Notice however that, to obtain (i), the GUI designer can not simply compose,
using disjunctions, the authorization constraints assigned to the aforemen-
tioned permissions. In particular, the variable caller, if it appears in any of
these authorization constraints, must be replaced by the (widget) variable
that stores the current application’s user. Furthermore, the variables self,
value, and target, if they appear in any of the aforementioned authorization
constraints, must also be replaced by the appropriate expressions, based on
the arguments taken by the given action. For example, in the case of a read-
action, the variable self should be replaced by the value of the parameter
object for this action.

Step 2 For each event supported by a widget, and for each role considered by
the access control policy, the GUI designer must determine (ii) the conditions

Widgets Variables Events Actions Arguments

editProfileWi caller,
selectedUser

| nicknameEn on-create read object = [selectedUser]
| attribute = nickname
| variable = text

| passwordEn on-create read object = [selectedUser]
| attribute = password
| variable = text

| moodMsgEn on-create read object = [selectedUser]
| attribute = moodMsg
| variable = text

| emailEn on-create read object = [selectedUser]
| attribute = email
| variable = text

| statusEn on-create read object = [selectedUser]
| attribute = status
| variable = text

| updateBu click-on update object = [selectedUser]
| attribute = nickname
| value = [nicknameEn.text]

update object = [selectedUser]
| attribute = password
| value = [passwordEn.text]

update object = [selectedUser]
| attribute = moodMsg
| value = [moodMsgEn.text]

update object = [selectedUser]
| attribute = email
| value = [emailEn.text]

update object = [selectedUser]
| attribute = status
| value = [statusEn.text]

Fig. 10. The ChitChat edit-profile window (although security-unaware).

under which all the actions triggered by the given event can be securely exe-
cuted by a user with the given role. In this case, for each given role, the GUI
designer can simply compose, using conjunctions, the results to determine
(i) for every action triggered by the given event.

Let us now illustrate, using our running example, the two solutions that
are currently available to the GUI modeler for turning a security-unaware GUI
model into a security-aware one. To simplify the discussion, we assume from now
on that the user currently logged-in is always stored in a (widget) variable caller,
that this variable is owned by every window, and that this variable’s value is au-
tomatically passed from one window to another window when opening the latter
from the former. Similarly, we assume the role of the user currently logged-in (if
he or she has several roles, then the “active” role) is always stored in a (widget)
variable role, that this variable is owned by every window, and that this vari-
able’s value is automatically passed from one window to another window when
opening the latter from the former.

Solution A. The first solution for the GUI designer consists in modeling as
many different edit-profile windows as possible security scenarios. In our case, the
GUI designer must model three different edit-profile windows (editMyProfileWi,
editOthersProfile, and editUsersProfile), one for each of the following scenarios:

1. When the caller has the role ‘User’ and coincides with the selectedUser.

2. When the caller has the role ‘User’ but does not coincide with the selectedUser.

3. When the caller has the role ‘Admin’.

In particular, the window editMyProfileWi associated to the security scenario
(1) will contain exactly the same widgets as the window editProfileWi in Figure 10.
In contrast, the window editOthersProfileWi associated to the security scenario (2),
will only contain the text-fields nicknameEn, moodMsgEn, and statusEn (and not
the button updateBu), since a user with the role ‘User’ can only read (but not
update) other user’s nickname, mood message, and status. Similarly, the window
editProfilesWi will only contain the text-fields nicknameEn, moodMsgEn, emailEn,
and statusEn (and not the button updateBu), since a user with the role ‘Admin’
can read (but not update) any user’s profile, except its password.

Furthermore, for this solution to work, every event intended to give access
to the interface for editing users’ profiles must also be aware of the security
scenarios (1)–(3), in order to open the appropriate edit-profile window. In par-
ticular, the GUI designer must associate the sequence of conditional actions
shown in Figure 11 to each of the aforementioned events. Notice that for each
open-action, the imposed condition formalizes the conditions under which all the
actions triggered by all the events supported by the widgets which are contained
in the window being opened can be securely executed by a user. That is, the GUI
designer must gather all the knowledge corresponding to (ii), in Step 2 above, for
every event supported by any widget contained in the window which the action
under consideration is about to open.

Actions Arguments

if [role] = ’User’ and [caller] = [selected user]
then open window = editMyProfileWi

editMyProfileWi.selectedUser = [selected user]
if [role] = ’User’ and [caller] <> [selected user]
then open window = editOthersProfileWi

editOthersProfileWi.selectedUser = [selectedUser]
if [role] = ’Admin’
then open window = editUsersProfileWi

editUsersProfileWi.selectedUser = [selectedUser]

Fig. 11. Solution A: Conditions for opening the edit-profile windows.

Solution B. Another solution for the GUI designer consists of specifying, for
each of event supported by a widget, the conditions under which all the actions
triggered by the given event can be securely executed by a user. In our case, the
GUI design must convert the edit-profile window model shown in Figure 10 into
the one shown in Figure 12.

This solution is certainly simpler and less intrusive than Solution A with
respect to the original, security-unaware GUI model (since, for example, no new
windows need to be added to the original design). However, in order to implement
this solution, the GUI designer must gather all the knowledge corresponding to
(ii), in Step 2 above, for every event supported by every widget in the model.

A model-transformation approach. Clearly, manually modeling the appli-
cation’s security policy within the GUI model is problematic. It is cumbersome,
error prone, and scales poorly to large applications. Moreover, it requires the
GUI designer to have complete knowledge of the access control policy on the
application data. Finally, the resulting GUI models are difficult to maintain.

To address the problem of establishing the link between visualization and se-
curity, we employ a standard technique from model-driven development: model
transformation. A model transformation takes as input a model (or several mod-
els) conforming to given metamodel (respectively, several metamodels) and pro-
duces as output a model conforming to a given metamodel. More specifically,
the ActionGUI Toolkit implements a model transformation that takes as input
an ActionGUI model and a SecureUML+ComponentUML model, and automat-
ically produces as output an ActionGUI model. This output model is identical
to the input ActionGUI model except that it is now security-aware with respect
to the access control policy specified in the input SecureUML+ComponentUML
model. In particular, our model transformation follows the ideas behind Solu-
tion B: it specifies for each event supported by a widget, the conditions under
which all the actions triggered by this event can be securely executed by a user.
As expected, at the core of this model transformation, we have implemented a
function (on the input models) that automatically gathers all the knowledge cor-

Widgets Events Actions Arguments

nicknameEn on-create if true
then read object = [selectedUser]

attribute = nickname
variable = text

passwordEn on-create if [role] = ’User’ and [caller] = [selectedUser]
then read object = [selectedUser]

attribute = password
variable = text

moodMsgEn on-create if true
then read object = [selectedUser]

attribute = moodMsg
variable = text

emailEn on-create if (([role] = ’User’ and [caller] = [selectedUser])
or [role] = ’Admin’)

then read object = [selectedUser]
attribute = email
variable = text

statusEn on-create if true
then read object = [selectedUser]

attribute = status
variable = text

updateBu click-on if [role] = ’User’ and [caller] = [selectedUser]
then update object = [selectedUser]

attribute = nickname
value = [nicknameEn.text]

update object = [selectedUser]
attribute = password
value = [passwordEn.text]

update object = [selectedUser]
attribute = moodMsg
value = [moodMsgEn.text]

update object = [selectedUser]
attribute = email
value = [emailEn.text]

update object = [selectedUser]
attribute = status
value = [statusEn.text]

Fig. 12. Solution B: The ChitChat edit-profile window (now security-aware).

responding to (i) and (ii), in Step 1 and Step 2 above, for each action triggered
by an event and for each event supported by a widget, respectively.

Continuing with our running example, let us consider how models can be
made security-aware and maintained over time. First, how can the GUI designer
model the edit-profile window to make it aware of and respect the security re-
quirements (4–6)? Using our ActionGUI Toolkit, the designer simply calls the
aforementioned model transformation on ChitChat’s access control policy shown
in Figure 6 and the (security-unaware) ChitChat edit-profile window model
shown in Figure 10. Our model transformation then automatically generates
(in practically no time) the security-aware ChitChat edit-profile window model
shown in Figure 12. Finally, what must the GUI designer do, with respect to the
edit-profile window model, if ChitChat’s security policy happens to change? For
example, suppose that any user is allowed to read the email of other users when
the former participates in a chat room where the latter is also participating. The
designer must simply call again the model transformation, this time taking as
inputs the modified model of ChitChat’s access control policy and, as before,
ChitChat’s (security-unaware) edit-profile window model. shown in Figure 10.

6 Related Work and Conclusions

The ever-growing development and use of information and communication tech-
nology is a constant source of security and reliability problems. Clearly we need
better ways of developing software systems and approaching software engineering
as a well-founded discipline. In many engineering disciplines, model building is at
the heart of system design. This is increasingly the case in software engineering
since model-driven software engineering was first proposed over a decade ago.
In our opinion, the late adoption of this methodology is due to the difficulty in
defining effective domain-specific modeling languages and also the effort required
for developers to learn modeling languages and the art of model building.

Defining a good domain-specific modeling language requires finding the right
abstractions and degree of precision to capture relevant aspects of the structure
and the logic of a software system. In addition, for a modeling language to
be really usable and useful for software developers, appropriate tools must be
provided to build models, analyze them, and keep them synchronized with end
products. We wish to emphasize in this regard the need to focus on concrete
domains like access controls, GUIs, data models, and the like. In our experience,
only by limiting the domain is it possible to build sufficiently precise modeling
languages that support the automatic generation of fully functional applications.

Automatic code generation brings with it important advantages. Once a code
generator is implemented for a platform (a one-off cost), modelers can use it like
a compiler for a very high-level language, dramatically increasing their produc-
tivity. But even when the model-driven development process is not completely
automatic, there are experience reports (see, for instance, [9, 11]), in which the
productivity of a developer in industry is said to increase by a factor of 2 or 3.

There is an additional argument for using model-driven development to de-
velop security-critical systems, i.e., for model-driven security [1]. Namely, secu-
rity is often built redundantly into systems. For example, in a web-application,
access control may be enforced at all tiers: at the web server, in the back-end
databases, and even in the GUI. There are good reasons for this. Redundant
security controls is an example of defense in depth and is also necessary to pre-
vent data access in unanticipated ways, for example, directly from the database
thereby circumventing the web application server. Note that access control on the
client is also important, but more from the usability rather than the security per-
spective. Namely, although client-side access control may be easy to circumvent,
it enhances usability by presenting honest users an appropriate view of their op-
tions: unauthorized options can be suppressed and users can be prevented from
entering states where they are unauthorized to perform any action, e.g., where
their actions will result in security exceptions thrown by the application server
or database.

The above raises the following question: must one specify security policies
separately for each of these tiers? The answer is “no” for many applications. Se-
curity can often be understood in terms of the criticality of data and an access
control policy on data can be specified at the level of component (class) models,
as discussed in Section 3. Afterwards, an access control policy modeled at the
level of components may be lifted to other tiers. When the tiers are also modeled,
this lifting can be accomplished using model transformation techniques and in a
precise and meaningful way as we have illustrated in Section 5. In general, model
transformations support problem decomposition during development where de-
sign aspects can be separated into different models which are later composed.
As a methodology for designing security-aware GUIs, this approach supports
the consistent propagation of a security policy from component models to GUI
models and, via code generation, to GUI implementations. This decomposition
also means that security engineers and GUI designers can independently model
what they know best and maintain their models independently.

Related Work

There are also other tools like WebRatio [12], Olivanova [4], and Lightswitch [8]
that support development methodologies for building data-centric applications
that are similar to the model-driven methodology presented in this work. In these
tools, application development starts by building a data model that reflects the
data structure required for the database. The development process continues
by applying different UI generation patterns to the data model. These patterns
enable data retrieval, data editing, data creation, and database search. A detailed
comparison of the expressiveness provided by the languages supported by these
tools with the languages supported by the ActionGUI Toolkit is interesting;
however it falls out of the scope of this paper. Nevertheless, we note that, in
contrast to what these tools can provide, the ActionGUI Toolkit offers developers
the full flexibility to create designs without burdening them with the restrictions
imposed by the obligatory use of a fixed number of given patterns. The above

tools also impose a major restriction at the level of data management, i.e., at the
level of data access and visualization: The information that can be referenced and
therefore that can be accessed and visualized within one screen can only come
from one table of the database or, at most, from two tables that are reachable
from each other within one navigation step.

The three tools, WebRatio, Olivanova, and Lightswitch, support the defini-
tion and generation of RBAC policies at different granularity levels. Lightswitch
supports granting or denying permissions (whose actual behavior must be man-
ually programmed) to execute create, read, update, or delete actions on entities
for users in different roles. WebRatio and Olivanova also support granting or
denying permissions to execute a similar set of actions on entity’s properties,
individually, for users in different roles. In WebRatio and Olivanova, the role of
the authorization constraints could be played by preconditions restraining the
invocation of actions through a concrete UI. Note, however, that none of these
tools implement an algorithm capable of lifting to the UIs the security policy
that governs the access to data.

Future Work

The toolkit we presented supports the construction of security, data, and GUI
models and generates complete, deployable, security-aware web applications from
these models. However, there is still much work ahead to turn this toolkit into a
full, robust commercial application. In particular, we plan to add to the language
(and to its code-generator) other actions which do not act upon the database or
the GUI elements. Examples are sending an email to a contact selected in a list
or printing a table.

Our work here, as well as our past work in model-driven security, has focused
primarily on access control. However, many systems have security requirements
that go beyond access control, for example, obligations on how data must or must
not be used once access is granted. We are currently working on handling usage
control policies in the context of model-driven security. The challenge here is to
define modeling languages that are expressive enough to capture these policies,
support their formal analysis, and provide a basis for generating infrastructures
to enforce or, at least, monitor these policies.

There are many challenging questions concerning model analysis. Here, our
goal is to be able to analyze the consistency of different system views. For exam-
ple, suppose that access control is implemented at multiple tiers (or levels) of a
system, e.g., at the middle tier implementing a controller for a web-based appli-
cation and at the back-end persistence tier. If the policies for both of these tiers
are formally modeled, we would like to answer questions like “will the controller
ever enter a state in which the persistence tier throws a security exception?”
Note that with advances in model transformations, perhaps such questions will
some day not even need to be asked, as we can uniformly map a security policy
across models of all tiers.

Ultimately we see model-driven security playing an important role in the
construction and certification of critical systems. For example, certification un-

der the Common Criteria requires models for the higher Evaluation Assurance
Levels. Model-driven security provides many of the ingredients needed: models
with a well-defined semantics, which can be rigorously analyzed and have a clear
link to code. As the acceptance of model-driven development techniques spread,
and as they become better integrated with well-established formal methods that
support a detailed behavioral analysis, such applications should become a reality.

Acknowledgements

This work is partially supported by the EU FP7-ICT Project “NESSoS: Net-
work of Excellence on Engineering Secure Future Internet Software Services and
Systems” (256980) by the Spanish Ministry of Science and Innovation Project
“DESAFIOS-10” (TIN2009-14599-C03-01), and by Comunidad de Madrid Pro-
gram “PROMETIDOS-CM” (S2009TIC-1465).

References

1. D. Basin, M. Clavel, and M. Egea. A decade of model driven security. In Pro-
ceedings of the 16th ACM Symposium on Access Control Models and Technologies
(SACMAT ’11). ACM Press, June 2011. Invited Paper. In Press.

2. D. Basin, M. Clavel, M. Egea, and M. Schläpfer. Automatic generation of smart,
security-aware GUI models. In F. Massacci, D. S. Wallach, and N. Zannone, editors,
Proceedings of the 2nd International Symposium on Engineering Secure Software
and Systems (ESSoS’10), volume 5965 of LNCS, pages 201–217, Pisa, Italy, 2010.
Springer.

3. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1):39–91, 2006.

4. Care Technologies. Olivanova – the programming machine, 2011. http://www.

care-t.com.

5. M. Egea, C. Dania, and M. Clavel. MySQL4OCL: A stored procedure-based
MySQL code generator for OCL. Electronic Communications of the EASST, 36,
2010.

6. D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. ACM Transactions on
Information and System Security, 4(3):224–274, 2001.

7. A. Kleppe, W. Bast, J. B. Warmer, and A. Watson. MDA Explained: The Model
Driven Architecture–Practice and Promise. Addison-Wesley, 2003.

8. Microsoft. Visual studio lightswitch, 2010. http://www.microsoft.com/

visualstudio/en-us/lightswitch.

9. R. Mohan and V. Kulkarni. Model driven development of graphical user interfaces
for enterprise business applications - experience, lessons learnt and a way forward.
In Andy Schürr and Bran Selic, editors, Proc. of MODELS 2009, LNCS, pages
307–321. Springer, 2009.

10. Object Management Group. Object Constraint Language specification Version 2.2,
February 2010. OMG document available at http://www.omg.org/spec/OCL/2.2.

11. A. Schramm, A. Preußner, M. Heinrich, and L. Vogel. Rapid UI development for
enterprise applications: Combining manual and model-driven techniques. In Do-
rina C. Petriu, Nicolas Rouquette, and Øystein Haugen, editors, Proc. of MODELS
2010, LNCS, pages 271–285. Springer, 2010.

12. Web Models Company. Web ratio – you think, you get, 2010. http://www.

webratio.com.

