
Chapter 11

Restarting Arnoldi and Lanczos

algorithms

The number of iteration steps can be very high with the Arnoldi or the Lanczos algorithm.
This number is, of course, not predictable. The iteration count depends on properties of
the matrix, in particular the distribution of its eigenvalues, but also on the initial vectors.

High iteration counts entail a large memory requirement to store the Arnoldi/Lanczos
vectors and a high amount of computation because of growing cost of the reorthogonal-
ization.

The idea behind the implicitely restarted Arnoldi (IRA) and implicitely restarted Lanc-
zos (IRL) algorithms is to reduce these costs by limiting the dimension of the search space.
This means that the iteration is stopped after a number of steps (which is bigger than
the number of desired eigenvalues), reduce the dimension of the search space without
destroying the Krylov space structure, and finally resume the Arnoldi / Lanczos iteration.

The implicitely restarted Arnoldi has first been proposed by Sorensen [7, 8]. It is imple-
mented together with the implicitely restarted Lanczos algorithms in the software package
ARPACK [4]. The ARPACK routines are the basis for the sparse matrix eigensolver eigs
in Matlab.

11.1 The m-step Arnoldi iteration

Algorithm 11.1 The m-step Arnoldi iteration

1: Let A ∈ F
n×n. This algorithm executes m steps of the Arnoldi algorithm.

2: q1 = x/‖x‖; z = Aq1; α1 = q∗

1z;
3: r1 = w − α1q1; Q1 = [q1]; H1 = [α1];
4: for j = 1, . . . ,m− 1 do
5: βj := ‖rj‖; qj+1 = rj/βj ;

6: Qj+1 := [Qj,qj+1]; Ĥj :=

[
Hj

βje
T
j

]

∈ F
(j+1)×j;

7: z := Aqj ;
8: h := Q∗

j+1z; rj+1 := z−Qj+1h;

9: Hj+1 := [Ĥj ,h];
10: end for

We start with the Algorithm 11.1 that is a variant of the Arnoldi Algorithm 10.1. It

195

196 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

executes just m Arnoldi iteration steps. We will now show how the dimension of the search
space is reduced withouth losing the information regarding the eigenvectors one is looking
for.
Remark 11.1. Step 8 in Algorithm 11.1 is classical Gram–Schmidt orthogonalization. As

rj+1 = z−Qj+1h = z−Qj+1Q
∗

j+1z,

we formally have Q∗

j+1rj+1 = 0. However, classical Gram–Schmidt orthogonalization is
faster but not so accurate as modified Gram–Schmidt orthogonalization [1]. So, often,
Q∗

j+1rj+1 is quite large. Therefore, the orthogonalization is iterated to get sufficient or-
thogonality.

A possible modification of step 8 that incorporates a second iteration is

8: h := Q∗

j+1z; rj+1 := z−Qj+1h;
c := Q∗

j+1rj+1; rj+1 := rj+1 −Qj+1c; h = h+ c;

Now we have,

r̃j+1 = corrected rj+1

= rj+1 −Qj+1Q
∗

j+1rj+1
︸ ︷︷ ︸

c

= z−Qj+1Q
∗

j+1z
︸ ︷︷ ︸

h

−Qj+1Q
∗

j+1rj+1
︸ ︷︷ ︸

c

= z−Qj+1(h+ c)

More iterations are possible but seldom necessary.
After the execution of Algorithm 11.1 we have the Arnoldi / Lanczos relation

(11.1) AQm = QmHm + rme∗m, Hm =

[]

available with
rm = βmqm+1, ‖qm+1‖ = 1.

If βm = 0 then R(Qm) is invariant under A, i.e., Ax ∈ R(Qm) for all x ∈ R(Qm).
This lucky situation implies that σ(Hm) ⊂ σm(A). So, the Ritz values and vectors are
eigenvalues and eigenvectors of A.

What we can realistically hope for is βm being small. Then,

AQm − rme∗m = (A− rmq∗

m)Qm = QmHm.

Then, R(Qm) is invariant under a matrix A+E, that differs from A by a perturbation E
with ‖E‖ = ‖rm‖ = |βm|. From general eigenvalue theory we know that in this situation
well-conditioned eigenvalues of Hm are good approximations of eigenvalues of A.

In the sequel we investigate how we can find a q1 such that βm becomes small?

11.2 Implicit restart

Let us start from the Arnoldi relation

(11.2) AQm = QmHm + rme∗m,

11.2. IMPLICIT RESTART 197

Algorithm 11.2 k implicit QR steps applied to Hm

1: H+
m := Hm.

2: for i := 1, . . . , k do
3: H+

m := V ∗

i H
+
mVi, where H+

m − µiI = ViRi (QR factorization)
4: end for

that is obtained after calling Algorithm 11.1.
We apply k < m implicit QR steps to Hm with shifts µ1, . . . , µk, see Algorithm 11.2.

Let V + := V1V2 · · ·Vk. V + is the product of k (unitary) Hessenberg matrices whence it
has k nonzero off-diagonals below its main diagonal.

V +
m = }

k

.

We define
Q+

m := QmV +, H+
m := (V +)∗HmV +.

Then, from (11.2) we obtain

AQmV + = QmV +(V +)∗HmV + + rme∗mV +,

or

(11.3) AQ+
m = Q+

mH+
m + rme∗mV +.

As V + has k nonzero off-diagonals below the main diagonal, the last row of V + has the
form

e∗mV + = (0, . . . , 0
︸ ︷︷ ︸

p− 1

, ∗, . . . , ∗
︸ ︷︷ ︸

k + 1

), k + p = m.

We now simply discard the last k columns of (11.3).

AQ+
m(:, 1 : p) = Q+

mH+
m(:, 1 : p) + rme∗mV +(:, 1 : p)

= Q+
m(:, 1 : p)H+

m(1 : p, 1 : p) + h+p+1,p
︸ ︷︷ ︸

β+
p

q+
p+1e

∗

p + v+m,prme∗p

= Q+
m(:, 1 : p)H+

m(1 : p, 1 : p) + (q+
p+1h

+
p+1,p + rmv+m,p)

︸ ︷︷ ︸

r+p

e∗p.

In Algorithm 11.3 we have collected what we have derived so far. We have however left
open in step 3 of the algorithm how the shifts µ1, . . . , µk should be chosen. In ARPACK [4],
all eigenvalues of Hm are computed. Those k eigenvalues that are furthest away from some
target value are chosen as shifts. We have not specified how we determine convergence,
too.

One can show that a QR step with shift µi transforms the vector q1 in a multiple of
(A− µiI)q1. In fact, a simple modification of the Arnoldi relation (11.2) gives

(A− µiI)Qm = Qm (Hm − µiI)
︸ ︷︷ ︸

V1R1

+rme∗m = QmV1R1 + rme∗m.

198 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

Algorithm 11.3 Implicitely restarted Arnoldi (IRA)

1: Let the Arnoldi relation AQm = QmHm + rme∗m be given.
2: repeat
3: Determine k shifts µ1, . . . , µk;
4: v∗ := e∗m;
5: for i = 1, . . . , k do
6: Hm − µiI = ViRi; /* QR factorization */
7: Hm := V ∗

i HmVi; Qm := QmVi;
8: v∗ := v∗Vi;
9: end for

10: rp := q+
p+1β

+
p + rmv+m,p;

11: Qp := Qm(:, 1 : p); Hp := Hm(1 : p, 1 : p);
12: Starting with

AQp = QpHp + rpe
∗

p

execute k additional steps of the Arnoldi algorithm until

AQm = QmHm + rme∗m.

13: until convergence

Comparing the first columns in this equation gives

(A− µiI)q1 = QmV1e1r11 + 0 = q
(1)
1 r11.

By consequence, all k steps combined give

q1 ←− Ψ(A)q1, Ψ(λ) =

k∏

i=1

(λ− µi).

If µi were an eigenvalue of A then (A−µiI)q1 removes components of q1 in the direction
of the corresponding eigenvector. More general, if µi is close to an eigenvalue of A then
(A−µiI)q1 will have only small components in the direction of eigenvectors corresponding
to nearby eigenvalues. Choosing the µi equal to Ritz values far away from the desired part
of the spectrum thus enhances the desired component. Still there is the danger that in each
sweep on Algorithm 11.3 the same undesired Ritz values are recovered. Therefore, other
strategies for choosing the shifts have been proposed [2]. Experimental results indicate
however, that the original strategy chosen in ARPACK mostly works best.

11.3 Convergence criterion

Let Hms = sϑ with ‖s‖ = 1. Let x̂ = Qms. Then we have as earlier

(11.4) ‖Ax̂− ϑx̂‖ = ‖AQms−QmHms‖ = ‖rm‖|e
∗

ms| = βm|e
∗

ms|.

In the Hermitian case, A = A∗, the Theorem 10.1 of Krylov–Bogoliubov provides an
interval that contains an eigenvalue of A. In the general case, we have

(11.5) (A+ E)x̂ = ϑx̂, E = −rmq∗

m, ‖E‖ = ‖rm‖ = βm.

11.4. THE GENERALIZED EIGENVALUE PROBLEM 199

According to an earlier theorem we know that if λ ∈ σ(A) is simple and ϑ is the
eigenvalue of A+ E closest to λ, then

(11.6) |λ− ϑ| ≤
‖E‖

y∗x
+O(‖E‖2).

Here, y and x are left and right eigenvectors of E corresponding to the eigenvalue λ. A
similar statement holds for the eigenvectors, but the distance (gap) to the next eigenvalue
comes into play as well.

In ARPACK, a Ritz pair (ϑ, x̂) is considered converged if

(11.7) βm|e
∗

ms| ≤ max(εM‖Hm‖, tol · |ϑ|).

As |ϑ| ≤ ‖Hm‖ ≤ ‖A‖, the inequality ‖E‖ ≤ tol · ‖A‖ holds at convergence. According
to (11.6) well-conditioned eigenvalues are well approximated.

11.4 The generalized eigenvalue problem

Let us consider now the generalized eigenvalue problem

(11.8) Ax = λMx.

Applying a shift-and-invert spectral transformation with shift σ transforms (11.8) into

(11.9) Sx = (A− σM)−1Mx = µx, µ =
1

λ− σ
.

We now execute an Arnoldi/Lanczos iteration with S to obtain

(11.10) SQm = QmHm + rme∗m, Q∗

mMQm = Im, Q∗

mMrm = 0.

Let s with ‖s‖ = 1 be an eigenvector of Hm with Ritz value ϑ. Let y = Qms be the
associated Ritz vector. Then,

(11.11) SQms = Sy = QmHms+ rme∗ms = yϑ+ rme∗ms.

So, yϑ+rme∗ms can be considered a vector that is obtained by one step of inverse iteration.
This vector is an improved approximation to the desired eigenvector, obtained at negligible
cost. This so-called eigenvector purification is particularly important if M is singular.

Let us bound the residual norm of the purified vector. With (11.11) we have

(11.12) My = (A− σM)(yϑ + rme∗ms
︸ ︷︷ ︸

ỹ

)

with

‖ỹ‖M =
√

ϑ2 + β2
k |e

∗

ms|2.

This equality holds as y ⊥M r. By consequence,

(11.13)

‖Aỹ − λM ỹ‖ = ‖(A − σM)ỹ +M ỹ(σ − λ
︸ ︷︷ ︸

−
1

ϑ

)‖

= ‖My −M(yϑ + rme∗ms)/ϑ‖ = ‖Mr‖ |e∗ms|/|ϑ|.

Since |ϑ| is large in general, we obtain good bounds for the residual of the purified eigen-
vectors.

200 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

EIGS Find a few eigenvalues and eigenvectors of a matrix using ARPACK

D = EIGS(A) returns a vector of A’s 6 largest magnitude eigenvalues.

A must be square and should be large and sparse.

[V,D] = EIGS(A) returns a diagonal matrix D of A’s 6 largest magnitude

eigenvalues and a matrix V whose columns are the corresponding

eigenvectors.

[V,D,FLAG] = EIGS(A) also returns a convergence flag. If FLAG is 0 then

all the eigenvalues converged; otherwise not all converged.

EIGS(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B

must be symmetric (or Hermitian) positive definite and the same size as

A. EIGS(A,[],...) indicates the standard eigenvalue problem A*V == V*D.

EIGS(A,K) and EIGS(A,B,K) return the K largest magnitude eigenvalues.

EIGS(A,K,SIGMA) and EIGS(A,B,K,SIGMA) return K eigenvalues. If SIGMA is:

’LM’ or ’SM’ - Largest or Smallest Magnitude

For real symmetric problems, SIGMA may also be:

’LA’ or ’SA’ - Largest or Smallest Algebraic

’BE’ - Both Ends, one more from high end if K is odd

For nonsymmetric and complex problems, SIGMA may also be:

’LR’ or ’SR’ - Largest or Smallest Real part

’LI’ or ’SI’ - Largest or Smallest Imaginary part

If SIGMA is a real or complex scalar including 0, EIGS finds the

eigenvalues closest to SIGMA. For scalar SIGMA, and when SIGMA = ’SM’,

B need only be symmetric (or Hermitian) positive semi-definite since it

is not Cholesky factored as in the other cases.

EIGS(A,K,SIGMA,OPTS) and EIGS(A,B,K,SIGMA,OPTS) specify options:

OPTS.issym: symmetry of A or A-SIGMA*B represented by AFUN [{false} | true]

OPTS.isreal: complexity of A or A-SIGMA*B represented by AFUN [false | {true}]

OPTS.tol: convergence: Ritz estimate residual <= tol*NORM(A) [scalar | {eps}]

OPTS.maxit: maximum number of iterations [integer | {300}]

OPTS.p: number of Lanczos vectors: K+1<p<=N [integer | {2K}]

OPTS.v0: starting vector [N-by-1 vector | {randomly generated}]

OPTS.disp: diagnostic information display level [0 | {1} | 2]

OPTS.cholB: B is actually its Cholesky factor CHOL(B) [{false} | true]

OPTS.permB: sparse B is actually CHOL(B(permB,permB)) [permB | {1:N}]

Use CHOL(B) instead of B when SIGMA is a string other than ’SM’.

EIGS(AFUN,N) accepts the function AFUN instead of the matrix A. AFUN is

a function handle and Y = AFUN(X) should return

A*X if SIGMA is unspecified, or a string other than ’SM’

A\X if SIGMA is 0 or ’SM’

(A-SIGMA*I)\X if SIGMA is a nonzero scalar (standard problem)

(A-SIGMA*B)\X if SIGMA is a nonzero scalar (generalized problem)

N is the size of A. The matrix A, A-SIGMA*I or A-SIGMA*B represented by

AFUN is assumed to be real and nonsymmetric unless specified otherwise

by OPTS.isreal and OPTS.issym. In all these EIGS syntaxes, EIGS(A,...)

may be replaced by EIGS(AFUN,N,...).

Example:

A = delsq(numgrid(’C’,15)); d1 = eigs(A,5,’SM’);

Equivalently, if dnRk is the following one-line function:

%----------------------------%

function y = dnRk(x,R,k)

y = (delsq(numgrid(R,k))) \ x;

%----------------------------%

n = size(A,1); opts.issym = 1;

d2 = eigs(@(x)dnRk(x,’C’,15),n,5,’SM’,opts);

See also eig, svds, ARPACKC, function_handle.

11.5. A NUMERICAL EXAMPLE 201

11.5 A numerical example

This example is taken from the Matlab document pages regarding eigs. eigs is the
Matlab interface to the ARPACK code, see page 200. The matrix called west0479 is a
479×479 matrix originating in a chemical engineering plant model. The matrix is available
from the Matrix Market [5], a web site that provides numerous test matrices. Its nonzero
structure is given in Fig. 11.1

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nnz = 1887

479x479 Matrix west0479

Figure 11.1: Nonzero structure of the 479× 479 matrix west0479

To compute the eight largest eigenvalues of this matrix we issue the following Matlab
commands.

>> load west0479

>> d = eig(full(west0479));

>> dlm=eigs(west0479,8);

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

0

0

0

0

0

0

0

0

Iteration 2: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0561 - 0.0536i

202 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

0.1081 + 0.0541i

0.1081 - 0.0541i

-0.1009 - 0.0666i

-0.1009 + 0.0666i

-0.0072 + 0.1207i

-0.0072 - 0.1207i

0.0000 - 1.7007i

0.0000 + 1.7007i

Iteration 3: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0866

-0.1009 - 0.0666i

-0.1009 + 0.0666i

-0.0072 + 0.1207i

-0.0072 - 0.1207i

0.1081 - 0.0541i

0.1081 + 0.0541i

0.0000 - 1.7007i

0.0000 + 1.7007i

Iteration 4: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

0.0614 - 0.0465i

-0.0072 - 0.1207i

-0.0072 + 0.1207i

0.1081 + 0.0541i

0.1081 - 0.0541i

-0.1009 + 0.0666i

-0.1009 - 0.0666i

0.0000 - 1.7007i

0.0000 + 1.7007i

Iteration 5: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0808

-0.0072 + 0.1207i

-0.0072 - 0.1207i

-0.1009 - 0.0666i

-0.1009 + 0.0666i

0.1081 + 0.0541i

0.1081 - 0.0541i

0.0000 + 1.7007i

0.0000 - 1.7007i

Iteration 6: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

0.0734 - 0.0095i

-0.0072 + 0.1207i

-0.0072 - 0.1207i

0.1081 - 0.0541i

11.5. A NUMERICAL EXAMPLE 203

−150 −100 −50 0 50 100 150
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Figure 11.2: Spectrum of the matrix west0479

0.1081 + 0.0541i

-0.1009 - 0.0666i

-0.1009 + 0.0666i

0.0000 - 1.7007i

0.0000 + 1.7007i

Iteration 7: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0747

-0.0072 - 0.1207i

-0.0072 + 0.1207i

0.1081 + 0.0541i

0.1081 - 0.0541i

-0.1009 + 0.0666i

-0.1009 - 0.0666i

0.0000 + 1.7007i

0.0000 - 1.7007i

The output indicates that eigs needs seven sweeps to compute the eigenvalues to
the default accuracy of macheps‖A‖. The Ritz values given are the approximations of the
eigenvalues we want to compute. The complete spectrum of west0479 is given in Fig. 11.2.
Notice the different scales of the axes! Fig. 11.3 is a zoom that shows all eigenvalues except
the two very large ones. Here the axes are equally scaled. From the two figures it becomes
clear that eigs has computed the eight eigenvalues (and corresponding eigenvectors) of
largest modulus.

To compute the eigenvalues smallest in modulus we issue the following command.

dsm=eigs(west0479,8,’sm’);

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

204 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

Figure 11.3: A zoom to the center of the spectrum of matrix west0479 that excludes the
largest two eigenvalues on the imaginary axis

0

0

0

0

0

0

0

0

Iteration 2: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0228 - 0.0334i

0.0444

-0.0473

0.0116 + 0.0573i

0.0116 - 0.0573i

-0.0136 - 0.1752i

-0.0136 + 0.1752i

-3.4455

5.8308

Iteration 3: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

11.5. A NUMERICAL EXAMPLE 205

-0.0228 - 0.0334i

0.0444

-0.0473

0.0116 + 0.0573i

0.0116 - 0.0573i

-0.0136 + 0.1752i

-0.0136 - 0.1752i

-3.4455

5.8308

Iteration 4: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0228 + 0.0334i

0.0444

-0.0473

0.0116 - 0.0573i

0.0116 + 0.0573i

-0.0136 + 0.1752i

-0.0136 - 0.1752i

-3.4455

5.8308

Iteration 5: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0228 + 0.0334i

0.0444

-0.0473

0.0116 - 0.0573i

0.0116 + 0.0573i

-0.0136 + 0.1752i

-0.0136 - 0.1752i

-3.4455

5.8308

>> dsm

dsm =

0.0002

-0.0003

-0.0004 - 0.0057i

-0.0004 + 0.0057i

0.0034 - 0.0168i

0.0034 + 0.0168i

-0.0211

0.0225

206 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 11.4: Smallest eigenvalues of the matrix west0479

>> 1./dsm

ans =

1.0e+03 *

5.8308

-3.4455

-0.0136 + 0.1752i

-0.0136 - 0.1752i

0.0116 + 0.0573i

0.0116 - 0.0573i

-0.0473

0.0444

The computed eigenvalues are depicted in Fig. 11.4

11.6 Another numerical example

We revisit the determination the acoustic eigenfrequencies and modes in the interior of a
car, see section 1.6.3. The computations are done with the finest grid depicted in Fig. 1.9.
We first compute the lowest ten eigenpairs with simultaneous inverse vector iteration
(sivit). The dimension of the search space is 15.

>> [p,e,t]=initmesh(’auto’);

>> [p,e,t]=refinemesh(’auto’,p,e,t);

>> [p,e,t]=refinemesh(’auto’,p,e,t);

>> p=jigglemesh(p,e,t);

>> [A,M]=assema(p,t,1,1,0);

>> whos

Name Size Bytes Class

11.6. ANOTHER NUMERICAL EXAMPLE 207

A 1095x1095 91540 double array (sparse)

M 1095x1095 91780 double array (sparse)

e 7x188 10528 double array

p 2x1095 17520 double array

t 4x2000 64000 double array

Grand total is 26052 elements using 275368 bytes

>> sigma=-.01;

>> p=10; tol=1e-6; X0=rand(size(A,1),15);

>> [V,L] = sivit(A,M,p,X0,sigma,tol);

||Res(0)|| = 0.998973

||Res(5)|| = 0.603809

||Res(10)|| = 0.0171238

||Res(15)|| = 0.00156298

||Res(20)|| = 3.69725e-05

||Res(25)|| = 7.11911e-07

>> % 25 x 15 = 375 matrix - vektor - multiplications until convergence

>>

>> format long, L

L =

0.00000000000000

0.01269007628847

0.04438457596824

0.05663501055565

0.11663116522140

0.13759210393200

0.14273438015546

0.20097619880776

0.27263682280769

0.29266080747831

>> format short

>> norm(V’*M*V - eye(10))

ans =

1.8382e-15

Then we use Matlab’s solver eigs. We set the tolerance and the shift to be the same
as with sivit. Notice that ARPACK applies a shift-and-invert spectral transformation if
a shift is given.

>> options.tol=tol; options.issym=1;

>> [v,l,flag]=eigs(A,M,p,sigma,options);

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

0

0

0

0

0

0

208 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

0

0

0

Iteration 2: a few Ritz values of the 20-by-20 matrix:

3.3039

3.5381

4.7399

6.5473

6.7754

7.8970

15.0071

18.3876

44.0721

100.0000

Iteration 3: a few Ritz values of the 20-by-20 matrix:

3.3040

3.5381

4.7399

6.5473

6.7754

7.8970

15.0071

18.3876

44.0721

100.0000

>> flag

flag =

0

>> l=diag(l); l=l(end:-1:1); norm(l-L)

ans =

3.7671e-14

>> norm(v’*M*v - eye(10))

ans = 8.0575e-15

Clearly the eigenvectors are mutually m-orthogonal. Notice that eigs returns the
eigenvalues sorted from large to small such that they have to be reordered before comparing
with those sivit computed.

In the next step we compute the largest eigenvalues of the matrix

(11.14) S = R(A− σM)−1RT ,

where RTR = M is the Cholesky factorization of M . The matrix in (11.14) is transferred
to eigs as a function.

>> type afun

11.6. ANOTHER NUMERICAL EXAMPLE 209

function x = afun(x)

global RA RB

x = RB*(RA\(RA’\(RB’*x)));

>> global RA RB

>> RA = chol(A-sigma*M);

>> RB = chol(M);

>> [v,l1,flag]=eigs(’afun’,n,10,’lm’,options);

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

0

0

0

0

0

0

0

0

0

Iteration 2: a few Ritz values of the 20-by-20 matrix:

3.3030

3.5380

4.7399

6.5473

6.7754

7.8970

15.0071

18.3876

44.0721

100.0000

Iteration 3: a few Ritz values of the 20-by-20 matrix:

3.3040

3.5381

4.7399

6.5473

6.7754

7.8970

15.0071

18.3876

44.0721

100.0000

>> flag

flag =

0

>> l1 = diag(l1)

l1 =

210 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

100.0000

44.0721

18.3876

15.0071

7.8970

6.7754

6.5473

4.7399

3.5381

3.3040

>> sigma + 1./l1

ans =

0.0000

0.0127

0.0444

0.0566

0.1166

0.1376

0.1427

0.2010

0.2726

0.2927

>> norm(sigma + 1./l1 - l)

ans =

4.4047e-14

11.7 The Lanczos algorithm with thick restarts

The implicit restarting procedures discussed so far are very clever ways to get rid of
unwanted directions in the search space and still keeping a Lanczos or Arnoldi basis. The
latter admits to continue the iteration in a known framework. The Lanczos or Arnoldi
relations hold that admit very efficient checks for convergence. The restart has the effect
of altering the starting vector.

In this and the next section we discuss algorithms that work with Krylov spaces but
are not restricted to Krylov or Arnoldi bases. Before continuing we make a step back and
consider how we can determine if a given subspace of Fn is a Krylov space at all.

Let A be an n-by-n matrix and let v1, . . . ,vk be linearly independent n-vectors. Is
the subspace V := span{v1, . . . ,vk} a Krylov space, i.e., is there a vector q ∈ V such that
V = Kk(A,q)? The following theorem gives the answer [3, 10].

Theorem 11.1 V = span{v1, . . . ,vk} is a Krylov space if and only if there is a k-by-k
matrix M such that

(11.15) R := AV − VM, V = [v1, . . . ,vk],

has rank one and span{v1, . . . ,vk,R(R)} has dimension k + 1.

11.7. THE LANCZOS ALGORITHM WITH THICK RESTARTS 211

Proof. Let us first assume that V = Kk(A,q) for some q ∈ V. Let Q = [q1, . . . ,qk] be the
Arnoldi basis of Kk(A,q). Then Q = V S with S a nonsingular k-by-k matrix. We now
multiply the Arnoldi relation

AQ = QH + q̃k+1e
T
k , Q∗q̃k+1 = 0, H Hessenberg.

by S−1 from the right to get

AV = V SHS−1 + q̃k+1e
∗

kS
−1.

which is (11.15) with M = SHS−1.
Let us now assume that R in (11.15) has rank 1 so that we can write

(11.16) AV = VM +R = VM + vw∗, M ∈ F
k×k.

with some v ∈ F
n and w ∈ F

k. Let S1, S
−1
1 = S∗

1 , be the Householder reflector that maps
w onto a multiple of ek, S

∗

1w = γek. Then, (11.16) becomes

AV S1 = V S1S
∗

1MS1 + γveTk .

There is another unitary matrix S2 with S∗

2ek = ek that transforms S∗

1MS1 similarly to
Hessenberg form,

S∗MS = H, H Hessenberg,

where S = S1S2. S2 can be formed as the product of Householder reflectors. In contrast
to the well-known transformation of full matrices to Hessenberg form, here the zeros are
generated row-wise starting with the last in order not to destroy ek in the rank-1 term.
Thus,

AV S = V SH + γveTk .

So, V = Kk(A,q) with q = V Se1.

We apply this theorem to the case where a subspace is spanned by some Ritz vectors.
Let A = A∗ and let

(11.17) AQk −QkTk = βk+1qk+1e
T
k

be a Lanczos relation. Let

TkSk = SkΘk, Sk = [s
(k)
1 , . . . , s

(k)
k], Θk = diag(ϑ1, . . . , ϑk).

be the spectral decomposition of the tridiagonal matrix Tk. Then, for all i, the Ritz vector

yi = Qks
(k)
i ∈ Kk(A,q)

gives rise to the residual

ri = Ayi − yiϑi = βk+1qk+1e
∗

ks
(k)
i ∈ Kk+1(A,q) ⊖Kk(A,q).

Therefore, for any set of indices 1 ≤ i1 < · · · < ij ≤ k we have

A[yi1 ,yi2 , . . . ,yij]− [yi1 ,yi2 , . . . ,yij] diag(ϑi1 , . . . , ϑij) = βk+1qk+1[s
(k)
i1

, s
(k)
i2

, . . . , s
(k)
ij

].

By Theorem 11.1 we see that any set [yi1 ,yi2 , . . . ,yij] of Ritz vectors forms a Krylov
space. Note that the generating vector differs for each set.

212 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

Algorithm 11.4 Thick restart Lanczos

1: Let us be given k Ritz vectors yi and a residual vector rk such that Ayi = ϑiyi+σirk,
i = 1, . . . , k. The value k may be zero in which case r0 is the initial guess.
This algorithm computes an orthonormal basis y1, . . . ,yj ,qj+1, . . . ,qm that spans a
m-dimensional Krylov space whose generating vector is not known unless k = 0.

2: qk+1 := rk/‖rk‖.
3: z := Aqk+1;
4: αk+1 := q∗

k+1z;

5: rk+1 = z− αk+1qk+1 −
∑k

i=1 σiyi

6: βk+1 := ‖rk+1‖
7: for i = k + 2, . . . ,m do
8: qi := ri−1/βi−1.
9: z := Aqi;

10: αi := q∗

i z;
11: ri = z− αiqi − βi−1qi−1

12: βi = ‖ri‖
13: end for

We now split the indices 1, . . . , k in two sets. The first set contains the ‘good’ Ritz
vectors that we want to keep and that we collect in Y1, the second set contains the ‘bad’
ones that we want to remove. Those we put in Y2. In this way we get

(11.18) A[Y1, Y2]− [Y1, Y2]

[
Θ1

Θ2

]

= βk+1qk+1[s
∗

1, s
∗

2].

Keeping the first set of Ritz vectors and purging (deflating) the rest yields

AY1 − Y1Θ1 = βk+1qk+1s
∗

1.

We now can restart a Lanczos procedure by orthogonalizing Aqk+1 against Y1 =: [y∗

1, . . . ,y
∗

j]
and qk+1. From the equation

Ayi − yiϑi = qk+1σi, σi = βk+1e
∗

ks
(k)
i

we get
q∗

k+1Ayℓ = σℓ,

whence

(11.19) rk+1 = Aqk+1 − αk+1qk+1 −

j
∑

i=1

σiyi ⊥ Kk+1(A,q.)

From this point on the Lanczos algorithm proceeds with the ordinary three-term recur-
rence. We finally arrive at a relation similar to (11.17), however, with

Qm = [y1, . . . ,yj ,qk+1, . . . ,qm+k−j]

and

Tm =














ϑ1 σ1
. . .

...
ϑj σj

σ1 · · · σj αk+1
. . .

. . .
. . . βm+k−j−1

βm+k−j−1 αm+k−j














11.8. KRYLOV–SCHUR ALGORITHM 213

This procedure, called thick restart, has been suggested by Wu & Simon [11], see Al-
gorithm 11.4. It allows to restart with any number of Ritz vectors. In contrast to the
implicitly restarted Lanczos procedure, here we need the spectral decomposition of Tm.
Its computation is not an essential overhead in general. The spectral decomposition ad-
mits a simple sorting of Ritz values. We could further split the first set of Ritz pairs into
converged and unconveregd ones, depending on the value βm+1|sk,i|. If this quantity is
below a given threshold we set the value to zero and lock (deflate) the corresponding Ritz
vector, i.e., accept it as an eigenvector.

The procedure is mathematically equivalent with the implicitely restarted Lanczos al-
gorithm. In fact, the generating vector of the Krylov space span{y1, . . . ,yj ,qj+1, . . . ,qm}
that we do not compute is q′

1 = (A − ϑj+1I) · · · (A − ϑmI)q1. This restarting procedure
is probably simpler than with IRL.

The problem of losing orthogonality is similar to plain Lanczos. Wu & Simon [11] in-
vestigate the various reorthogonalizing strategies known from plain Lanczos (full, selective,
partial). In their numerical experiments the simplest procedure, full reorthogonalization,
performs similarly or even faster than the more sophisticated reorthogonalization proce-
dures.

Remark 11.2. The thick restart Lanczos procedure does not need a Krylov basis of
span{y1, . . . ,yj} or, equivalently, the tridiagonalization of








ϑ1 σ1
. . .

...
ϑj σj

σ1 · · · σj αk+1








.

However, at the next restart, the computation of the spectral decomposition will most
probably require it.

Question: How can the arrow matrix above be tridiagonalized economically?

11.8 Krylov–Schur algorithm

The Krylov–Schur algorithm introduced by Stewart [9] is a generalization of the thick-
restart procedure for non-Hermitian problems. The Arnoldi algorithm constructs the
Arnoldi relation

(11.1) AQm = QmHm + rme∗m,

where Hm is Hessenberg and [Qm, rm] has full rank. Let Hm = SmTmS∗

m be a Schur
decomposition of Hm with unitary Sm and triangular Tm. Then, similarly as in the
previous section we have

(11.20) AYm = YmTm + rms∗, Ym = QmSm, s∗ = e∗mSm.

The upper trangular form of Tm eases the analysis of the individual Ritz pairs. In par-
ticular, it admits moving unwanted Ritz values to the lower-right corner of Tm. (See the
subroutine trexc in LAPACK for details.) Similarly as in (11.18) we collect the ‘good’
and ‘bad’ Ritz vectors in matrices Y1 and Y2, respectively. In this way we get

(11.21) A[Y1, Y2]− [Y1, Y2]

[
T11 T12

T22

]

= βk+1qk+1[s
∗

1, s
∗

2].

214 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

Keeping the first set of Ritz vectors and purging the rest yields

AY1 − Y1T11 = βk+1qk+1s
∗

1.

In the thick-restart Lanczos procedure we have found an eigenpair as soon as βk+1|sik| is
sufficiently small. The determination of a converged subspace with the general Krylov–
Schur procedure is not so easy. However, if we manage to bring s1 into the form

s1 =

[
s′1
s′′1

]

=

[
0
s′′1

]

then we found an invariant subspace.

A[Y ′

1 , Y
′′

1]− [Y ′

1 , Y
′′

1]

[
T ′

11 T ′

12

T ′

22

]

= βk+1qk+1[0
T , s′′1

∗

]

i.e.,
AY ′

1 = Y ′

1T
′

11

In most cases s′1 consists of a single small element or of two small elements in the case of
a complex-conjugate eigenpair of a real nonsymmetric matrix [9]. These small elements
are then declared zero and the columns in Y ′

1 are locked, i.e., they are not altered any-
more in the future computations. Orthogonality against them has to be enforced in the
continuation of the eigenvalue computation though.

11.9 The rational Krylov space method

After having computed a number of eigenvalue–eigen/Schurvector pairs in the neighbor-
hood of some shift σ1 with the shift-invert Lanczos, Arnoldi, or Krylov–Schur algorithm
it may be advisable to restart with a changed shift σ2. This is in fact possible with-
out discarding the available Krylov space [6]. In this section we consider the generalized
eigenvalue problem Ax = λBx.

The rational Krylov space method starts out as a shift-invert Arnoldi iteration with
shift σ1 and starting vector v1. It computes an orthonormal basis Vj using the basic
recurrence,

(11.22) (A− σ1B)−1BQj = QjHj + rje
T = Qj+1H̄j.

or, using the Schur decomposition of Hj, cf. (11.20),

(11.23) (A− σ1B)−1BYj = YjTj + rjs
∗ = Yj+1

[
Tj

s∗

]

, Yj+1 = [Yj, rj]

We want to derive a Krylov–Schur relation for a new shift σ2 6= σ1 from (11.23) for the
same space R(Yj+1) without accessing the matrices A or B. The tricky thing is to avoid
discard all the information gathered in the basis Yj+1 that was computed with the old
shift σ1. This is indeed possible if we replace the basis Yj+1 with a new basis Wj+1, which
spans the same subspace as Yj+1 but can be interpreted as the orthonormal basis of a
Krylov–Schur relation with the new shift σ2.

We rewrite the relation (11.23) as

BYj = BYj+1

[
Ij
0∗

]

= (A− σ1B)Yj+1

[
Tj

s∗

]

.

BIBLIOGRAPHY 215

Introducing the shift σ2 this becomes

(11.24) BYj+1

{[
Ij
0∗

]

+ (σ1 − σ2)

[
Tj

s∗

]}

= (A− σ2B)Yj+1

[
Tj

s∗

]

.

To construct a Krylov–Schur relation we must get rid of the last non-zero row of the matrix
in braces in (11.24). To that end we use the QR factorization

[
Ij
0T

]

+ (σ1 − σ2)

[
Tj

s∗

]

= Qj+1

[
Rj

0T

]

.

Using it we obtain

BYj+1Qj+1

[
Rj

0T

]

≡ BWj+1

[
Rj

0T

]

= BWjRj = (A− σ2B)Wj+1Q
∗

j+1

[
Tj

s∗

]

Multiplying with (A− σ2B)−1 from the left we obtain

(11.25) (A− σ2B)−1BWj = Wj+1Q
∗

j+1

[
TjR

−1
j

s∗

]

= Wj+1

[
Mj

t∗

]

or

(11.26) (A− σ2B)−1BWj = WjMj +wj+1t
∗.

This equation can easily been transformed into an Arnoldi or Krylov–Schur relation.
All these transformations can be executed without performing any operations on the

large sparse matrices A and B.
In a practical implementation, the mentioned procedure is combined with locking,

purging, and implicit restart. First run shifted and inverted Arnoldi with the first shift
σ1. When an appropriate number of eigenvalues around σ1 have converged, lock these
converged eigenvalues and purge those that are altogether outside the interesting region,
leaving an Arnoldi (11.22) or Krylov–Schur recursion (11.22) for the remaining vectors.
Then introduce the new shift σ2 and perform the steps above to get a new basis Wj+1

that replaces Vj+1. Start at the new shift by operating on the last vector of this new basis

r := (A− σ2B)−1Bwj+1

and get the next basis vector wj+2 in the Arnoldi recurrence with the new shift σ2. Con-
tinue until we get convergence for a set of eigenvalues around σ2, and repeat the same
procedure with new shifts until either all interesting eigenvalues have converged or all the
shifts in the prescribed frequency range have been used.

Bibliography

[1] Å. Björck, Numerics of Gram–Schmidt orthogonalization, Linear Algebra Appl.,
197/198 (1994), pp. 297–316.

[2] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitely restarted Lanczos
method for large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2
(1994), pp. 1–21.

[3] M. Genseberger and G. L. G. Sleijpen, Alternative correction equations in the
Jacobi–Davidson method, Numer. Linear Algebra Appl., 6 (1999), pp. 235–253.

216 CHAPTER 11. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

[4] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution
of Large-Scale Eigenvalue Problems by Implicitely Restarted Arnoldi Methods, SIAM,
Philadelphia, PA, 1998. (The software and this manual are available at URL http:

//www.caam.rice.edu/software/ARPACK/).

[5] The Matrix Market. A repository of test data for use in comparative studies of
algorithms for numerical linear algebra. Available at URL http://math.nist.gov/

MatrixMarket/.

[6] A. Ruhe, Rational Krylov subspace method, in Templates for the solution of Algebraic
Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Dongarra, A. Ruhe,
and H. van der Vorst, eds., SIAM, Philadelphia, PA, 2000, pp. 246–249.

[7] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi
method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[8] , Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calcu-
lations, in Parallel Numerical Algorithms, D. E. Keyes, A. Sameh, and V. Venkatakr-
ishnan, eds., Kluwer, Dordrecht, 1997, pp. 119–165. (ICASE/LaRC Interdisciplinary
Series in Science and Engineering, 4).

[9] G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 601–614.

[10] , Matrix Algorithms II: Eigensystems, SIAM, Philadelphia, PA, 2001.

[11] K. Wu and H. D. Simon, Thick-restart Lanczos method for large symmetric eigen-
value problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

