
Chapter 12

Rayleigh quotient minimization

In this chapter we restrict ourselves to the symmetric/Hermitian eigenvalue problem

(12.1) Ax = λMx, A = A∗, M = M∗ > 0.

We want to exploit the property of the Rayleigh quotient that

(12.2) λ1 = min
x 6=0

ρ(x) ρ(x) =
x∗Ax

x∗Mx
,

which was proved in Theorem 2.15. The basic idea of Rayleigh quotient minimization is
to construct a sequence {xk}k=1,2,... such that ρ(xk+1) < ρ(xk) for all k. The hope is
that the sequence {ρ(xk)} converges to λ1 and by consequence the vector sequence {xk}
towards the corresponding eigenvector.

The procedure is as follows: For any given xk let us choose a search direction pk,
so that

(12.3) xk+1 = xk + δkpk.

The parameter δk is determined such that the Rayleigh quotient of the new iterate xk+1

becomes minimal,

(12.4) ρ(xk+1) = min
δ
ρ(xk + δpk).

We can write the Rayleigh quotient of the linear combination xk + δpk of two (linearly
independant) vectors xk and pk as
(12.5)

ρ(xk + δpk) =
x∗
kAxk + 2δxkApk + δ2p∗

kApk
x∗
kMxk + 2δxkMpk + δ2p∗

kMpk
=

(
1
δ

)∗ [
x∗
kAxk x∗

kApk
p∗
kAxk p∗

kApk

](
1
δ

)

(
1
δ

)∗ [
x∗
kMxk x∗

kMpk
p∗
kMxk p∗

kMpk

](
1
δ

) .

This is the Rayleigh quotient associated with the generalized 2× 2 eigenvalue problem

(12.6)

[
x∗
kAxk x∗

kApk
p∗
kAxk p∗

kApk

](
α
β

)
= λ

[
x∗
kMxk x∗

kMpk
p∗
kMxk p∗

kMpk

](
α
β

)
.

The smaller of the two eigenvalues of (12.6) is the searched value ρk+1 := ρ(xk+1) in (12.4)
that minimizes the Rayleigh quotient. The corresponding eigenvector is normalized such

213

214 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

that its first component equals one1. The second component of this eigenvector is δ = δk.
Inserting the solution [1, δk]

∗ into the second line of (12.6) we obtain

(12.7) p∗
k(A− ρk+1M)(xk + δkpk) = p∗

krk+1 = 0.

So, the ‘next’ residual rk+1 is orthogonal to the actual search direction pk.
There are various ways how to choose the search direction pk. A simple way is to

cycle through the coordinate vectors, a method that is called coordinate relaxation [3]. It
cannot compete with the methods we discuss next.

12.1 The method of steepest descent

Let us make a detour to solving systems of equations

(12.8) Ax = b,

where A is symmetric/Hermitian positive definite. Let us define the functional

(12.9) ϕ(x) ≡ 1

2
x∗Ax− x∗b +

1

2
b∗A−1b =

1

2
(Ax− b)∗A−1(Ax− b).

The functional ϕ is minimized (actually zero) at the solution x∗ of (12.8). The negative
gradient of ϕ is

(12.10) −∇ϕ(x) = b−Ax =: r(x).

It is nonzero except at x∗. In the method of steepest descent [2, 3] a sequence of vectors
{xk}k=1,2,... is constructed such that the relation

(12.3) xk+1 = xk + δkpk.

holds among any two consecutive vectors. The search direction pk is chosen to be the
negative gradient −∇φ(xk) = rk = b − Axk. This is the direction in which ϕ decreases
the most. Setting xk+1 as in (12.3) we get

0 =
∂ϕ(xk+1)

∂δ

∣∣∣∣
δ=δk

= p∗
k(Axk − b) + δkp

∗
kApk = −p∗

krk + δkp
∗
kApk.

Thus,

(12.11) δk =
p∗
krk

p∗
kApk

which, for steepest descent, becomes

(12.12) δk =
r∗krk
r∗kArk

Remark 12.1. Notice that

(12.13) rk+1 = b−Axk+1 = b−A(xk + δkpk) = rk − δkApk.

1The first component of this eigenvector is nonzero if it has a component in the direction of the ‘smallest
eigenvector’.

12.2. THE CONJUGATE GRADIENT ALGORITHM 215

Therefore, from (12.11) we have

(12.14) p∗
krk+1 = p∗

krk − δkp∗
kApk = 0,

which corresponds to (12.7) in the linear system case.
For the eigenvalue problem we can proceed similarly by choosing pk to be the negative

gradient of the Rayleigh quotient ρ,

pk = −gk = −∇ρ(xk) = − 2

x∗
kMxk

(Axk − ρ(xk)Mxk).

Notice that gk points in the same direction as the residual rk. (This is in contrast to the
linear system case!) Since in eigenvalue problems we only care about directions we can
equivalently set

(12.15) pk = rk = Axk − ρkMxk, ρk = ρ(xk).

With this choice of search direction we immediately have from (12.7) that

(12.16) r∗krk+1 = 0.

Not surprisingly, the method of steepest descent often converges slowly, as it does for
linear systems. This happens if the spectrum is very much spread out, i.e., if the condition
number of A relative to B is big.

12.2 The conjugate gradient algorithm

As with linear systems of equations a remedy against the slow convergence of steepest
descent are conjugate search directions. So, let’s first look at linear systems [5]. There,
we define the search directions as2

(12.17) pk = −gk + βkpk−1, k > 0.

where the coefficient βk is determined such that pk and pk−1 are conjugate, i.e.,

(12.18) p∗
kApk−1 = −g∗

kApk−1 + βkp
∗
k−1Apk−1 = 0,

such that

(12.19) βk =
g∗
kApk−1

p∗
k−1Apk−1

.

Premultiplying (12.17) by g∗
k gives

(12.20) g∗
kpk = −g∗

kgk + βkg
∗
kpk−1

(12.14)
= −g∗

kgk.

Furthermore,

0
(12.14)

= g∗
k+1pk

(12.17)
= −g∗

k+1gk + βkg
∗
k+1pk−1

(12.13)
= −g∗

k+1gk + βkg
∗
kpk−1 + βkδkp

∗
kApk−1.

2In linear systems the residual r = b − Ax is defined as the negative gradient whereas in eigenvalue
computations it is defined as r = Ax− ρ(x)Mx, i.e., in the same direction as the gradient. To reduce the
confusion we proceed using the gradient.

216 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

From (12.14) we have that g∗
kpk−1 = 0 and by construction of pk and pk−1 being conjugate

we have that p∗
kApk−1 = 0. Thus,

(12.21) g∗
k+1gk = 0,

as with the method of steepest descent. Still in the case of linear systems, using these
identities we find formulae equivalent to (12.19),

βk = − g∗
kApk−1

p∗
k−1Apk−1

(12.13)
= − g∗

k(gk − gk−1)

p∗
k−1(gk − gk−1)

(12.14)
= −g∗

k(gk − gk−1)

−p∗
k−1gk−1

(12.20)
=

g∗
k(gk − gk−1)

g∗
k−1gk−1

(12.22)

(12.21)
=

g∗
kgk

g∗
k−1gk−1

.(12.23)

The equivalent identities (12.19), (12.22), and (12.23) can be used to define βk the most
economic being (12.23).

We now look at how a conjugate gradient algorithm for the eigenvalue problem can
be devised. The idea is straightforward. The algorithm differs from steepest descent by
the choice of the search direction that are kept conjugate, p∗

k+1Apk−1 = 0. are equivalent
only when solving linear systems.

The crucial difference to linear systems stems from the fact, that the functional that
is to be minimized, i.e., the Rayleigh quotient, is not quadratic anymore. The gradient of
ρ(x) is

g = ∇ρ(xk) =
2

x∗Mx
(Ax− ρ(x)Mx).

So, in particular, the equation (12.14), does not hold:

xk+1 = xk + δkpk 6=⇒ gk+1 = gk + δkApk.

Therefore, in the context of nonlinear systems or eigenvalue problems the formals in (12.19),
(12.22), and (12.23) that define βk are not equivalent anymore! Feng and Owen [4] made
comparisons with the three formula and found that in the context of eigenvalue problems
the last identity (12.23) leads to the best results. So, we opt for this equation and define
the search directions according to

(12.24)





p0 = −g0, k = 0,

pk = −gk +
g∗
kMgk

g∗
k−1Mgk−1

pk−1, k > 0,

where we have given the formulae for the generalized eigenvalue problem Ax = λMx. The
complete procedure is given in Algorithm 12.1

Convergence

The construction of Algorithm 12.1 guarantees that ρ(xk+1) < ρ(xk) unless rk = 0, in
which case xk is the searched eigenvector. In general, i.e., if the initial vector x0 has a
nonvanishing component in the direction of the ‘smallest’ eigenvector u1, convergence is
toward the smallest eigenvalue λ1. This assumption must also hold for vector iteration or
the Lanczos algorithm.

12.2. THE CONJUGATE GRADIENT ALGORITHM 217

Algorithm 12.1 The Rayleigh-quotient algorithm

1: Let x0 be a unit vector, ‖x0‖M = 1.
2: v0 := Ax0, u0 := Mx0,

3: ρ0 :=
v∗

0x0

u∗
0x0

,

4: g0 := 2(v0 − ρ0u0)
5: while ‖gk‖ > tol do
6: if k = 1 then
7: pk := −gk−1;
8: else

9: pk := −gk−1 +
g∗
k−1Mgk−1

g∗
k−2Mgk−2

pk−1;

10: end if
11: Determine the smallest Ritz value and corresponding Ritz vector xk of (A,M) in

R([xk−1,pk])
12: vk := Axk, uk := Mxk
13: ρk := x∗

kvk/x
∗
kuk

14: gk := 2(vk − ρkuk)
15: end while

Let

(12.25) xk = cosϑku1 + sinϑkzk =: cosϑku1 + wk,

where ‖xk‖M = ‖u1‖M = ‖zk‖M = 1 and u∗
1Mzk = 0. Then we have

ρ(xk) = cos2 ϑkλ1 + 2 cosϑk sinϑku
∗
1Azk + sin2 ϑkz

∗
kAzk

= λ1(1− sin2 ϑk) + sin2 ϑkρ(zk),

or,

(12.26) ρ(xk)− λ1 = sin2 ϑk (ρ(zk)− λ1) ≥ (λ2 − λ1) sin2 ϑk.

As seen earlier, in symmetric eigenvalue problems, the eigenvalues are much more accurate
than the eigenvectors.

Let us now suppose that the eigenvectors have already converged, i.e.,

ρ(xk) = ρk ∼= λ1,

while the eigenvectors are not yet as accurate as desired. Then we can write

(12.27) rk = (A− ρkM)xk ∼= (A− λ1M)xk =
n∑

j=1

(λj − λ1)Muju
∗
jMxk

which entails u∗
1rk = 0 since the first summand on the right of (12.27) vanishes. From (12.25)

we have wk = sinϑkzk⊥Mu1. Thus,

(12.28)

{
(A− λ1M)wk = (A− λ1M)xk = rk⊥u1

w∗
kMu1 = 0

If λ1 is a simple eigenvalue of the pencil (A;B) then A − λ1M is a bijective mapping of
R(u1)

⊥M onto R(u1)
⊥. If r ∈ R(u1)

⊥ then the equation

(12.29) (A− λ1M)w = r

218 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

has a unique solution in R(u1)
⊥M .

So, close to convergence, Rayleigh–Quotient minimization does nothing else but solving
equation (12.29). Since the solution is in the Krylov subspace Kj ((A− λ1M)gj) for
some j, the orthogonality condition w∗

kMu1 is implicitly fulfilled. The convergence of the
Rayleigh–Quotient minimization is determined by the condition number of A − λ1M (as
a mapping of R(u1)

⊥M onto R(u1)
⊥), according to the theory of conjugate gradients for

linear system of equations. This condition number is

(12.30) κ0 = K(A− λ1M)
∣∣∣
R(u1)⊥M

=
λn − λ1

λ2 − λ1
,

and the rate of convergence is given by

(12.31)

√
κ0 − 1√
κ0 + 1

.

A high condition number implies slow convergence. We see from (12.31) that the condition
number is high if the distance of λ1 and λ2 is much smaller than the spread of the spectrum
of (A;B). This happens more often than not, in particular with FE discretizations of
PDE’s.

Preconditioning

In order to reduce the condition number of the eigenvalue problem we change

Ax = λMx

in

(12.32) Ãx̃ = λ̃M̃ x̃

such that

(12.33) κ(Ã− λ̃1M̃)≪ κ(A− λ1M).

To further investigate this idea, let C be a nonsingular matrix, and let y = Cx. Then,

(12.34) ρ(x) =
x∗Ax

x∗Mx
=

y∗C∗AC−1y

y∗C∗MC−1y
=

y∗Ãy

ỹ∗M̃y
= ρ̃(y)

Thus,
Ã− λ1M̃ = C−∗(A− λ1M)C−1,

or, after a similarity transformation,

C−1(Ã− λ1M̃)C = (C∗C)−1(A− λ1M).

How should we choose C to satisfy (12.33)? Let us tentatively set C∗C = A. Then we
have

(C∗C)−1(A− λ1M)uj = A−1(A− λ1M)uj = (I − λ1A
−1M)uj =

(
1− λ1

λj

)
uj .

Note that

0 ≤ 1− λ1

λj
< 1.

12.3. LOCALLY OPTIMAL PCG (LOPCG) 219

Dividing the largest eigenvalue ofA−1(A−λ1M) by the smallest positive gives the condition
number

(12.35) κ1 := κ
(
A−1(A− λ1M)

∣∣
R(u1)⊥M

)
=

1− λ1
λn

1− λ1
λ2

=
λ2

λn

λn − λ1

λ2 − λ1
=
λ2

λn
κ0.

If λ2 ≪ λn then the condition number is heavily reduced. Further, κ1 is bounded inde-
pendently of n,

(12.36) κ1 =
1− λ1/λn
1− λ1/λ2

<
1

1− λ1/λ2
.

So, with this particular preconditioner, κ1 does not dependent on the choice of the mesh-
width h in the FEM application.

The previous discussion suggests to choose C in such way that C∗C ∼= A. C could, for
instance, be obtained form an Incomplete Cholesky decomposition. We make this choice
in the numerical example below.

Notice that the transformation x −→ y = Cx need not be done explicitly. In partic-
ular the matrices Ã and M̃ must not be formed. As with the preconditioned conjugate
gradient algorithm for linear systems there is an additional step in the algorithm where
the preconditioned residual is computed, see Fig. 12.1.

12.3 Locally optimal PCG (LOPCG)

The parameter δk in the RQMIN und (P)CG algorithms is determined such that

(12.37) ρ(xk+1) = ρ(xk + δkpk), pk = −gk + αkpk−1

is minimized. αk is chosen to make consecutive search directions conjugate. Knyazev [6]
proposed to optimize both parameters, αk and δk, at once.

(12.38) ρ(xk+1) = min
δ,γ

ρ(xk − δgk + γpk−1)

This results in potentially smaller values for the Rayleigh quotient, as

min
δ,γ

ρ
(
xk − δgk + γpk−1

)
≤ min

δ

(
xk − δ(gk − αkpk)

)
.

Hence, Knyazev coined the notation “locally optimal”.
ρ(xk+1) in (12.38) is the minimal eigenvalue of the 3× 3 eigenvalue problem

(12.39)




x∗
k

−g∗
k

p∗
k−1


A[xk,−gk,pk−1]



α
β
γ


 = λ




x∗
k

−g∗
k

p∗
k−1


M [xk,−gk,pk−1]



α
β
γ




We normalize the eigenvector corresponding to the smallest eigenvalue such that its first
component becomes 1,

[1, δk, γk] := [1, β/α, γ/α].

These values of δk and γk are the parameters that minimize the right hand side in (12.38).
Then we can write

(12.40) xk+1 = xk − δkgk + γkpk−1 = xk + δk (−gk + (γk/δk)pk−1)︸ ︷︷ ︸
=:pk

= xk + δkpk.

We can consider xk+1 as having been obtained by a Rayleigh quotient minimization from
xk along pk = −gk+(γk/δk)pk−1. Notice that this direction in needed in the next iteration
step. (Otherwise it is not of a particular interest.)

220 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

function [x,rho,log] = rqmin1(A,M,x,tol,C)

%RQMIN1 [x,rho] = rqmin1(A,M,x0,tol,C)

% cg-Rayleigh-Quotienten-Minimization for the computation

% of the smallest eigenvalue of A*x = lambda*M*x,

% A and M are symmetric, M spd. x0 initial vector

% C’*C preconditioner

% tol: convergence criterium:

% ||2*(C’*C)\(A*x - lam*M*x)|| < tol

% PA 16.6.2000

u = M*x;

q = sqrt(x’*u);

x = x/q; u = u/q;

v = A*x;

rho = x’*v;

k = 0; g = x; gnorm = 1; log=[]; % Initialisierungen

while gnorm > tol,

k = k + 1;

galt = g;

if exist(’C’),

g = 2*(C\(C’\(v - rho*u))); % vorkonditionierter Gradient

else

g = 2*(v - rho*u); % Gradient

end

if k == 1,

p = -g;

else

p = -g + (g’*M*g)/(galt’*M*galt)*p;

end

[qq,ll] = eig([x p]’*[v A*p],[x p]’*[u M*p]);

[rho,ii] = min(diag(ll));

delta = qq(2,ii)/qq(1,ii);

x = x + delta*p;

u = M*x;

q = sqrt(x’*u);

x = x/q; u = u/q;

v = A*x;

gnorm = norm(g);

if nargout>2, log = [log; [k,rho,gnorm]]; end

end

Figure 12.1: Matlab code RQMIN: Rayleigh quotient minimization

12.3. LOCALLY OPTIMAL PCG (LOPCG) 221

function [x,rho,log] = lopcg(A,M,x,tol,C)

%RQMIN1 [x,rho] = lopcg(A,M,x0,tol,C)

% Locally Optimal Proconditioned CG algorithm for

% computing the smallest eigenvalue of A*x = lambda*M*x,f

% where A and M are symmetrisch, M spd.

% x0 initial vektor

% C’*C preconditioner

% tol: stopping criterion:

% (C’*C)\(A*x - lam*M*x) < tol

% PA 2002-07-3

n = size(M,1);

u = M*x;

q = sqrt(x’*u);

x = x/q; u = u/q;

v = A*x;

rho = x’*v;

k = 0; gnorm = 1; log=[]; % initializations

while gnorm > tol,

k = k + 1;

g = v - rho*u; % gradient

gnorm = norm(g);

if exist(’C’),

g = (C\(C’\g)); % preconditioned gradient

end

if k == 1, p = zeros(n,0); end

aa = [x -g p]’*[v A*[-g p]]; aa = (aa+aa’)/2;

mm = [x -g p]’*[u M*[-g p]]; mm = (mm+mm’)/2;

[qq,ll] = eig(aa,mm);

[rho,ii] = min(diag(ll));

delta = qq(:,ii);

p = [-g p]*delta(2:end);

x = delta(1)*x + p;

u = M*x;

q = sqrt(x’*u);

x = x/q; u = u/q;

v = A*x;

if nargout>2, log = [log; [k,rho,gnorm]]; end

end

Figure 12.2: Matlab code LOPCG: Locally Optimal Preconditioned Conjugate Gradient
algorithm

222 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

12.4 The block Rayleigh quotient minimization algorithm
(BRQMIN)

The above procedures converge very slowly if the eigenvalues are clustered. Hence, these
methods should be applied only in blocked form.

Longsine and McCormick [7] suggested several variants for blocking Algorithm 12.1.
See [1] for a recent numerical investigation of this algorithm.

12.5 The locally-optimal block preconditioned conjugate gra-
dient method (LOBPCG)

In BRQMIN the Rayleigh quotient is minimized in the 2q-dimensional subspace generated
by the eigenvector approximations Xk and the search directions Pk = −Hk + Pk−1Bk,
where the Hk are the preconditioned residuals corresponding to Xk and Bk is chosen such
that the block of search directions is conjugate. Instead, Knyazev [6] suggests that the
space for the minimization be augmented by the q-dimensional subspace R(Hk). The
resulting algorithm is deemed ‘locally-optimal’ because ρ(x) is minimized with respect to
all available vectors.

Algorithm 12.2 The locally-optimal block preconditioned conjugate gradient
method (LOBPCG) for solving Ax = λMx with preconditioner N of [1]

1: Choose random matrix X0 ∈ R
n×q with XT

0 MX0 = Iq. Set Q := [].
2: Compute (XT

0 KX0)S0 = S0Θ0 /* (Spectral decomposition) */
where ST0 S0 = Iq, Θ0 = diag(ϑ1, . . . , ϑq), ϑ1 ≤ . . . ≤ ϑq.

3: X0 := X0S0; R0 := KX0 −MX0Θ0; P0 := []; k := 0.
4: while rank(Q) < p do
5: Solve the preconditioned linear system NHk = Rk
6: Hk := Hk −Q(QTMHk).
7: K̃ := [Xk, Hk, Pk]

TK[Xk, Hk, Pk].

8: M̃ := [Xk, Hk, Pk]
TM [Xk, Hk, Pk].

9: Compute K̃S̃k = M̃S̃kΘ̃k /* (Spectral decomposition) */

where S̃Tk M̃S̃k = I3q, Θ̃k = diag(ϑ1, . . . , ϑ3q), ϑ1 ≤ . . . ≤ ϑ3q.

10: Sk := S̃k[e1, . . . , eq], Θ := diag(ϑ1, . . . , ϑq).
11: Pk+1 := [Hk, Pk]Sk,2; Xk+1 := XkSk,1 + Pk+1.
12: Rk+1 := KXk+1 −MXk+1Θk.
13: k := k + 1.
14: for i = 1, . . . , q do
15: /* (Convergence test) */
16: if ‖Rkei‖ < tol then
17: Q := [Q,Xkei]; Xkei := t, with t a random vector.
18: M -orthonormalize the columns of Xk.
19: end if
20: end for
21: end while

If dj = [dT1j ,d
T
2j ,d

T
3j]

T , dij ∈ R
q, is the eigenvector corresponding to the j-th eigenvalue

of (12.1) restricted toR([Xk, Hk, Pk−1]), then the j-th column ofXk+1 is the corresponding

12.6. A NUMERICAL EXAMPLE 223

Ritz vector

(12.41) Xk+1ej := [Xk, Hk, Pk−1] dj = Xkd1j + Pkej ,

with
Pkej := Hkd2j + Pk−1d3j .

Notice that P0 is an empty matrix such that the eigenvalue problem in step (8) of the
locally-optimal block preconditioned conjugate gradient method (LOBPCG), displayed in
Algorithm 12.2, has order 2q only for k = 0.

The algorithm as proposed by Knyazev [6] was designed to compute just a few eigen-
pairs and so a memory efficient implementation was not presented. For instance, in ad-
dition to Xk, Rk, Hk, Pk, the matrices MXk,MHk,MPk and KXk,KHk,KPk are also
stored. The resulting storage needed is prohibitive if more than a handful of eigenpairs
are needed.

A more memory efficient implementation results when we iterate with blocks of width q
in the space orthogonal to the already computed eigenvectors. The computed eigenvectors
are stored in Q and neither MQ nor KQ are stored. Hence only storage for (p+ 10q)n+
O(q2) numbers is needed.

Here, the columns of [Xk, Hk, Pk] may become (almost) linearly dependent leading to

ill-conditioned matrices K̃ and M̃ in step (9) of the LOBPCG algorithm. If this is the case
we simply restart the iteration with random Xk orthogonal to the computed eigenvector
approximations. More sophisticated restarting procedures that retain Xk but modify Hk

and/or Pk were much less stable in the sense that the search space basis again became
linearly dependent within a few iterations. Restarting with random Xk is a rare occurrence
and in our experience, has little effect on the overall performance of the algorithm.

12.6 A numerical example

We again look at the determination the acoustic eigenfrequencies and modes in the in-
terior of a car, see section 1.6.3. The computations are done with the finest grid de-
picted in Fig. 1.9. We compute the smallest eigenvalue of the problem with RQMIN and
LOPCG, with preconditioning and without. The preconditioner we chose was the incom-
plete Cholesky factorization without fill-in, usually denoted IC(0). This factorization is
implemented in the Matlab routine cholinc.

>> [p,e,t]=initmesh(’auto’);

>> [p,e,t]=refinemesh(’auto’,p,e,t);

>> [p,e,t]=refinemesh(’auto’,p,e,t);

>> p=jigglemesh(p,e,t);

>> [A,M]=assema(p,t,1,1,0);

>> whos

Name Size Bytes Class

A 1095x1095 91540 double array (sparse)

M 1095x1095 91780 double array (sparse)

e 7x188 10528 double array

p 2x1095 17520 double array

t 4x2000 64000 double array

Grand total is 26052 elements using 275368 bytes

224 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

>> n=size(A,1);

>> R=cholinc(A,’0’); % Incomplete Cholesky factorization

>> x0=rand(n,1)-.5;

>> [x,rho,log0] = rqmin1(A,M,x0,tol);

>> [x,rho,log1] = rqmin1(A,M,x0,tol,R);

>> [x,rho,log2] = lopcg(A,M,x0,tol);

>> [x,rho,log3] = lopcg(A,M,x0,tol,R);

>> whos log*

Name Size Bytes Class

log0 346x3 8304 double array

log1 114x3 2736 double array

log2 879x3 21096 double array

log3 111x3 2664 double array

Grand total is 4350 elements using 34800 bytes

>> L = sort(eig(full(A),full(M)));

>> format short e, [L(1) L(2) L(n)], format

ans =

-7.5901e-13 1.2690e-02 2.6223e+02

>> k0= L(n)/L(2);

>> (sqrt(k0) - 1)/(sqrt(k0) + 1)

ans =

0.9862

>> l0=log0(end-6:end-1,2).\log0(end-5:end,2);

>> l1=log1(end-6:end-1,2).\log1(end-5:end,2);

>> l2=log2(end-6:end-1,2).\log2(end-5:end,2);

>> l3=log3(end-6:end-1,2).\log3(end-5:end,2);

>> [l0 l1 l2 l3]

ans =

0.9292 0.8271 0.9833 0.8046

0.9302 0.7515 0.9833 0.7140

0.9314 0.7902 0.9837 0.7146

0.9323 0.7960 0.9845 0.7867

0.9320 0.8155 0.9845 0.8101

0.9301 0.7955 0.9852 0.8508

>> semilogy(log0(:,1),log0(:,3)/log0(1,3),log1(:,1),log1(:,3)/log1(1,3),...

log2(:,1),log2(:,3)/log2(1,3),log3(:,1),log3(:,3)/log3(1,3),’LineWidth’,2)

>> legend(’rqmin’,’rqmin + prec’,’lopcg’,’lopcg + prec’)

The convergence histories in Figure 12.3 for RQMIN and LOPCG show that precon-
ditioning helps very much in reducing the iteration count.

In Figure 12.4 the convergence histories of LOBPCG for computing ten eigenvalues is
shown. In 43 iteration steps all ten eigenvalues have converged to the desired accuracy
(ε = 10−5). Clearly, the iteration count has been decreased drastically. Note however,

BIBLIOGRAPHY 225

0 100 200 300 400 500 600 700 800 900
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

no
rm

 o
f r

es
id

ua
l

rqmin

rqmin + prec

lopcg

lopcg + prec

Figure 12.3: Convergence of variants of Rayleigh quotient minimization

that each iteration step requires solving ten systems of equation resulting in 430 system
solves. (In fact, if converged eigenvectors are locked, only 283 systems had to be solved.)
Nevertheless, when comparing with Fig. 12.3 one should remember that in the LOBPCG
computation ten eigenpairs have been computed. If a single eigenpair is required then
a blocksize of 10 is too big, but a smaller blocksize may reduce the execution time. If
a small number of eigenvalues is desired then a blocksize equal or slightly bigger than
theis number is certainly advantageous. Not that in step (5) of Algorithm 12.2 q linear
systems of equations are solved concurrently. An efficient implementation accesses the
preconditioner N only once. The Matlab code does this naturally.

Bibliography

[1] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. Tuminaro, A comparison
of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative
methods, Internat. J. Numer. Methods Engrg., 64 (2005), pp. 204–236.

[2] O. Axelsson and V. Barker, Finite Element Solution of Boundary Value Problems,
Academic Press, Orlando FL, 1984.

[3] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra,
Freeman, San Francisco, 1963.

[4] Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the smallest
eigenpair of large symmetric eigenvalue problems, Internat. J. Numer. Methods Engrg.,
39 (1996), pp. 2209–2229.

[5] M. R. Hestenes and E. Stiefel, Methods of conjugent gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–436.

[6] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–
541.

226 CHAPTER 12. RAYLEIGH QUOTIENT MINIMIZATION

0 5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 12.4: Convergence of 10 eigenvalues with LOBPCG preconditioned by IC(0)

[7] D. E. Longsine and S. F. McCormick, Simultaneous Rayleigh–quotient minimiza-
tion methods for Ax = λBx, Linear Algebra Appl., 34 (1980), pp. 195–234.

[8] A. Ruhe, Computation of eigenvalues and vectors, in Sparse Matrix Techniques, V. A.
Barker, ed., Lecture Notes in Mathematics 572, Berlin, 1977, Springer-Verlag, pp. 130–
184.

[9] H. R. Schwarz, Rayleigh–Quotient–Minimierung mit Vorkonditionierung, in Nu-
merical Methods of Approximation Theory, Vol. 8, L. Collatz, G. Meinardus, and
G. Nürnberger, eds., vol. 81 of International Series of Numerical Mathematics (ISNM),
Basel, 1987, Birkhäuser, pp. 229–45.

