
Numerical Methods for Solving Large Scale Eigenvalue Problems SS 2018

Assignment 1

1. Consider the wave equation for the linearized model of a guitar string. The partial differential
equation is given by equation (1.8) in the lecture notes. We choose ρ(x) = ρ[kg/m] (constant
weight), and p(x) = T [N] (constant tension). We assume there are no exterior forces, i.e., q(x) =
0. Separation of variables, u(x, t) = v(t)w(x), leads to differential equations for v(t) and w(x),
depending on an additional parameter λ (see equation (1.12) in the lecture notes). For v(t), the
solution at a specific λ is

v(t) = a cos(
√
λt) + b sin(

√
λt),

where a and b are still to be determined. This corresponds to the frequency
√
λ

2π
. The differential

equation for w(x) remains to be solved.

(a) Approximate w(x) using the finite difference method. Define N + 2 equidistant nodes 0 =
x0 < · · · < xN+1 = ` on the interval [0, `], where N = 100, and define wk = w(xk). Use

∂2w

∂x2
(xk) ≈

1

h2
(wk+1 − 2wk + wk−1) , (1)

to approximate the second derivative, where h = `
N+1

. The resulting system is an eigenvalue
problem:

Aw = λw.

In Matlab, use eigs to calculate the ground state (the eigenvector corresponding to the
smallest eigenvalue), and the next two states (eigenvectors corresponding to 2nd and 3rd
smallest eigenvalues), and plot them.

Also calculate the frequency of the resulting waves.

Choose N = 100, T = 10 N and ρ = 0.001 kg/m, ` = 0.5 m.

Solution: We start with the equation (1.8) from the lecture notes

−ρ(x)
∂2u(x, t)

∂t2
+

∂

∂x

(
p(x)

∂u(x, t)

∂x

)
+ q(x)u(x, t) = 0,

with the boundary conditions u(0, t) = u(`, t) = 0. Using the assumptions ρ(x) = ρ, p(x) = T , and
q(x) = 0, we obtain

−ρ∂
2u(x, t)

∂t2
+ T

∂2u(x, t)

∂x2
= 0.

We apply the method of separation of variables u(x, t) = w(x)v(t) with the ansatz v(t) = a cos(
√

(λt)+
b sin(

√
λt)). We arrive at

ρλw(x)v(t) + Tw′′(x)v(t) = 0.

This has to be satisfied for all v(t), so we get

−T
ρ
w′′(x) = λw(x).

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.
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With the discretization scheme (1), we get the following linear eigenvalue problem

− T

ρh2
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Figure 1: Eigen vectors of the first three smallest eigenvalues.

(b) Bonus: We want the string to play an “A”, i.e., the fundamental frequency (=̂ smallest
eigenvalue) is 440 Hz. Determine the tension T that achieves this fundamental frequency
using the algorithm from (a).

Solution: This could be done reformulating the eigenvalue problem in the following form

− ρ

(880π)2
w′′(x) = Tw(x),

and solving again for T . Or scale the problem and us the previous computed eigenvalue

− ρ

α−1T︸ ︷︷ ︸
Tnew

w′′(x) = αλ︸︷︷︸
=(880π)2

w(x) ⇒ Tnew =
(880π)2

λ
T

Therefore the new tension is 193.6.

2. Poisson equation. The following eigenvalue problem is given

−∆u(x, y) = λu(x, y), 0 < x < 5, 0 < y < 4, (2)

with Neumann boundary conditions at the left and the right

∂u

∂n
(0, y) =

∂u

∂n
(5, y) = 0, 0 < y < 4,

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.
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as well as Dirichlet and Cauchy boundary conditions at the top and the bottom

u(x, 0) = u(x, 4) +
∂u

∂n
(x, 4) = 0, 0 < x < 5,

(a) Solve this problem exactly with separation of variables.

Solution: Using separation of variables u(x, y) = v(x)w(y) and dividing with u, we obtain

− v
′′(x)

v(x)︸ ︷︷ ︸
=µ

− w
′′(y)

w(y)︸ ︷︷ ︸
=ν

= λ, 0 < x < 5, 0 < y < 4.

To satisfy this equation the quotients v′′/v and w′′/w have to be constant. We use µ and ν as these
constants. The corresponding eigenvalue for the original problem is then given by λ = ν + µ.

The Neumann boundary conditions at the left and right for the separated variables become

v′(0) = v′(5) = 0.

The Dirichlet and Cauchy boundary conditions become

w(0) = w(4) + w′(4) = 0.

First we solve in x-direction
−v′′(x) = µv(x), 0 < x < 5

From that we can use the ansatz v(x) = α cos(
√
µx)+β sin(

√
µx). From the boundary conditions we

get that β = 0 and µk = (π5k)2 for k ∈ Z. Note that the coefficient α can then be chosen arbitrary
(we choose α = 1).

Now, we solve in y-direction
−w′′(y) = νw(y), 0 < y < 4

From that we can assume the ansatz v(x) = γ cos(
√
νy) + δ sin(

√
νy). From w(0) = 0 it follows that

γ = 0. Similar to the x-direction we can choose δ = 1. Using the top boundary conditions, we get

sin(
√
ν4) = −

√
ν cos(

√
ν4).

This can be solved numerically, we get l ∈ Z6=0 different values for ν. The first three values are

ν±1 = ±0.642 . . .2 ,

ν±2 = ±1.348 . . .2 ,

ν±3 = ±2.075 . . .2 .

The solution of the original problem is given by

λkl = µk + νl

ukl(x, y) = cos
(√
|µk|x

)
sin
(

sgn(k)
√
|νk|y

) for k ∈ Z, l ∈ Z6=0.

(b) How does the matrix eigenvalue problem look like if discretized on a rectangular grid.

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.
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Solution: We begin discretizing the domain in each direction separately. In each direction we consider Nx and
Ny grid points. We write the grid coordinates as xi = hxi and yj = hyj with hx = 5

Nx
and hy = 4

Ny
,

respectively. We are looking for the values uij = u(xi, yj) for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. The
boundary conditions are discretized as

u1,j − u−1,j
2hx

= 0,

uNx+1,j − uNx−1,j
2hx

= 0,
0 ≤ j ≤ Ny

ui,0 = 0, 0 ≤ i ≤ Nx,

ui,Ny +
ui,Ny+1 − ui,Ny−1

2hy
= 0,

0 ≤ i ≤ Nx

For the inner points we get

− 1

h2x
ui−1,j −

1

h2y
ui,j−1 +

(
2

h2x
+

2

h2y

)
ui,j −

1

h2x
ui+1,j −

1

h2y
ui,j+1 = λui,j , for 1 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1.

Note that we have Dirichlet boundary conditions on the bottom, so we get there Nx less equations
there. For j = 1 we get

− 1

h2x
ui−1,1 −

1

h2y
ui,0︸︷︷︸
=0

+

(
2

h2x
+

2

h2y

)
ui,1 −

1

h2x
ui+1,1 −

1

h2y
ui,2 = λui,1, for 1 ≤ i ≤ Nx − 1.

For the Neumann and Cauchy boundary conditions, we plug in in the equation from boundary
conditions for the unknown outside of the domain. For the top, we arrive with scaling the equation
by one half at

− 1

2h2x
ui−1,Ny −

1

h2y
ui,Ny−1 +

(
1

h2x
+

1 + hy
h2y

)
ui,Ny −

1

2h2x
ui+1,Ny =

1

2
λui,Ny , for 1 ≤ i ≤ Nx − 1,

The same procedure gives for the left boundary

− 1

2h2y
u0,j−1 +

(
1

h2x
+

1

h2y

)
u0,j −

1

h2x
u1,j −

1

2h2y
u0,j+1 =

1

2
λu0,j , for 2 ≤ j ≤ Ny − 1,

and for right boundary it gives

− 1

h2x
uNx−1,j −

1

2h2y
uNx,j−1 +

(
1

h2x
+

1

h2y

)
uNx,j −

1

2h2y
uNx,j+1 =

1

2
λuNx,j , for 2 ≤ j ≤ Ny − 1.

Also the four corners (x0, y1), (x0, yNy), (xNx , y1), and (xNx , yNy) have to be considered separately,

but are skipped here. We can construct now the matrix A ∈ R((Nx+1)Ny)×((Nx+1)Ny).

(c) Is the derived matrix symmetric or symmetrizable?

Solution: The way the matrix has been constructed it is already symmetric. Otherwise we would have to scale

the matrix such that it is symmetric.

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.
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3. Calculate the ground state of
−∆u = λu in Ω

u = 0 on ∂Ω

using the Matlab PDE Toolbox. The domain Ω should be chosen as the unit circle, or as the
L-shaped domain. Use the following commands in Matlab:

% initializes a triangular mesh on the unit circle

[p,e,t]=initmesh(’circleg’);

% refines the mesh

[p,e,t]=refinemesh(’circleg’,p,e,t);

% Calculates eigenvectors and eigenvalues of the system

% (some constants have been inserted)

[v,l]=pdeeig(’circleb1’,p,e,t,1,0,1,[0 10]);

% Plot the approximation of the first eigenfunction

pdesurf(p,t,v(:,1))

For the L-shaped domain, replace circleg and circleb1 by lshapeg and lshapeb.

We are interested in the behavior of the error in the computed eigenvalue when the mesh is refined.
Successively refine the mesh, and plot the relative error for the two domains. What is the conver-
gence rate?

Hints: Use the computed eigenvalue for the finest mesh as the “correct” eigenvalue for calculating
the error.

Solution: The approximated convergence rate is two, c.f. Figure 2.

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.
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Figure 2: Convergence.

Please submit your solution via e-mail to Peter Arbenz (arbenz@inf.ethz.ch) by March 5, 2018.
(12:00). Please specify the tag EWP18-1 in the subject field.


