Assignment 7

1. Let A be an n-by- n matrix and let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ be linearly independent n-vectors. Is the subspace $\mathcal{V}:=\operatorname{span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ a Krylov space, i.e. is there a vector $\boldsymbol{q} \in \mathcal{V}$ such that $\mathcal{V}=\mathcal{K}_{k}(A, \boldsymbol{q})$? The following holds and is to be proved.
\mathcal{V} is a Krylov space if there is a k-by- k matrix M such that

$$
\begin{equation*}
R:=A V-V M, \quad V=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right] \tag{1}
\end{equation*}
$$

has rank one. So, given

$$
A V=V M+\boldsymbol{v} \boldsymbol{w}^{T}
$$

construct an Arnoldi relation

$$
A Q=Q H+\gamma \boldsymbol{q} \boldsymbol{e}_{k}^{T},
$$

with $\mathcal{R}(Q)=\mathcal{R}(V)$.
2. (a) Implement the Lanczos algorithm with full reorthogonalization for $A \boldsymbol{x}=\lambda M \boldsymbol{x}$ in a Matlab function. It is assumed that A and M are real, symmetric n-by- n matrices, and M is positive definite.
The Lanczos iteration for this eigenproblem has the form

$$
\beta_{j} \boldsymbol{q}_{j+1}=\boldsymbol{r}_{j}=(A-\sigma M)^{-1} M \boldsymbol{q}_{j}-\alpha_{j} \boldsymbol{q}_{j}-\beta_{j-1} \boldsymbol{q}_{j-1}, \quad \boldsymbol{q}_{i} M \boldsymbol{q}_{k}=\delta_{i, k} .
$$

Here, σ is a shift. Note that the matrix $(A-\sigma M)^{-1} M$ is symmetric (self-adjoint) w.r.t. the M-inner product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{M}=\boldsymbol{y}^{*} M \boldsymbol{x}$.
Input:

- Matrices A and M.
- p eigenpairs to be computed.
- Starting vector \boldsymbol{x}.
- Shift σ.
- Tolerance τ for the stopping criterion. An eigenpair is considered found if $\beta_{j}\left|s_{j, *}^{(j)}\right|<\tau$ (in j-th iteration).

Output:

- p eigenpairs.
- The estimates $\beta_{j}\left|s_{j, *}^{(j)}\right|$.

Note: Use the Matlab routine eig to compute the last row of S_{j} where $T_{j}=S_{j} \Theta S_{j}^{T}$.
(b) As in the previous Assignment 6 question 2 (b), calculate the ten smallest eigenvalues and corresponding eigenvectors of the eigenvalue problem "vibrations in the car interior", which was discussed in the lecture notes. Choose $\sigma=-0.01$ and $\tau=1 \cdot 10^{-6}$.
The matrices are constructed by the following Matlab script:

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by May 2, 2018. (12:00). Please specify the tag EWP18-7 in the subject field.

```
[p,e,t]=initmesh('auto');
[p,e,t]=refinemesh('auto',p,e,t);
[p,e,t]=refinemesh('auto',p,e,t);
p=jigglemesh(p,e,t);
[A,M] =assema(p,t,1,1,0);
```

Here auto defines the geometry of the car.
The eigenfunctions are stored in a $n \times 10$ matrix U, and they can be plotted, e.g., the 4 th eigenfunction is plotted as follows

```
pdeplot(p,e,t,'xydata',U(:,4),'mesh','on','colorbar','off')
axis([-1 26 -1 15])
axis equal
axis off
colormap(hsv)
```

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by May 2, 2018. (12:00). Please specify the tag EWP18-7 in the subject field.

