
Chapter 4

LAPACK and the BLAS

4.1 LAPACK

(This section is essentially compiled from the LAPACK User’s Guide [1] that is available
online from http://www.netlib.org/lapack/lug/.)

LAPACK [1] is a library of Fortran 77 subroutines for solving the most commonly
occurring problems in numerical linear algebra. It has been designed to be efficient on a
wide range of modern high-performance computers. The name LAPACK is an acronym
for Linear Algebra PACKage.

LAPACK can solve systems of linear equations, linear least squares problems, eigen-
value problems and singular value problems. LAPACK can also handle many associated
computations such as matrix factorizations or estimating condition numbers.

LAPACK contains driver routines for solving standard types of problems, compu-

tational routines to perform a distinct computational task, and auxiliary routines to
perform a certain subtask or common low-level computation. Each driver routine typically
calls a sequence of computational routines. Taken as a whole, the computational routines
can perform a wider range of tasks than are covered by the driver routines. Many of the
auxiliary routines may be of use to numerical analysts or software developers, so we have
documented the Fortran source for these routines with the same level of detail used for
the LAPACK routines and driver routines.

Dense and banded matrices are provided for, but not general sparse matrices. In all
areas, similar functionality is provided for real and complex matrices.

LAPACK is designed to give high efficiency on vector processors, high-performance
“super-scalar” workstations, and shared memory multiprocessors. It can also be used sat-
isfactorily on all types of scalar machines (PC’s, workstations, mainframes). A distributed-
memory version of LAPACK, ScaLAPACK [2], has been developed for other types of
parallel architectures (for example, massively parallel SIMDmachines, or distributed mem-
ory machines).

LAPACK has been designed to supersede LINPACK [3] and EISPACK [10, 8], princi-
pally by restructuring the software to achieve much greater efficiency, where possible, on
modern high-performance computers; also by adding extra functionality, by using some
new or improved algorithms, and by integrating the two sets of algorithms into a unified
package.

LAPACK routines are written so that as much as possible of the computation is per-
formed by calls to the Basic Linear Algebra Subprograms (BLAS) [9, 6, 5]. Highly
efficient machine-specific implementations of the BLAS are available for many modern

77

78 CHAPTER 4. LAPACK AND THE BLAS

high-performance computers. The BLAS enable LAPACK routines to achieve high per-
formance with portable code.

The BLAS are not strictly speaking part of LAPACK, but Fortran 77 code for the
BLAS is distributed with LAPACK, or can be obtained separately from netlib where
“model implementations” are found.

The model implementation is not expected to perform as well as a specially tuned
implementation on most high-performance computers – on some machines it may give
much worse performance – but it allows users to run LAPACK codes on machines that do
not offer any other implementation of the BLAS.

The complete LAPACK package or individual routines from LAPACK are freely avail-
able from the World Wide Web or by anonymous ftp. The LAPACK homepage can be
accessed via the URL http://www.netlib.org/lapack/.

4.2 BLAS

By 1976 it was clear that some standardization of basic computer operations on vectors
was needed [9]. By then it was already known that coding procedures that worked well
on one machine might work very poorly on others. In consequence of these observations,
Lawson, Hanson, Kincaid and Krogh proposed a limited set of Basic Linear Algebra
Subprograms (BLAS) to be (hopefully) optimized by hardware vendors, implemented in
assembly language if necessary, that would form the basis of comprehensive linear alge-
bra packages [9]. These so-called Level 1 BLAS consisted of vector operations and some
attendant co-routines. The first major package which used these BLAS kernels was LIN-
PACK [3]. Soon afterward, other major software libraries such as the IMSL library and
NAG rewrote portions of their existing codes and structured new routines to use these
BLAS. Early in their development, vector computers saw significant optimizations us-
ing the BLAS. Soon, however, such machines were clustered together in tight networks
and somewhat larger kernels for numerical linear algebra were developed [6, 7] to include
matrix-vector operations (Level 2 BLAS). Additionally, Fortran compilers were by then
optimizing vector operations as efficiently as hand coded Level 1 BLAS. Subsequently,
in the late 1980s, distributed memory machines were in production and shared memory
machines began to have significant numbers of processors. A further set of matrix-matrix
operations was proposed [4] and soon standardized [5] to form a Level 3. The first major
package for linear algebra which used the Level 3 BLAS was LAPACK [1] and subsequently
a scalable (to large numbers of processors) version was released as ScaLAPACK [2]. Ven-
dors focused on Level 1, Level 2, and Level 3 BLAS which provided an easy route to
optimizing LINPACK, then LAPACK. LAPACK not only integrated pre-existing solvers
and eigenvalue routines found in EISPACK [10] (which did not use the BLAS) and LIN-
PACK (which used Level 1 BLAS), but incorporated the latest dense and banded linear
algebra algorithms available. It also used the Level 3 BLAS which were optimized by much
vendor effort. Later, we will illustrate several BLAS routines. Conventions for different
BLAS are indicated by

• A root operation. For example, axpy for the operation

(4.1) y := a·x+ y

• A prefix (or combination prefix) to indicate the datatype of the operands, for example
saxpy for single precision axpy operation, or isamax for the index of the maximum
absolute element in an array of type single.

4.2. BLAS 79

• a suffix if there is some qualifier, for example cdotc or cdotu for conjugated or
unconjugated complex dot product, respectively:

cdotc(n,x,1,y,1) =
n−1∑

i=0

xiȳi

cdotu(n,x,1,y,1) =

n−1∑

i=0

xiyi

where both x,y are vectors of complex elements.

Tables 4.1 and 4.2 give the prefix/suffix and root combinations for the BLAS, respectively.

Prefixes:

S REAL
D DOUBLE PRECISION
C COMPLEX
Z DOUBLE COMPLEX

Suffixes:

U transpose
C Hermitian conjugate

Table 4.1: Basic Linear Algebra Subprogram prefix/suffix conventions.

4.2.1 Typical performance numbers for the BLAS

Let us look at typical representations of all three levels of the BLAS, daxpy, ddot, dgemv,
and dgemm, that perform some basic operations. Additionally, we look at the rank-1
update routine dger. An overview on the number of memory accesses and floating point
operations is given in Table 4.3. The Level 1 BLAS comprise basic vector operations. A
call of one of the Level 1 BLAS thus gives rise to O(n) floating point operations and O(n)
memory accesses. Here, n is the vector length. The Level 2 BLAS comprise operations
that involve matrices and vectors. If the involved matrix is n-by-n then both the memory
accesses and the floating point operations are of O(n2). In contrast, the Level 3 BLAS have
a higher order of floating point operations than memory accesses. The most prominent
operation of the Level 3 BLAS, matrix-matrix multiplication costs O(n3) floating point
operations while there are only O(n2) reads and writes. The last column in Table 4.3
shows the crucial difference between the Level 3 BLAS and the rest.

Table 4.4 gives some performance numbers for the five BLAS of Table 4.3. Notice that
the timer has a resolution of only 1 µsec! Therefore, the numbers in Table 4.4 have been
obtained by timing a loop inside of which the respective function is called many times.
The Mflop/s rates of the Level 1 BLAS ddot and daxpy quite precisely reflect the ratios
of the memory accesses of the two routines, 2n vs. 3n. The high rates are for vectors that
can be held in the on-chip cache of 512 MB. The low 240 and 440 Mflop/s with the very
long vectors are related to the memory bandwidth of about 1900 MB/s.

The Level 2 BLAS dgemv has about the same performance as daxpy if the matrix can
be held in cache (n = 100). Otherwise it is considerably reduced. dger has a high volume
of read and write operations, while the number of floating point operations is limited.

80 CHAPTER 4. LAPACK AND THE BLAS

Level 1 BLAS

rotg, rot Generate/apply plane rotation
rotmg, rotm Generate/apply modified plane rotation
swap Swap two vectors: x↔ y

scal Scale a vector: x← αx
copy Copy a vector: x← y

axpy axpy operation: y← y+ αx
dot Dot product: s← x · y = x∗y

nrm2 2-norm: s← ‖x‖2
asum 1-norm: s← ‖x‖1
i amax Index of largest vector element:

first i such |xi| ≥ |xk| for all k

Level 2 BLAS

gemv, gbmv General (banded) matrix-vector multiply:
y← αAx+ βy

hemv, hbmv, hpmv Hermitian (banded, packed) matrix-vector
multiply: y← αAx+ βy

semv, sbmv, spmv Symmetric (banded, packed) matrix-vector
multiply: y← αAx+ βy

trmv, tbmv, tpmv Triangular (banded, packed) matrix-vector
multiply: x← Ax

trsv, tbsv, tpsv Triangular (banded, packed) system solves
(forward/backward substitution): x← A−1x

ger, geru, gerc Rank-1 updates: A← αxy∗ +A
her, hpr, syr, spr Hermitian/symmetric (packed) rank-1 updates:

A← αxx∗ +A
her2, hpr2, syr2, spr2 Hermitian/symmetric (packed) rank-2 updates:

A← αxy∗ + α∗yx∗ +A

Level 3 BLAS

gemm, symm, hemm General/symmetric/Hermitian matrix-matrix
multiply: C ← αAB + βC

syrk, herk Symmetric/Hermitian rank-k update:
C ← αAA∗ + βC

syr2k, her2k Symmetric/Hermitian rank-k update:
C ← αAB∗ + α∗BA∗ + βC

trmm Multiple triangular matrix-vector multiplies:
B ← αAB

trsm Multiple triangular system solves: B ← αA−1B

Table 4.2: Summary of the Basic Linear Algebra Subroutines.

4.3. BLOCKING 81

read write flops flops / mem access

ddot 2n 1 2n 1
daxpy 2n n 2n 2/3
dgemv n2 + n n 2n2 2
dger n2 + 2n n2 2n2 1
dgemm 2n2 n2 2n3 2n/3

Table 4.3: Number of memory references and floating point operations for vectors of length
n.

n = 100 500 2’000 10’000’000

ddot 1480 1820 1900 440
daxpy 1160 1300 1140 240
dgemv 1370 740 670 —
dger 670 330 320 —
dgemm 2680 3470 3720 —

Table 4.4: Some performance numbers for typical BLAS in Mflop/s for a 2.4 GHz Pentium
4.

This leads to a very low performance rate. The Level 3 BLAS dgemm performs at a good
fraction of the peak performance of the processor (4.8Gflop/s). The performance increases
with the problem size. We see from Table 4.3 that the ratio of computation to memory
accesses increases with the problem size. This ratio is analogous to a volume to surface
area effect.

4.3 Blocking

In the previous section we have seen that it is important to use Level 3 BLAS. However, in
the algorithm we have treated so far, there were no blocks. For instance, in the reduction
to Hessenberg form we applied Householder (elementary) reflectors from left and right to
a matrix to introduce zeros in one of its columns.

The essential point here is to gather a number of reflectors to a single block transfor-
mation. Let Pi = I − 2uiu

∗
i , i = 1, 2, 3, be three Householder reflectors. Their product

is

(4.2)

P = P3P2P1 = (I − 2u3u
∗
3)(I − 2u2u

∗
2)(I − 2u1u

∗
1)

= I − 2u3u
∗
3 − 2u2u

∗
2 − 2u1u

∗
1 + 4u3u

∗
3u2u

∗
2 + 4u3u

∗
3u1u

∗
1 + 4u2u

∗
2u1u

∗
1

+ 8u3u
∗
3u2u

∗
2u1u

∗
1

= I − [u1u2u3]





2
4u∗

2u1 2
4u∗

3u1 + 8(u∗
3u2)(u

∗
2u1) 4u∗

3u2 2



 [u1u2u3]
∗.

So, if e.g. three rotations are to be applied on a matrix in blocked fashon, then the three
Householder vectors u1,u2,u3 have to be found first. To that end the rotations are first
applied only on the first three columns of the matrix, see Fig. 4.1. Then, the blocked
rotation is applied to the rest of the matrix.

82 CHAPTER 4. LAPACK AND THE BLAS

Figure 4.1: Blocking Householder reflections

Remark 4.1. Notice that a similar situation holds for Gaussian elimination because










1
l21 1
l31 1
...

. . .

ln1 1



















1
1
l32 1
...

. . .

ln2 1










=










1
l21 1
l31 l32 1
...

...
. . .

ln1 ln2 1










.

However, things are a complicated because of pivoting.

4.4 LAPACK solvers for the symmetric eigenproblems

To give a feeling how LAPACK is organized we consider solvers for the symmetric eigen-
problem (SEP). Except for this problem there are driver routines for linear systems, least
squares problems, nonsymmetric eigenvalue problems, the computation of the singular
value decomposition (SVD).

The basic task of the symmetric eigenproblem routines is to compute values of λ and,
optionally, corresponding vectors z for a given matrix A.

There are four types of driver routines for symmetric and Hermitian eigenproblems.
Originally LAPACK had just the simple and expert drivers described below, and the
other two were added after improved algorithms were discovered. Ultimately we expect
the algorithm in the most recent driver (called RRR below) to supersede all the others,
but in LAPACK 3.0 the other drivers may still be faster on some problems, so we retain
them.

• A simple driver computes all the eigenvalues and (optionally) eigenvectors.

• An expert driver computes all or a selected subset of the eigenvalues and (optionally)
eigenvectors. If few enough eigenvalues or eigenvectors are desired, the expert driver
is faster than the simple driver.

4.4. LAPACK SOLVERS FOR THE SYMMETRIC EIGENPROBLEMS 83

• A divide-and-conquer driver solves the same problem as the simple driver. It is much
faster than the simple driver for large matrices, but uses more workspace. The name
divide-and-conquer refers to the underlying algorithm.

• A relatively robust representation (RRR) driver computes all or (in a later release)
a subset of the eigenvalues, and (optionally) eigenvectors. It is the fastest algorithm
of all (except for a few cases), and uses the least workspace. The name RRR refers
to the underlying algorithm.

This computation proceeds in the following stages:

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal
form T . If A is real symmetric this decomposition is A = QTQT with Q orthogonal
and T symmetric tridiagonal. If A is complex Hermitian, the decomposition is
A = QTQH with Q unitary and T , as before, real symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are com-
puted. If all eigenvalues and eigenvectors are computed, this is equivalent to factor-
izing T as T = SΛST , where S is orthogonal and Λ is diagonal. The diagonal entries
of Λ are the eigenvalues of T , which are also the eigenvalues of A, and the columns
of S are the eigenvectors of T ; the eigenvectors of A are the columns of Z = QS, so
that A = ZΛZT (ZΛZH when A is complex Hermitian).

In the real case, the decomposition A = QTQT is computed by one of the routines
sytrd, sptrd, or sbtrd, depending on how the matrix is stored. The complex analogues
of these routines are called hetrd, hptrd, and hbtrd. The routine sytrd (or hetrd)
represents the matrix Q as a product of elementary reflectors. The routine orgtr (or
in the complex case unmtr) is provided to form Q explicitly; this is needed in particular
before calling steqr to compute all the eigenvectors of A by the QR algorithm. The
routine ormtr (or in the complex case unmtr) is provided to multiply another matrix by
Q without forming Q explicitly; this can be used to transform eigenvectors of T computed
by stein, back to eigenvectors of A.

For the names of the routines for packed and banded matrices, see [1].
There are several routines for computing eigenvalues and eigenvectors of T , to cover the

cases of computing some or all of the eigenvalues, and some or all of the eigenvectors. In
addition, some routines run faster in some computing environments or for some matrices
than for others. Also, some routines are more accurate than other routines.

steqr This routine uses the implicitly shifted QR algorithm. It switches between the QR
and QL variants in order to handle graded matrices. This routine is used to compute
all the eigenvalues and eigenvectors.

sterf This routine uses a square-root free version of the QR algorithm, also switching
between QR and QL variants, and can only compute all the eigenvalues. This
routine is used to compute all the eigenvalues and no eigenvectors.

stedc This routine uses Cuppen’s divide and conquer algorithm to find the eigenvalues and
the eigenvectors. stedc can be many times faster than steqr for large matrices
but needs more work space (2n2 or 3n2). This routine is used to compute all the
eigenvalues and eigenvectors.

stegr This routine uses the relatively robust representation (RRR) algorithm to find eigen-
values and eigenvectors. This routine uses an LDLT factorization of a number of

84 CHAPTER 4. LAPACK AND THE BLAS

translates T − σI of T , for one shift σ near each cluster of eigenvalues. For each
translate the algorithm computes very accurate eigenpairs for the tiny eigenvalues.
stegr is faster than all the other routines except in a few cases, and uses the least
workspace.

stebz This routine uses bisection to compute some or all of the eigenvalues. Options
provide for computing all the eigenvalues in a real interval or all the eigenvalues
from the ith to the jth largest. It can be highly accurate, but may be adjusted to
run faster if lower accuracy is acceptable.

stein Given accurate eigenvalues, this routine uses inverse iteration to compute some or
all of the eigenvectors.

4.5 Generalized Symmetric Definite Eigenproblems (GSEP)

Drivers are provided to compute all the eigenvalues and (optionally) the eigenvectors of
the following types of problems:

1. Az = λBz

2. ABz = λz

3. BAz = λz

where A and B are symmetric or Hermitian and B is positive definite. For all these
problems the eigenvalues λ are real. The matrices Z of computed eigenvectors satisfy
ZTAZ = Λ (problem types 1 and 3) or Z−1AZ−T = I (problem type 2), where Λ is a
diagonal matrix with the eigenvalues on the diagonal. Z also satisfies ZTBZ = I (problem
types 1 and 2) or ZTB−1Z = I (problem type 3).

There are three types of driver routines for generalized symmetric and Hermitian eigen-
problems. Originally LAPACK had just the simple and expert drivers described below,
and the other one was added after an improved algorithm was discovered.

• a simple driver computes all the eigenvalues and (optionally) eigenvectors.

• an expert driver computes all or a selected subset of the eigenvalues and (optionally)
eigenvectors. If few enough eigenvalues or eigenvectors are desired, the expert driver
is faster than the simple driver.

• a divide-and-conquer driver solves the same problem as the simple driver. It is much
faster than the simple driver for large matrices, but uses more workspace. The name
divide-and-conquer refers to the underlying algorithm.

4.6 An example of a LAPACK routines

The double precision subroutine dsytrd.f implements the reduction to tridiagonal form.
We give it here in full length.

SUBROUTINE DSYTRD(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)

*

* -- LAPACK routine (version 3.0) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* June 30, 1999

4.6. AN EXAMPLE OF A LAPACK ROUTINES 85

*

* .. Scalar Arguments ..

CHARACTER UPLO

INTEGER INFO, LDA, LWORK, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), D(*), E(*), TAU(*),

$ WORK(*)

* ..

*

* Purpose

* =======

*

* DSYTRD reduces a real symmetric matrix A to real symmetric

* tridiagonal form T by an orthogonal similarity transformation:

* Q**T * A * Q = T.

*

* Arguments

* =========

*

* UPLO (input) CHARACTER*1

* = ’U’: Upper triangle of A is stored;

* = ’L’: Lower triangle of A is stored.

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the symmetric matrix A. If UPLO = ’U’, the leading

* N-by-N upper triangular part of A contains the upper

* triangular part of the matrix A, and the strictly lower

* triangular part of A is not referenced. If UPLO = ’L’, the

* leading N-by-N lower triangular part of A contains the lower

* triangular part of the matrix A, and the strictly upper

* triangular part of A is not referenced.

* On exit, if UPLO = ’U’, the diagonal and first superdiagonal

* of A are overwritten by the corresponding elements of the

* tridiagonal matrix T, and the elements above the first

* superdiagonal, with the array TAU, represent the orthogonal

* matrix Q as a product of elementary reflectors; if UPLO

* = ’L’, the diagonal and first subdiagonal of A are over-

* written by the corresponding elements of the tridiagonal

* matrix T, and the elements below the first subdiagonal, with

* the array TAU, represent the orthogonal matrix Q as a product

* of elementary reflectors. See Further Details.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* D (output) DOUBLE PRECISION array, dimension (N)

* The diagonal elements of the tridiagonal matrix T:

* D(i) = A(i,i).

*

* E (output) DOUBLE PRECISION array, dimension (N-1)

* The off-diagonal elements of the tridiagonal matrix T:

* E(i) = A(i,i+1) if UPLO = ’U’, E(i) = A(i+1,i) if UPLO = ’L’.

*

* TAU (output) DOUBLE PRECISION array, dimension (N-1)

* The scalar factors of the elementary reflectors (see Further

* Details).

86 CHAPTER 4. LAPACK AND THE BLAS

*

* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)

* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 1.

* For optimum performance LWORK >= N*NB, where NB is the

* optimal blocksize.

*

* If LWORK = -1, then a workspace query is assumed; the routine

* only calculates the optimal size of the WORK array, returns

* this value as the first entry of the WORK array, and no error

* message related to LWORK is issued by XERBLA.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

*

* Further Details

* ===============

*

* If UPLO = ’U’, the matrix Q is represented as a product of elementary

* reflectors

*

* Q = H(n-1) . . . H(2) H(1).

*

* Each H(i) has the form

*

* H(i) = I - tau * v * v’

*

* where tau is a real scalar, and v is a real vector with

* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in

* A(1:i-1,i+1), and tau in TAU(i).

*

* If UPLO = ’L’, the matrix Q is represented as a product of elementary

* reflectors

*

* Q = H(1) H(2) . . . H(n-1).

*

* Each H(i) has the form

*

* H(i) = I - tau * v * v’

*

* where tau is a real scalar, and v is a real vector with

* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),

* and tau in TAU(i).

*

* The contents of A on exit are illustrated by the following examples

* with n = 5:

*

* if UPLO = ’U’: if UPLO = ’L’:

*

* (d e v2 v3 v4) (d)

* (d e v3 v4) (e d)

* (d e v4) (v1 e d)

* (d e) (v1 v2 e d)

* (d) (v1 v2 v3 e d)

*

* where d and e denote diagonal and off-diagonal elements of T, and vi

* denotes an element of the vector defining H(i).

4.6. AN EXAMPLE OF A LAPACK ROUTINES 87

*

* ===

*

* .. Parameters ..

DOUBLE PRECISION ONE

PARAMETER (ONE = 1.0D+0)

* ..

* .. Local Scalars ..

LOGICAL LQUERY, UPPER

INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,

$ NBMIN, NX

* ..

* .. External Subroutines ..

EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX

* ..

* .. External Functions ..

LOGICAL LSAME

INTEGER ILAENV

EXTERNAL LSAME, ILAENV

* ..

* .. Executable Statements ..

*

* Test the input parameters

*

INFO = 0

UPPER = LSAME(UPLO, ’U’)

LQUERY = (LWORK.EQ.-1)

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, ’L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN

INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4

ELSE IF(LWORK.LT.1 .AND. .NOT.LQUERY) THEN

INFO = -9

END IF

*

IF(INFO.EQ.0) THEN

*

* Determine the block size.

*

NB = ILAENV(1, ’DSYTRD’, UPLO, N, -1, -1, -1)

LWKOPT = N*NB

WORK(1) = LWKOPT

END IF

*

IF(INFO.NE.0) THEN

CALL XERBLA(’DSYTRD’, -INFO)

RETURN

ELSE IF(LQUERY) THEN

RETURN

END IF

*

* Quick return if possible

*

IF(N.EQ.0) THEN

WORK(1) = 1

88 CHAPTER 4. LAPACK AND THE BLAS

RETURN

END IF

*

NX = N

IWS = 1

IF(NB.GT.1 .AND. NB.LT.N) THEN

*

* Determine when to cross over from blocked to unblocked code

* (last block is always handled by unblocked code).

*

NX = MAX(NB, ILAENV(3, ’DSYTRD’, UPLO, N, -1, -1, -1))

IF(NX.LT.N) THEN

*

* Determine if workspace is large enough for blocked code.

*

LDWORK = N

IWS = LDWORK*NB

IF(LWORK.LT.IWS) THEN

*

* Not enough workspace to use optimal NB: determine the

* minimum value of NB, and reduce NB or force use of

* unblocked code by setting NX = N.

*

NB = MAX(LWORK / LDWORK, 1)

NBMIN = ILAENV(2, ’DSYTRD’, UPLO, N, -1, -1, -1)

IF(NB.LT.NBMIN)

$ NX = N

END IF

ELSE

NX = N

END IF

ELSE

NB = 1

END IF

*

IF(UPPER) THEN

*

* Reduce the upper triangle of A.

* Columns 1:kk are handled by the unblocked method.

*

KK = N - ((N-NX+NB-1) / NB)*NB

DO 20 I = N - NB + 1, KK + 1, -NB

*

* Reduce columns i:i+nb-1 to tridiagonal form and form the

* matrix W which is needed to update the unreduced part of

* the matrix

*

CALL DLATRD(UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,

$ LDWORK)

*

* Update the unreduced submatrix A(1:i-1,1:i-1), using an

* update of the form: A := A - V*W’ - W*V’

*

CALL DSYR2K(UPLO, ’No transpose’, I-1, NB, -ONE, A(1, I),

$ LDA, WORK, LDWORK, ONE, A, LDA)

*

* Copy superdiagonal elements back into A, and diagonal

* elements into D

*

DO 10 J = I, I + NB - 1

4.6. AN EXAMPLE OF A LAPACK ROUTINES 89

A(J-1, J) = E(J-1)

D(J) = A(J, J)

10 CONTINUE

20 CONTINUE

*

* Use unblocked code to reduce the last or only block

*

CALL DSYTD2(UPLO, KK, A, LDA, D, E, TAU, IINFO)

ELSE

*

* Reduce the lower triangle of A

*

DO 40 I = 1, N - NX, NB

*

* Reduce columns i:i+nb-1 to tridiagonal form and form the

* matrix W which is needed to update the unreduced part of

* the matrix

*

CALL DLATRD(UPLO, N-I+1, NB, A(I, I), LDA, E(I),

$ TAU(I), WORK, LDWORK)

*

* Update the unreduced submatrix A(i+ib:n,i+ib:n), using

* an update of the form: A := A - V*W’ - W*V’

*

CALL DSYR2K(UPLO, ’No transpose’, N-I-NB+1, NB, -ONE,

$ A(I+NB, I), LDA, WORK(NB+1), LDWORK, ONE,

$ A(I+NB, I+NB), LDA)

*

* Copy subdiagonal elements back into A, and diagonal

* elements into D

*

DO 30 J = I, I + NB - 1

A(J+1, J) = E(J)

D(J) = A(J, J)

30 CONTINUE

40 CONTINUE

*

* Use unblocked code to reduce the last or only block

*

CALL DSYTD2(UPLO, N-I+1, A(I, I), LDA, D(I), E(I),

$ TAU(I), IINFO)

END IF

*

WORK(1) = LWKOPT

RETURN

*

* End of DSYTRD

*

END

Notice that most of the lines (indicated by ‘∗’) contain comments. The initial comment
lines also serve as manual pages. Notice that the code only looks at one half (upper or
lower triangle) of the symmetric input matrix. The other triangle is used to store the
Householder vectors. These are normed such that the first component is one,

I − 2uu∗ = I − 2|u1|
2(u/u1)(u/u1)

∗ = I − τvv∗.

In the main loop of dsytrd there is a call to a subroutine dlatrd that generates a
block reflektor. (The blocksize is NB.) Then the block reflector is applied by the routine

90 CHAPTER 4. LAPACK AND THE BLAS

dsyr2k.

Directly after the loop there is a call to the ‘unblocked dsytrd’ named dsytd2 to deal
with the first/last few (<NB) rows/columns of the matrix. This excerpt concerns the
situation when the upper triangle of the matrix A is stored. In that routine the mentioned
loop looks very much the way we derived the formulae.

ELSE

*

* Reduce the lower triangle of A

*

DO 20 I = 1, N - 1

*

* Generate elementary reflector H(i) = I - tau * v * v’

* to annihilate A(i+2:n,i)

*

CALL DLARFG(N-I, A(I+1, I), A(MIN(I+2, N), I), 1,

$ TAUI)

E(I) = A(I+1, I)

*

IF(TAUI.NE.ZERO) THEN

*

* Apply H(i) from both sides to A(i+1:n,i+1:n)

*

A(I+1, I) = ONE

*

* Compute x := tau * A * v storing y in TAU(i:n-1)

*

CALL DSYMV(UPLO, N-I, TAUI, A(I+1, I+1), LDA,

$ A(I+1, I), 1, ZERO, TAU(I), 1)

*

* Compute w := x - 1/2 * tau * (x’*v) * v

*

ALPHA = -HALF*TAUI*DDOT(N-I, TAU(I), 1, A(I+1, I),

$ 1)

CALL DAXPY(N-I, ALPHA, A(I+1, I), 1, TAU(I), 1)

*

* Apply the transformation as a rank-2 update:

* A := A - v * w’ - w * v’

*

CALL DSYR2(UPLO, N-I, -ONE, A(I+1, I), 1, TAU(I), 1,

$ A(I+1, I+1), LDA)

*

A(I+1, I) = E(I)

END IF

D(I) = A(I, I)

TAU(I) = TAUI

20 CONTINUE

D(N) = A(N, N)

END IF

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorensen, LAPACK Users’ Guide - Release 2.0, SIAM, Philadelphia, PA, 1994.
(Software and guide are available from Netlib at URL http://www.netlib.org/

lapack/).

BIBLIOGRAPHY 91

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,

D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadel-
phia, PA, 1997. (Software and guide are available at URL http://www.netlib.org/

scalapack/).

[3] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK
Users’ Guide, SIAM, Philadelphia, PA, 1979.

[4] J. J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling, A proposal for a

set of level 3 basic linear algebra subprograms, ACM SIGNUM Newsletter, 22 (1987).

[5] , A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Softw., 16
(1990), pp. 1–17.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended

set of fortran basic linear algebra subprograms, ACM Trans. Math. Softw., 14 (1988),
pp. 1–17.

[7] , An extended set of fortran basic linear algebra subprograms: Model implemen-

tation and test programs, ACM Transactions on Mathematical Software, 14 (1988),
pp. 18–32.

[8] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigen-

system Routines – EISPACK Guide Extension, Lecture Notes in Computer Science
51, Springer-Verlag, Berlin, 1977.

[9] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra sub-

programs for Fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–325.

[10] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.

Klema, and C. B. Moler, Matrix Eigensystem Routines – EISPACK Guide, Lec-
ture Notes in Computer Science 6, Springer-Verlag, Berlin, 2nd ed., 1976.

92 CHAPTER 4. LAPACK AND THE BLAS

Chapter 5

Cuppen’s Divide and Conquer
Algorithm

In this chapter we deal with an algorithm that is designed for the efficient solution of the
symmetric tridiagonal eigenvalue problem

(5.1) Tx = λx, T =









a1 b1

b1 a2
. . .

. . .
. . . bn−1

bn−1 an









.

We noticed from Table 3.1 that the reduction of a full symmetric matrix to a similar tridi-
agonal matrix requires about 8

3n
3 while the tridiagonal QR algorithm needs an estimated

6n3 floating operations (flops) to converge. Because of the importance of this subproblem
a considerable effort has been put into finding faster algorithms than the QR algorithms
to solve the tridiagonal eigenvalue problem. In the mid-1980’s Dongarra and Sorensen [4]
promoted an algorithm originally proposed by Cuppen [2]. This algorithm was based on
a divide and conquer strategy. However, it took ten more years until a stable variant was
found by Gu and Eisenstat [5, 6]. Today, a stable implementation of this latter algorithm
is available in LAPACK [1].

5.1 The divide and conquer idea

Divide and conquer is an old strategy in military to defeat an enemy going back at least to
Caesar. In computer science, divide and conquer (D&C) is an important algorithm design
paradigm. It works by recursively breaking down a problem into two or more subproblems
of the same (or related) type, until these become simple enough to be solved directly. The
solutions to the subproblems are then combined to give a solution to the original problem.
Translated to our problem the strategy becomes

1. Partition the tridiagonal eigenvalue problem into two (or more) smaller eigenvalue
problems.

2. Solve the two smaller problems.

3. Combine the solutions of the smaller problems to get the desired solution of the
overall problem.

Evidently, this strategy can be applied recursively.

93

94 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

5.2 Partitioning the tridiagonal matrix

Partitioning the irreducible tridiagonal matrix is done in the following way. We write
(5.2)

T =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am bm
bm am+1 bm+1

bm+1 am+2
. . .

. . .
. . . bn−1

bn−1 an

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a1 b1

b1 a2
. . .

. . .
. . . bm−1

bm−1 am −∓ bm
am+1 −∓ bm bm+1

bm+1 am+2
. . .

. . .
. . . bn−1

bn−1 an

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

± bm bm
bm ± bm

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

[
T1

T2

]

+ ρuuT with u =

[
± em
e1

]

and ρ = ± bm,

where em is a vector of length m ≈ n
2 and e1 is a vector of length n −m. Notice that

the most straightforward way to partition the problem without modifying the diagonal
elements leads to a rank-two modification. With the approach of (5.2) we have the original
T as a sum of two smaller tridiagonal systems plus a rank-one modification.

5.3 Solving the small systems

We solve the half-sized eigenvalue problems,

(5.3) Ti = QiΛiQ
T
i , QTi Qi = I, i = 1, 2.

These two spectral decompositions can be computed by any algorithm, in particular also
by this divide and conquer algorithm by which the Ti would be further split. It is clear
that by this partitioning an large number of small problems can be generated that can be
potentially solved in parallel. For a parallel algorithm, however, the further phases of the
algorithm must be parallelizable as well.

Plugging (5.3) into (5.2) gives

(5.4)

[
QT1

QT2

]([
T1

T2

]

+ ρuuT
)[

Q1

Q2

]

=

[
Λ1

Λ2

]

+ ρvvT

with

(5.5) v =

[
QT1

QT2

]

u =

[
±QT1 em
QT2 e1

]

=

[
± last row of Q1

first row of Q2

]

.

5.4. DEFLATION 95

Now we have arrived at the eigenvalue problem

(5.6) (D + ρvvT)x = λx, D = Λ1 ⊕ Λ2 = diag(λ1, . . . , λn).

That is, we have to compute the spectral decomposition of a matrix that is a diagonal

plus a rank-one update. Let

(5.7) D + ρvvT = QΛQT

be this spectral decomposition. Then, the spectral decomposition of the tridiagonal T is

(5.8) T =

[
Q1

Q2

]

QΛQT
[
QT1

QT2

]

.

Forming the product (Q1 ⊕ Q2)Q will turn out to be the most expensive step of the

algorithm. It costs n3 +O(n2) floating point operations

5.4 Deflation

There are certain solutions of (5.7) that can be given immediately, by just looking carefully
at the equation.

If there are zero entries in v then we have

(5.9)
(
vi = 0⇔ vTei = 0

)
=⇒ (D + ρvvT)ei = diei.

Thus, if an entry of v vanishes we can read the eigenvalue from the diagonal of D at once
and the corresponding eigenvector is a coordinate vector.

If identical entries occur in the diagonal of D, say di = dj, with i < j, then we can find
a plane rotation G(i, j, φ) (see (3.4)) such that it introduces a zero into the j-th position
of v,

GTv = G(i, j, ϕ)T v =
















×
...

√

vi2 + vj2

...
0
...
×
















← i

← j

Notice, that (for any ϕ),

G(i, j, ϕ)TDG(i, j, ϕ) = D, di = dj .

So, if there are multiple eigenvalues in D we can reduce all but one of them by introducing
zeros in v and then proceed as previously in (5.9).

When working with floating point numbers we deflate if

(5.10) |vi| < Cε‖T‖ or |di − dj | < Cε‖T‖, (‖T‖ = ‖D + ρvvT ‖)

where C is a small constant. Deflation changes the eigenvalue problem for D+ ρvvT into
the eigenvalue problem for

(5.11)

[
D1 + ρv1v

T
1 O

O D2

]

= GT (D + ρvvT)G+ E, ‖E‖ < Cε
√

‖D‖2 + |ρ|2‖v‖4,

where D1 has no multiple diagonal entries and v1 has no zero entries. So, we have to
compute the spectral decomposition of the matrix in (5.11) which is similar to a slight
perturbation of the original matrix. G is the product of Givens rotations.

96 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

5.4.1 Numerical examples

Let us first consider

T =











1 1
1 2 1

1 3 1

1 4 1
1 5 1

1 6











=











1 1
1 2 1

1 2 0

0 3 1
1 5 1

1 6











+











0
0

1 1

1 1
0

0











=











1 1
1 2 1

1 2 0

0 3 1
1 5 1

1 6











+











0
0
1

1
0
0





















0
0
1

1
0
0











T

= T0 + uuT .

Then a little Matlab experiment shows that

QT

0
TQ0 =











0.1981
1.5550

3.2470
2.5395

4.7609
6.6996











+











0.3280
0.7370
0.5910
0.9018
−0.4042
0.1531





















0.3280
0.7370
0.5910
0.9018
−0.4042
0.1531











T

with

Q0 =











0.7370 −0.5910 0.3280
−0.5910 −0.3280 0.7370
0.3280 0.7370 0.5910

0.9018 −0.4153 0.1200
−0.4042 −0.7118 0.5744
0.1531 0.5665 0.8097











Here it is not possible to deflate.

Let us now look at an example with more symmetry,

T =











2 1
1 2 1

1 2 1

1 2 1
1 2 1

1 2











=











2 1
1 2 1

1 1 0

0 1 1
1 2 1

1 2











+











0
0

1 1

1 1
0

0











=











2 1
1 2 1

1 1 0

0 1 1
1 2 1

1 2











+











0
0
1

1
0
0





















0
0
1

1
0
0











T

= T0 + uuT .

5.5. THE EIGENVALUE PROBLEM FOR D + ρVVT 97

Now, Matlab gives

QT

0
TQ0 =











0.1981
1.5550

3.2470
0.1981

1.5550
3.2470











+











0.7370
−0.5910
0.3280
0.7370
−0.5910
0.3280





















0.7370
−0.5910
0.3280
0.7370
−0.5910
0.3280











T

with

Q0 =











0.3280 0.7370 0.5910
−0.5910 −0.3280 0.7370
0.7370 −0.5910 0.3280

0.7370 −0.5910 0.3280
−0.5910 −0.3280 0.7370
0.3280 0.7370 0.5910











In this example we have three double eigenvalues. Because the corresponding components
of v (vi and vi+1) are equal we define

G = G(1, 4, π/4)G(2, 5, π/4)G(3, 6, π/4)

=











0.7071 0.7071
0.7071 0.7071

0.7071 0.7071
−0.7071 0.7071

−0.7071 0.7071
−0.7071 0.7071











.

Then,

GTQT

0
TQ0G = GTQT

0
T0Q0G+GTv(GTv)T = D +GTv(GTv)T

=











0.1981
1.5550

3.2470
0.1981

1.5550
3.2470











+











1.0422
−0.8358
0.4638
0.0000
0.0000
0.0000





















1.0422
−0.8358
0.4638
0.0000
0.0000
0.0000











T

Therefore, (in this example) e4, e5, and e6 are eigenvectors of

D +GTv(GTv)T = D +GTvvTG

corresponding to the eigenvalues d4, d5, and d6, respectively. The eigenvectors of T corre-
sponding to these three eigenvalues are the last three columns of

Q0G =











0.2319 −0.4179 0.5211 0.5211 −0.4179 0.2319
0.5211 −0.2319 −0.4179 −0.4179 −0.2319 0.5211
0.4179 0.5211 0.2319 0.2319 0.5211 0.4179
−0.2319 0.4179 −0.5211 0.5211 −0.4179 0.2319
−0.5211 0.2319 0.4179 −0.4179 −0.2319 0.5211
−0.4179 −0.5211 −0.2319 0.2319 0.5211 0.4179











.

5.5 The eigenvalue problem for D + ρvvT

We know that ρ 6= 0. Otherwise there is nothing to be done. Furthermore, after deflation,
we know that all elements of v are nonzero and that the diagonal elements of D are all

98 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

distinct, in fact,
|di − dj | > Cε‖T‖.

We order the diagonal elements of D such that

d1 < d2 < · · · < dn.

Notice that this procedure permutes the elements of v as well. Let (λ,x) be an eigenpair
of

(5.12) (D + ρvvT)x = λx.

Then,

(5.13) (D − λI)x = −ρvvTx.

λ cannot be equal to one of the di. If λ = dk then the k-th element on the left of (5.13)
vanishes. But then either vk = 0 or vTx = 0. The first cannot be true for our assumption
about v. If on the other hand vTx = 0 then (D − dkI)x = 0. Thus x = ek and
vT ek = vk = 0, which cannot be true. Therefore D − λI is nonsingular and

(5.14) x = ρ(λI −D)−1v(vTx).

This equation shows that x is proportional to (λI −D)−1v. If we require ‖x‖ = 1 then

(5.15) x =
(λI −D)−1v

‖(λI −D)−1v‖
.

Multiplying (5.14) by vT from the left we get

(5.16) vTx = ρvT (λI −D)−1v(vTx).

Since vTx 6= 0, λ is an eigenvalue of (5.12) if and only if

−2 0 1 3 3.5 7 8 10
−10

−5

0

1

5

10

Figure 5.1: Graph of 1 + 1
0−λ + 0.22

1−λ + 0.62

3−λ + 0.52

3.5−λ + 0.92

7−λ + 0.82

8−λ

(5.17) f(λ) := 1− ρvT (λI −D)−1v = 1− ρ
n∑

k=1

v2k
λ− dk

= 0.

5.5. THE EIGENVALUE PROBLEM FOR D + ρVVT 99

This equation is called secular equation. The secular equation has poles at the eigen-
values of D and zeros at the eigenvalues of D + ρvvT . Notice that

f ′(λ) = ρ

n∑

k=1

v2k
(λ− dk)

2 .

Thus, the derivative of f is positive if ρ > 0 wherever it has a finite value. If ρ < 0
the derivative of f is negative (almost) everywhere. A typical graph of f with ρ > 0 is
depicted in Fig. 5.1. (If ρ is negative the image can be flipped left to right.) The secular
equation implies the interlacing property of the eigenvalues of D and of D + ρvvT ,

(5.18) d1 < λ1 < d2 < λ2 < · · · < dn < λn, ρ > 0.

or

(5.19) λ1 < d1 < λ2 < d2 < · · · < λn < dn, ρ < 0.

So, we have to compute one eigenvalue in each of the intervals (di, di+1), 1 ≤ i < n, and
a further eigenvalue in (dn,∞) or (−∞, d1). The corresponding eigenvector is then given
by (5.15). Evidently, these tasks are easy to parallelize.

Equations (5.17) and (5.15) can also been obtained from the relations

[
1
ρ vT

v λI −D

]

=

[
1 0T

ρv I

][1
ρ 0T

0 λI −D − ρvvT

][
1 ρvT

0 I

]

=

[
1 vT (λI −D)−1

0 I

][1
ρ − vT (λI −D)−1v 0T

0 λI −D

] [
1 vT

(λI −D)−1v I

]

.

These are simply block LDLT factorizations of the first matrix. The first is the well-known
one where the factorization is started with the (1, 1) block. The second is a ‘backward’ fac-
torization that is started with the (2, 2) block. Because the determinants of the tridiagonal
matrices are all unity, we have

(5.20)
1

ρ
det(λI −D − ρvvT) =

1

ρ
(1− ρvT (λI −D)−1v) det(λI −D).

Denoting the eigenvalues of D + ρvvT again by λ1 < λ2 < · · · < λn this implies

(5.21)

n∏

j=1

(λ− λj) = (1− ρvT (λI −D)−1v)

n∏

j=1

(λ− dj)

=

(

1− ρ
n∑

k=1

v2k
λ− dk

)
n∏

j=1

(λ− dj)

=

n∏

j=1

(λ− dj)− ρ

n∑

k=1

v2k
∏

j 6=k

(λ− dj)

Setting λ = dk gives

(5.22)
n∏

j=1

(dk − λj) = −ρv
2
k

n∏

j=1

j 6=i

(dk − dj)

100 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

or

(5.23)

v2k =
−1

ρ

n∏

j=1
(dk − λj)

n∏

j=1

j 6=i

(dk − dj)

=
−1

ρ

k−1∏

j=1
(dk − λj)

k−1∏

j=1
(dk − dj)

n∏

j=k

(λj − dk)(−1)
n−k+1

n∏

j=k+1

(dj − dk)(−1)n−k

=
1

ρ

k−1∏

j=1
(dk − λj)

k−1∏

j=1
(dk − dj)

n∏

j=k

(λj − dk)

n∏

j=k+1

(dj − dk)

> 0.

Therefore, the quantity on the right side is positive, so

(5.24) vk =

√
√
√
√
√
√
√
√

k−1∏

j=1
(dk − λj)

n∏

j=k

(λj − dk)

ρ
k−1∏

j=1
(dk − dj)

n∏

j=k+1

(dj − dk)

.

(Similar arguments hold if ρ < 0.) Thus, we have the solution of the following inverse

eigenvalue problem:

Given D = diag(d1, . . . , dn) and values λ1, . . . , λn that satisfy (5.18). Find a vector
v = [v1, . . . , vn]

T with positive components vk such that the matrix D+ vvT has the
prescribed eigenvalues λ1, . . . , λn.

The solution is given by (5.24). The positivity of the vk makes the solution unique.

5.6 Solving the secular equation

In this section we follow closely the exposition of Demmel [3]. We consider the computation
of the zero of f(λ) in the interval (di, di+1). We assume that ρ = 1.

We may simply apply Newton’s iteration to solve f(λ) = 0. However, if we look
carefully at Fig. 5.1 then we notice that the tangent at certain points in (di, di+1) crosses
the real axis outside this interval. This happens in particular if the weights vi or vi+1 are
small. Therefore that zero finder has to be adapted in such a way that it captures the
poles at the interval endpoints. It is relatively straightforward to try the ansatz

(5.25) h(λ) =
c1

di − λ
+

c2
di+1 − λ

+ c3.

Notice that, given the coefficients c1, c2, and c3, the equation h(λ) = 0 can easily be solved
by means of the equivalent quadratic equation

(5.26) c1(di+1 − λ) + c2(di − λ) + c3(di − λ)(di+1 − λ) = 0.

This equation has two zeros. Precisly one of them is inside (di, di+1).
The coefficients c1, c2, and c3 are computed in the following way. Let us assume

that we have available an approximation λj to the zero in (di, di+1). We request that
h(λj) = f(λj) and h

′(λj) = f ′(λj). The exact procedure is as follows. We write

(5.27) f(λ) = 1 +
i∑

k=1

v2k
dk − λ

︸ ︷︷ ︸

ψ1(λ)

+
n∑

k=i+1

v2k
dk − λ

︸ ︷︷ ︸

ψ2(λ)

= 1 + ψ1(λ) + ψ2(λ).

5.7. A FIRST ALGORITHM 101

ψ1(λ) is a sum of positive terms and ψ2(λ) is a sum of negative terms. Both ψ1(λ) and
ψ2(λ) can be computed accurately, whereas adding them would likely provoke cancellation
and loss of relative accuracy. We now choose c1 and ĉ1 such that

(5.28) h1(λ) := ĉ1 +
c1

di − λ
satisfies h1(λj) = ψ1(λj) and h

′
1(λj) = ψ′

1(λj).

This means that the graphs of h1 and of ψ1 are tangent at λ = λj . This is similar to
Newton’s method. However in Newton’s method a straight line is fitted to the given
function. The coefficients in (5.28) are given by

c1 = ψ′
1(λj)(di − λj)

2 > 0,

ĉ1 = ψ1(λj)− ψ
′
1(λj)(di − λj) =

i∑

k=1

v2k
dk − di

(dk − λj)
2 ≤ 0.

Similarly, the two constants c2 and ĉ2 are determined such that

(5.29) h2(λ) := ĉ2 +
c2

di+1 − λ
satisfies h2(λj) = ψ2(λj) and h

′
2(λj) = ψ′

2(λj)

with the coefficients

c2 = ψ′
2(λj)(di+1 − λj)

2 > 0,

ĉ2 = ψ2(λj)− ψ
′
2(λj)(di+1 − λj) =

n∑

k=i+1

v2k
dk − di+1

(dk − λ)
2 ≥ 0.

Finally, we set

(5.30) h(λ) = 1 + h1(λ) + h2(λ) = (1 + ĉ1 + ĉ2)
︸ ︷︷ ︸

c3

+
c1

di − λ
+

c2
di+1 − λ

.

This zerofinder is converging quadratically to the desired zero [7]. Usually 2 to 3 steps
are sufficient to get the zero to machine precision. Therefore finding a zero only requires
O(n) flops. Thus, finding all zeros costs O(n2) floating point operations.

5.7 A first algorithm

We are now ready to give the divide and conquer algorithm, see Algorithm 5.1.

All steps except step 10 require O(n2) operations to complete. The step 10 costs n3 flops.
Thus, the full divide and conquer algorithm, requires

(5.31)
T (n) = n3 + 2 · T (n/2) = n3 + 2

(n

2

)3
+ 4T (n/4)

= n3 +
n3

4
+ 4

(n

4

)3
+ 8T (n/8) = · · · =

4

3
n3.

This serial complexity of the algorithm very often overestimates the computational costs
of the algorithm due to significant deflation that is observed surprisingly often.

102 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

Algorithm 5.1 The tridiagonal divide and conquer algorithm

1: Let T ∈ C
n×n be a real symmetric tridiagonal matrix. This algorithm computes

the spectral decomposition of T = QΛQT , where the diagonal Λ is the matrix of
eigenvalues and Q is orthogonal.

2: if T is 1× 1 then

3: return (Λ = T ;Q = 1)
4: else

5: Partition T =

[
T1 O
O T2

]

+ ρuuT according to (5.2)

6: Call this algorithm with T1 as input and Q1, Λ1 as output.
7: Call this algorithm with T2 as input and Q2, Λ2 as output.
8: Form D + ρvvT from Λ1,Λ2, Q1, Q2 according to (5.4)–(5.6).
9: Find the eigenvalues Λ and the eigenvectors Q′ of D + ρvvT .

10: Form Q =

[
Q1 O
O Q2

]

·Q′ which are the eigenvectors of T .

11: return (Λ;Q)
12: end if

5.7.1 A numerical example

Let A be a 4× 4 matrix

(5.32) A = D + vvT =







0
2− β

2 + β
5






+







1
β
β
1







[
1 β β 1

]
.

In this example (that is similar to one in [8]) we want to point at a problem that the
divide and conquer algorithm possesses as it is given in Algorithm 5.1, namely the loss of
orthogonality among eigenvectors.

Before we do some Matlab tests let us look more closely at D and v in (5.32). This
example becomes difficult to solve if β gets very small. In Figures 5.2 to 5.5 we see
graphs of the function fβ(λ) that appears in the secular equation for β = 1, β = 0.1, and
β = 0.01. The critical zeros move towards 2 from both sides. The weights v22 = v23 = β2

are however not so small that they should be deflated.
The following Matlab code shows the problem. We execute the commands for β =

10−k for k = 0, 1, 2, 4, 8.

v = [1 beta beta 1]’; % rank-1 modification

d = [0, 2-beta, 2+beta, 5]’; % diagonal matrix

L = eig(diag(d) + v*v’) % eigenvalues of the modified matrix

e = ones(4,1);

q = (d*e’-e*L’).\(v*e’); % unnormalized eigenvectors cf. (5.15)

Q = sqrt(diag(q’*q));

q = q./(e*Q’); % normalized eigenvectors

norm(q’*q-eye(4)) % check for orthogonality

We do not bother how we compute the eigenvalues. We simply use Matlab’s built-in
function eig. We get the results of Table 5.1.

5.7. A FIRST ALGORITHM 103

−2 −1 0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.2: Secular equation corresponding to (5.32) for β = 1

−2 −1 0 1 2 3 4 5 6 7
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.3: Secular equation corresponding to (5.32) for β = 0.1

We observe loss of orthogonality among the eigenvectors as the eigenvalues get closer
and closer. This may not be surprising as we compute the eigenvectors by formula (5.15)

x =
(λI −D)−1v

‖(λI −D)−1v‖
.

If λ = λ2 and λ = λ3 which are almost equal, λ2 ≈ λ3 then intuitively one expects almost
the same eigenvectors. We have in fact

QTQ− I4 =







−2.2204 · 10−16 4.3553 · 10−8 1.7955 · 10−8 −1.1102 · 10−16

4.3553 · 10−8 0 −5.5511 · 10−8 −1.8298 · 10−8

1.7955 · 10−8 −5.5511 · 10−8 −1.1102 · 10−16 −7.5437 · 10−9

−1.1102 · 10−16 −1.8298 · 10−8 −7.5437 · 10−9 0






.

Orthogonality is lost only with respect to the vectors corresponding to the eigenvalues
close to 2.

104 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.4: Secular equation corresponding to (5.32) for β = 0.1 for 1 ≤ λ ≤ 3

1.9 1.95 2 2.05 2.1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 5.5: Secular equation corresponding to (5.32) for β = 0.01 for 1.9 ≤ λ ≤ 2.1

Already Dongarra and Sorensen [4] analyzed this problem. In their formulation they
normalize the vector v of D + ρvvT to have norm unity, ‖v‖ = 1.

They formulated

Lemma 5.1 Let

(5.33) qTλ =

(
v1

d1 − λ
,

v2
d2 − λ

, . . . ,
vn

dn − λ

)[
ρ

f ′(λ)

]1/2

.

Then for any λ, µ 6∈ {d1, . . . , dn} we have

(5.34) |qTλqµ| =
1

|λ− µ|

|f(λ)− f(µ)|

[f ′(λ)f ′(µ)]1/2
.

Proof. Observe that
λ− µ

(dj − λ)(dj − µ)
=

1

dj − λ
−

1

dj − µ
.

Then the proof is straightforward.

5.8. THE ALGORITHM OF GU AND EISENSTAT 105

β λ1 λ2 λ3 λ4 ‖QTQ− I‖

1 0.325651 1.682219 3.815197 7.176933 5.6674 · 10−16

0.1 0.797024 1.911712 2.112111 6.199153 3.4286 · 10−15

0.01 0.807312 1.990120 2.010120 6.192648 3.9085 · 10−14

10−4 0.807418 1.999900 2.000100 6.192582 5.6767 · 10−12

10−8 0.807418 1.99999999000000 2.00000001000000 6.192582 8.3188 · 10−08

Table 5.1: Loss of orthogonality among the eigenvectors computed by (5.15)

Formula (5.34) indicates how problems may arise. In exact arithmetic, if λ and µ are
eigenvalues then f(λ) = f(µ) = 0. However, in floating point arithmetic this values may
be small but nonzero, e.g., O(ε). If |λ−µ| is very small as well then we may have trouble!
So, a remedy for the problem was for a long time to compute the eigenvalues in doubled
precision, so that f(λ) = O(ε2). This would counteract a potential O(ε) of |λ− µ|.

This solution was quite unsatisfactory because doubled precision is in general very slow
since it is implemented in software. It took a decade until a proper solution was found.

5.8 The algorithm of Gu and Eisenstat

Computing eigenvector according to the formula

(5.35) x = α(λI −D)−1v = α







v1
λ− d1

...
vn

λ− dn






, α = ‖(λI −D)−1v‖,

is bound to fail if λ is very close to a pole dk and the difference λ− dk has an error of size
O(ε|dk|) instead of only O(ε|dk − λ|). To resolve this problem Gu and Eisenstat [5] found
a trick that is at the same time ingenious and simple.

They observed that the vk in (5.24) are very accurately determined by the data di and
λi. Therefore, once the eigenvalues are computed accurately a vector v̂ could be computed
such that the λi are accurate eigenvalues of D+ v̂v̂. If v̂ approximates well the original v
then the new eigenvectors will be the exact eigenvectors of a slightly modified eigenvalue
problem, which is all we can hope for.

The zeros of the secular equation can be computed accurately by the method presented
in section 5.6. However, a shift of variables is necessary. In the interval (di, di+1) the origin
of the real axis is moved to di if λi is closer to di than to di+1, i.e., if f((di+ di+1)/2) > 0.
Otherwise, the origin is shifted to di+1. This shift of the origin avoids the computation
of the smallest difference di − λ (or di+1 − λ) in (5.35), thus avoiding cancellation in this
most sensitive quantity. Equation (5.26) can be rewritten as

(5.36) (c1∆i+1 + c2∆i + c3∆i∆i+1)
︸ ︷︷ ︸

b

− (c1 + c2 + c3(∆i +∆i+1))
︸ ︷︷ ︸

−a

η + c3
︸︷︷︸

c

η2 = 0,

where ∆i = di − λj , ∆i+1 = di+1 − λj, and λj+1 = λj + η is the next approximate zero.
With equations (5.28)–(5.30) the coefficients in (5.36) get

(5.37)

a = c1 + c2 + c3(∆i +∆i+1) = (1 + Ψ1 +Ψ2)(∆i +∆i+1)− (Ψ′
1 +Ψ′

2)∆i∆i+1,

b = c1∆i+1 + c2∆i + c3∆i∆i+1 = ∆i∆i+1(1 + Ψ1 +Ψ2),

c = c3 = 1 + Ψ1 +Ψ2 −∆iΨ
′
1 −∆i+1Ψ

′
2.

106 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

If we are looking for a zero that is closer to di than to di+1 then we move the origin to λj,
i.e., we have e.g. ∆i = −λj. The solution of (5.36) that lies inside the interval is [7]

(5.38) η =







a−
√

a2 − 4bc
2c , if a ≤ 0,

2b

a+
√

a2 − 4bc
, if a > 0.

The following algorithm shows how step 9 of the tridiagonal divide and conquer algo-
rithm 5.1 must be implemented.

Algorithm 5.2 A stable eigensolver for D + vvT

1: This algorithm stably computes the spectral decomposition ofD+vvT = QΛQT where
D = diag(d1, . . . dn), v = [v1, . . . , vn] ∈ R

n, Λ = diag(λ1, . . . λn), and Q = [q1, . . . ,qn].
2: di+1 = dn + ‖v‖

2.
3: In each interval (di, di+1) compute the zero λi of the secular equation f(λ) = 0.
4: Use the formula (5.24) to compute the vector v̂ such that the λi are the ‘exact’

eigenvalues of D + v̂v̂.
5: In each interval (di, di+1) compute the eigenvectors of D + v̂v̂ according to (5.15),

qi =
(λiI −D)−1v̂

‖(λiI −D)−1v̂‖
.

6: return (Λ;Q)

5.8.1 A numerical example [continued]

We continue the discussion of the example on page 102 where the eigenvalue problem of

(5.39) A = D + vvT =







0
2− β

2 + β
5






+







1
β
β
1







[
1 β β 1

]
.

The Matlab code that we showed did not give orthogonal eigenvectors. We show in
the following script that the formulae (5.24) really solve the problem.

dlam = zeros(n,1);

for k=1:n,

[dlam(k), dvec(:,k)] = zerodandc(d,v,k);

end

V = ones(n,1);

for k=1:n,

V(k) = prod(abs(dvec(k,:)))/prod(d(k) - d(1:k-1))/prod(d(k+1:n) - d(k));

V(k) = sqrt(V(k));

end

Q = (dvec).\(V*e’);

diagq = sqrt(diag(Q’*Q));

Q = Q./(e*diagq’);

5.8. THE ALGORITHM OF GU AND EISENSTAT 107

for k=1:n,

if dlam(k)>0,

dlam(k) = dlam(k) + d(k);

else

dlam(k) = d(k+1) + dlam(k);

end

end

norm(Q’*Q-eye(n))

norm((diag(d) + v*v’)*Q - Q*diag(dlam’))

A zero finder returns for each interval the quantity λi − di and the vector [d1 −
λi, . . . , dn − λi]

T to high precision. These vector elements have been computed as (dk −
di) − (λi − di). The zerofinder of Li [7] has been employed here. At the end of this sec-
tion we list the zerofinder written in Matlab that was used here. The formulae (5.37)
and (5.38) have been used to solve the quadratic equation (5.36). Notice that only one of
the while loops is traversed, depending on if the zero is closer to the pole on the left or
to the right of the interval. The vk of formula (5.24) are computed next. Q contains the
eigenvectors.

β Algorithm ‖QTQ− I‖ ‖AQ−QΛ‖

0.1 I 3.4286 · 10−15 5.9460 · 10−15

II 2.2870 · 10−16 9.4180 · 10−16

0.01 I 3.9085 · 10−14 6.9376 · 10−14

II 5.5529 · 10−16 5.1630 · 10−16

10−4 I 5.6767 · 10−12 6.3818 · 10−12

II 2.2434 · 10−16 4.4409 · 10−16

10−8 I 8.3188 · 10−08 1.0021 · 10−07

II 2.4980 · 10−16 9.4133 · 10−16

Table 5.2: Loss of orthogonality among the eigenvectors computed by the straightforward
algorithm (I) and the Gu-Eisenstat approach (II)

Again we ran the code for β = 10−k for k = 0, 1, 2, 4, 8. The numbers in Table 5.2
confirm that the new formulae are much more accurate than the straight forward ones.
The norms of the errors obtained for the Gu-Eisenstat algorithm always are in the order
of machine precision, i.e., 10−16.

function [lambda,dl] = zerodandc(d,v,i)

% ZERODANDC - Computes eigenvalue lambda in the i-th interval

% (d(i), d(i+1)) with Li’s ’middle way’ zero finder

% dl is the n-vector [d(1..n) - lambda]

n = length(d);

di = d(i);

v = v.^2;

if i < n,

di1 = d(i+1); lambda = (di + di1)/2;

else

di1 = d(n) + norm(v)^2; lambda = di1;

end

eta = 1;

psi1 = sum((v(1:i).^2)./(d(1:i) - lambda));

108 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

psi2 = sum((v(i+1:n).^2)./(d(i+1:n) - lambda));

if 1 + psi1 + psi2 > 0, % zero is on the left half of the interval

d = d - di; lambda = lambda - di; di1 = di1 - di; di = 0;

while abs(eta) > 10*eps

psi1 = sum(v(1:i)./(d(1:i) - lambda));

psi1s = sum(v(1:i)./((d(1:i) - lambda)).^2);

psi2 = sum((v(i+1:n))./(d(i+1:n) - lambda));

psi2s = sum(v(i+1:n)./((d(i+1:n) - lambda)).^2);

% Solve for zero

Di = -lambda; Di1 = di1 - lambda;

a = (Di + Di1)*(1 + psi1 + psi2) - Di*Di1*(psi1s + psi2s);

b = Di*Di1*(1 + psi1 + psi2);

c = (1 + psi1 + psi2) - Di*psi1s - Di1*psi2s;

if a > 0,

eta = (2*b)/(a + sqrt(a^2 - 4*b*c));

else

eta = (a - sqrt(a^2 - 4*b*c))/(2*c);

end

lambda = lambda + eta;

end

else % zero is on the right half of the interval

d = d - di1; lambda = lambda - di1; di = di - di1; di1 = 0;

while abs(eta) > 10*eps

psi1 = sum(v(1:i)./(d(1:i) - lambda));

psi1s = sum(v(1:i)./((d(1:i) - lambda)).^2);

psi2 = sum((v(i+1:n))./(d(i+1:n) - lambda));

psi2s = sum(v(i+1:n)./((d(i+1:n) - lambda)).^2);

% Solve for zero

Di = di - lambda; Di1 = - lambda;

a = (Di + Di1)*(1 + psi1 + psi2) - Di*Di1*(psi1s + psi2s);

b = Di*Di1*(1 + psi1 + psi2);

c = (1 + psi1 + psi2) - Di*psi1s - Di1*psi2s;

if a > 0,

eta = (2*b)/(a + sqrt(a^2 - 4*b*c));

else

eta = (a - sqrt(a^2 - 4*b*c))/(2*c);

end

lambda = lambda + eta;

end

end

dl = d - lambda;

return

BIBLIOGRAPHY 109

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorensen, LAPACK Users’ Guide - Release 2.0, SIAM, Philadelphia, PA, 1994.
(Software and guide are available from Netlib at URL http://www.netlib.org/

lapack/).

[2] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigen-

problem, Numer. Math., 36 (1981), pp. 177–195.

[3] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[4] J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the symmetric

eigenvalue problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. s139–s154.

[5] M. Gu and S. C. Eisenstat, A stable and efficient algorithm for the rank-one

modification of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 1266–1276.

[6] , A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.

[7] R.-C. Li, Solving secular equations stably and efficiently, Technical Report UT-CS-
94-260, University of Tennessee, Knoxville, TN, Nov. 1994. LAPACK Working Note
No. 89.

[8] D. C. Sorensen and P. T. P. Tang, On the orthogonality of eigenvectors computed

by divide-and-conquer techniques, SIAM J. Numer. Anal., 28 (1991), pp. 1752–1775.

110 CHAPTER 5. CUPPEN’S DIVIDE AND CONQUER ALGORITHM

