Assignment 3

1. Quadratic eigenvalue problem. The numbers λ (=eigenvalues) are sought, for which

$$
A \mathbf{x}+\lambda B \mathbf{x}+\lambda^{2} C \mathbf{x}=\mathbf{0}
$$

has nontrivial solutions. Derive a linear eigenvalue problem (which means an eigenvalue problem in which λ appears only linearly), that has the same eigenvalues. What is the relationship among the eigenvectors?
Assume that all matrices A, B, and C are symmetric. Can you construct a symmetric linearized eigenvalue problem. Does this mean that all eigenvalues are real?
Hint: Use an auxiliary vector $\mathbf{y}=\lambda \mathbf{x}$.
Note: This method has similarities with the method that transforms ODEs of high order to ODE systems of first order.
2. Write a Matlab implementation of Hyman's method to find a root of $f(\lambda)=\operatorname{det}(A-\lambda I)$.
(a) Write a function hyman.m that inputs a Hessenberg matrix H and a scalar λ and returns two scalars $f(\lambda)$ and $f^{\prime}(\lambda)$.
(b) Generate a random Hessenberg matrix:

```
n = ...
A = rand(n);
[P,H] = hess(A);
```

Use Newton's method to find an eigenvalue of H.
(Make sure that your procedure finds complex eigenvalues as well.)
(c) Verify quadratic convergence.
(d) Modify Newton's method to find a second eigenvalue.
3. For the eigenvalue problem $A \mathbf{x}=\lambda \mathbf{x}$ with real symmetric A let us define a residual for eigenpairs, $\mathbf{r}(\mathbf{x}, \lambda):=A \mathbf{x}-\lambda \mathbf{x}$. Show that

$$
\begin{equation*}
\|\mathbf{r}(\mathbf{x}, \rho(\mathbf{x}))\|_{2} \leq\|\mathbf{r}(\mathbf{x}, \lambda)\|_{2} \quad \text { for all } \lambda \tag{1}
\end{equation*}
$$

where $\rho(\mathbf{x})$ is the Rayleigh quotient.
For the generalized eigenvalue problem $A \mathbf{x}=\lambda M \mathrm{x}$ with real symmetric A and SPD M the Rayleigh quotient is defined by

$$
\rho(\mathbf{x})=\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} M \mathbf{x}}, \quad \mathbf{x} \neq \mathbf{0}
$$

What inequality corresponds to (1) for the generalized eigenvalue problem?
Hint: Transform the problem in a special eigenvalue problem.

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 13, 2018. (12:00). Please specify the tag EWP18-3 in the subject field.

