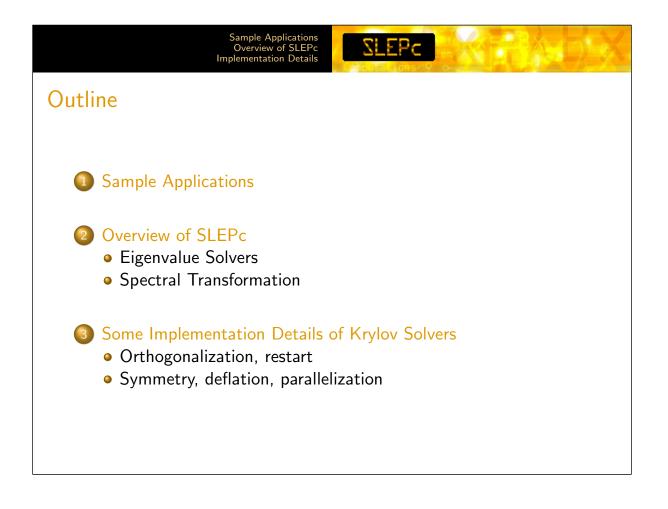
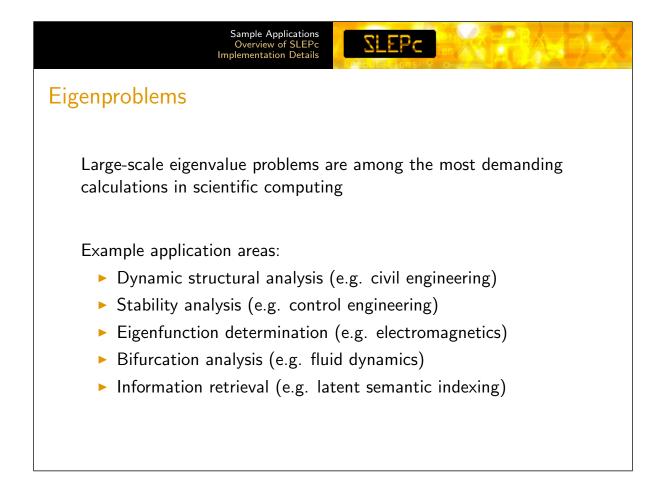
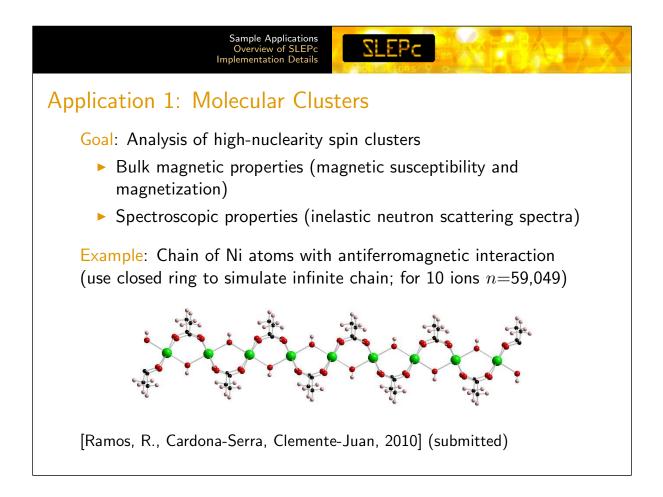
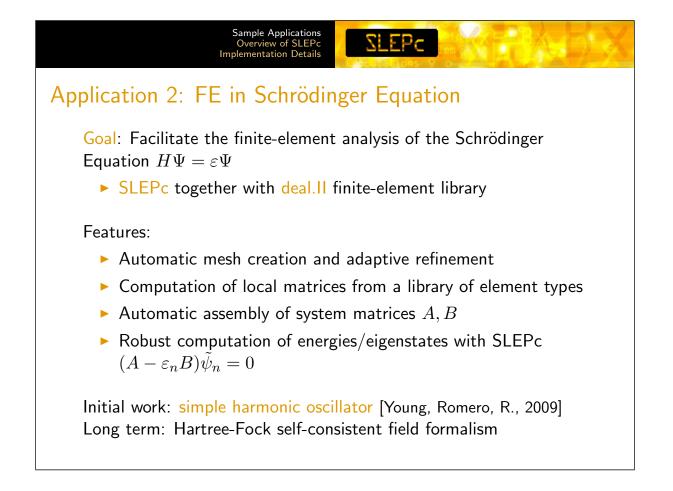


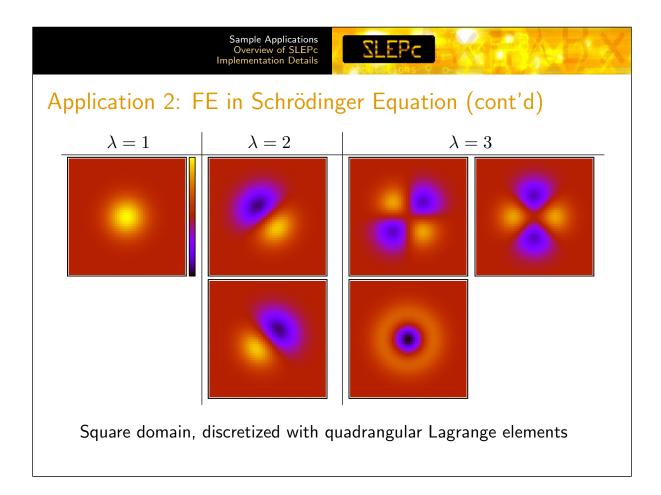
	Sample Applications Overview of SLEPc Implementation Details
Arnoldi Metho	d
Computes a b	asis V_m of $\mathcal{K}_m(A,v_1)$ and $H_m=V_m^*AV_m$
	for $j = 1, 2,, m$ $w = Av_j$ for $i = 1, 2,, j$ $h_{i,j} = v_i^* w$ $w = w - h_{i,j} v_i$ end $h_{j+1,j} = w _2$ $v_{j+1} = w/h_{j+1,j}$ end ligorithm, BUT what else is required for addressing eal applications?

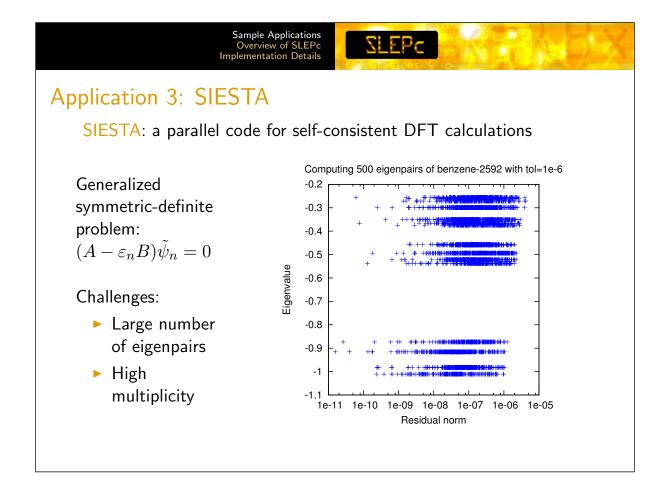


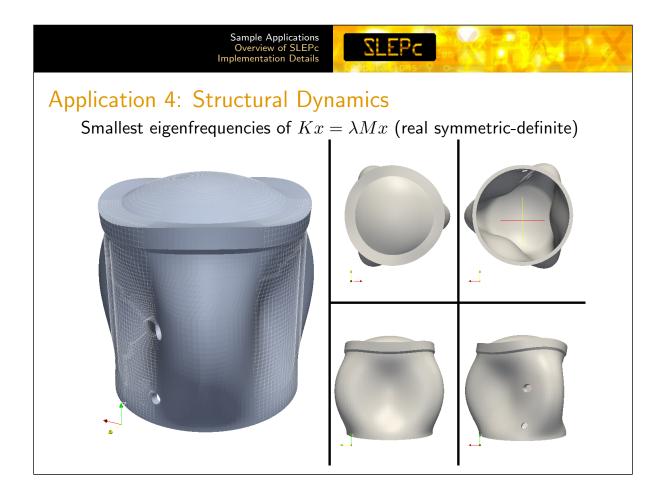


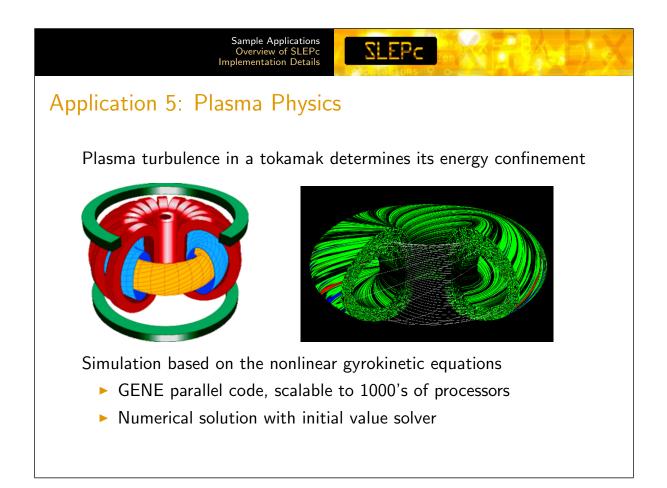


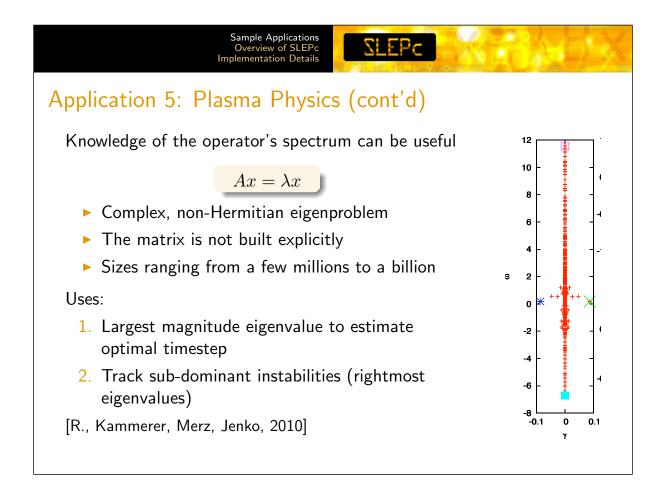


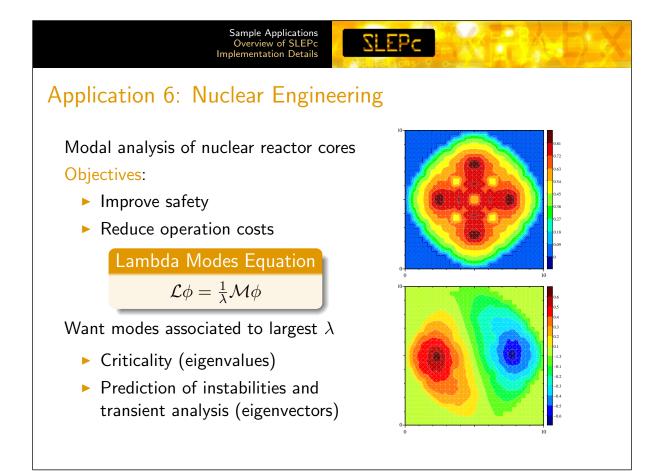


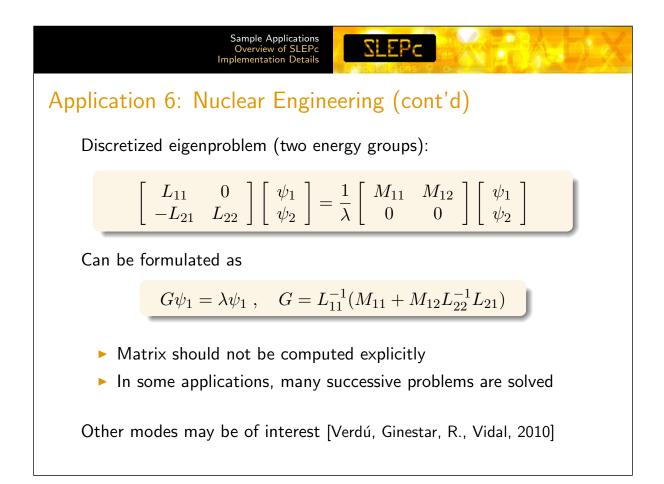


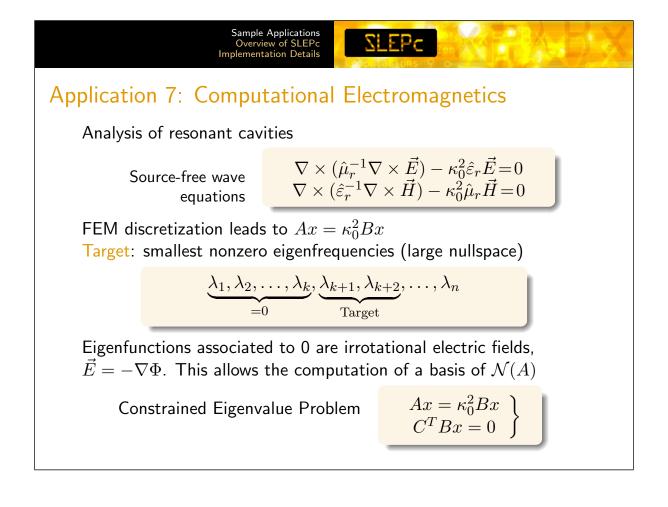










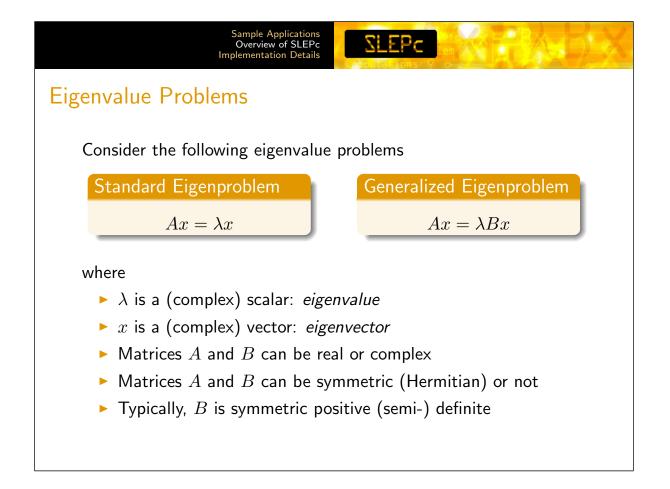


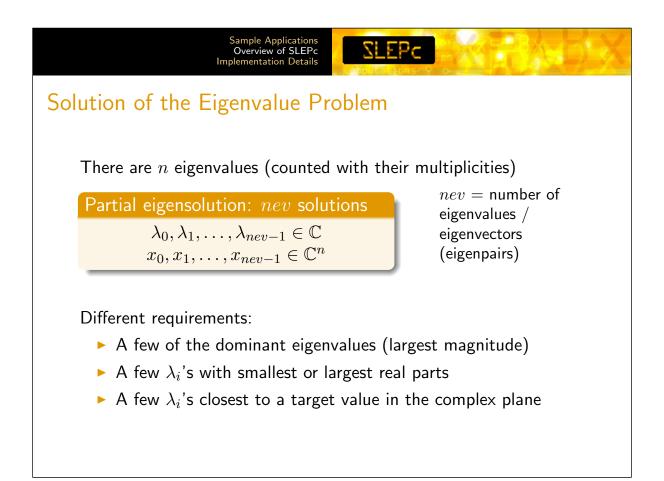
Facts Observed from the Examples

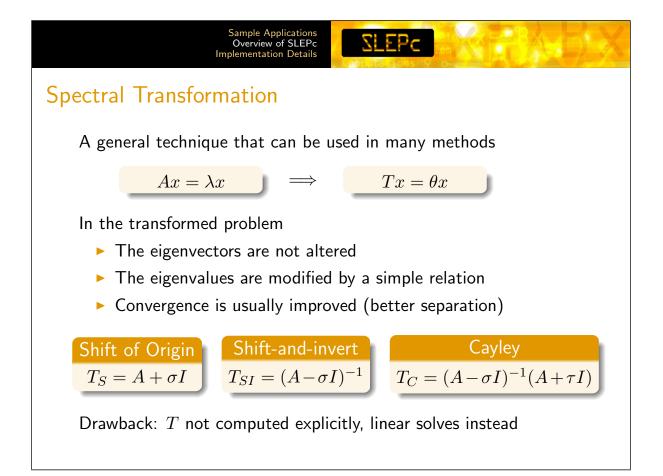
- Various problem characteristics
 - ► Real/complex, Hermitian/non-Hermitian
 - ▶ Need to support complex in real arithmetic
- Many formulations
 - Standard, generalized, quadratic, non-linear, SVD
 - Special cases: implicit matrix, block-structured problems, constrained problems, structured spectrum

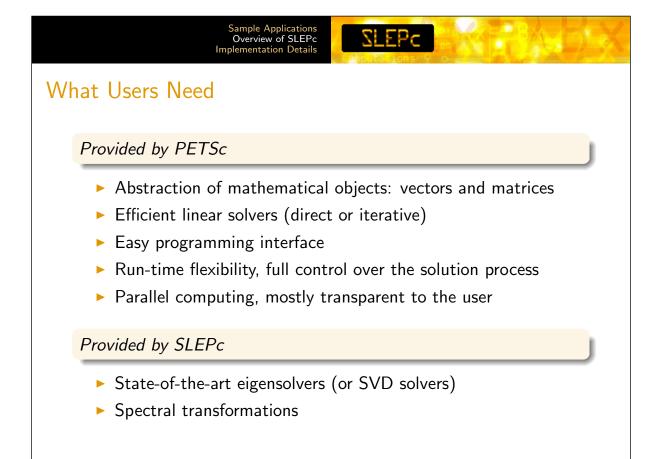
SLEPc

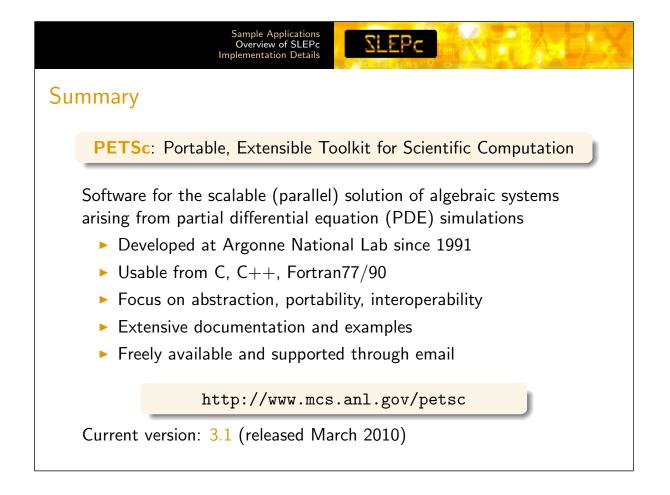
- Wanted solutions
 - Usually only a few eigenpairs, but may be many
 - Any part of the spectrum (exterior, interior), intervals
- Robustness and usability
 - Singular B and other special cases, high multiplicity
 - Interoperability (linear solvers, FE), flexibility

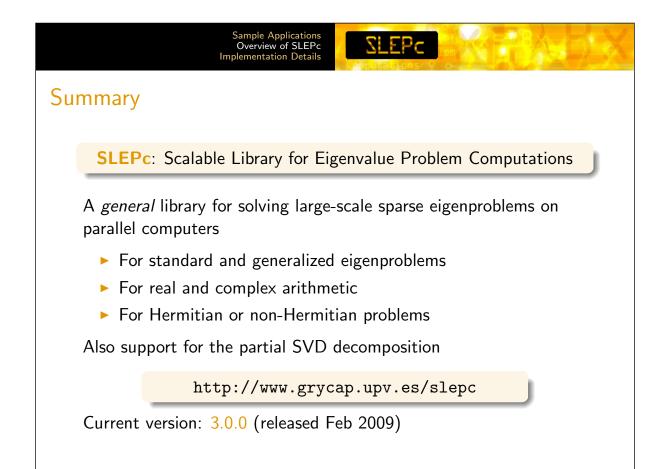




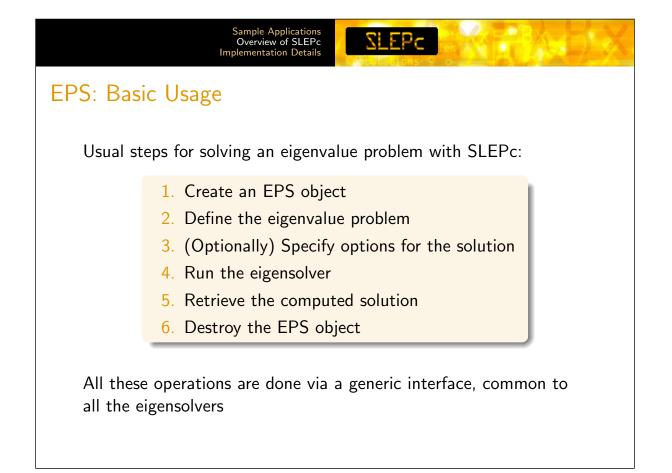




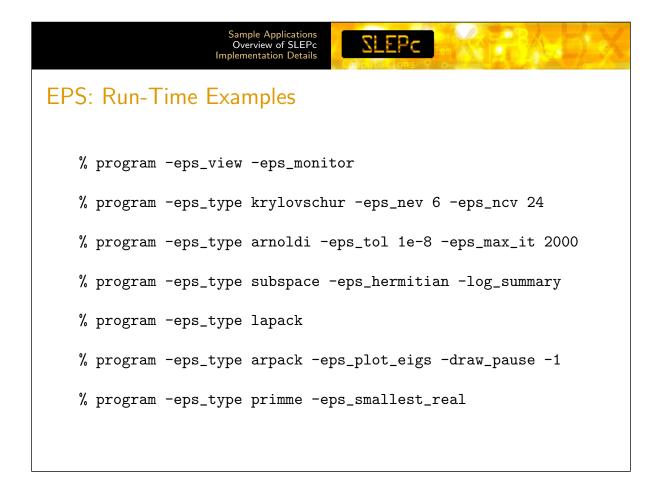


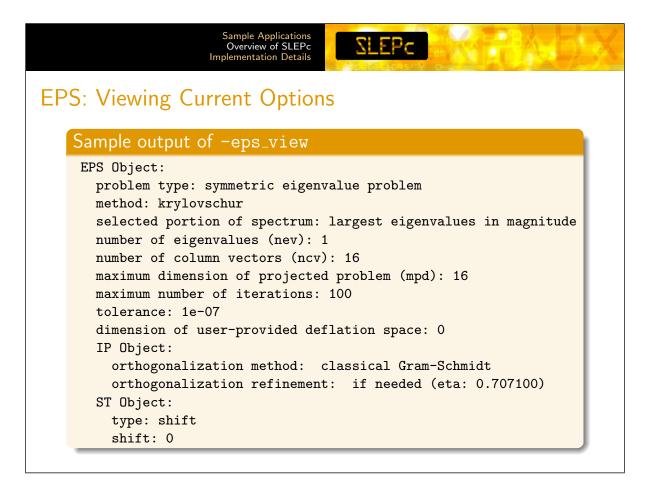


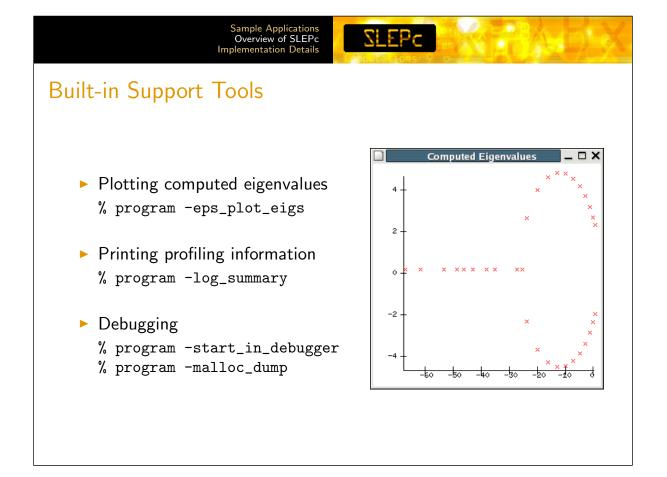
					I		/iew o	lication f SLEP 1 Detail	c 🖌	SLE	PC	en A	£		
ETS	5c/	SL	-EF	^{>} c	Nι	ıme	rica	al C	Comp	oner	nts				
	PETSc SLEPc														
Γ	Nonlinear Systems Time Steppers										SVD Solvers				
	Line earch	Other		ner	Euler	r Backward Euler		Pseudo Time Step	Other	Cro Prod	ss Cyo uct Ma	Lanc	705	ck Res. nczos	
	Krylov Subspace Methods										Eigensolvers				
GM	IRES	CG	CGS	Bi-C	GStab	TFQM	R Ricl	nardson	Chebyche	v Other	Krylo	ov-Schur	Arnoldi	Lanczos	Other
	Preconditioners										Spectral Transform				
	Additive Block Ja Schwarz Jacobi			Jac	cobi ILU		ICC	LU	Other	Shif	t Shift-	and-invert	Cayley	Fold	
	Matrices														
	Compressed Block Com Sparse Row Sparse								Dense	Other					
						Index Sets									
	Vectors				Indice	es Blo	ck Ind	dices	Stride	Other					

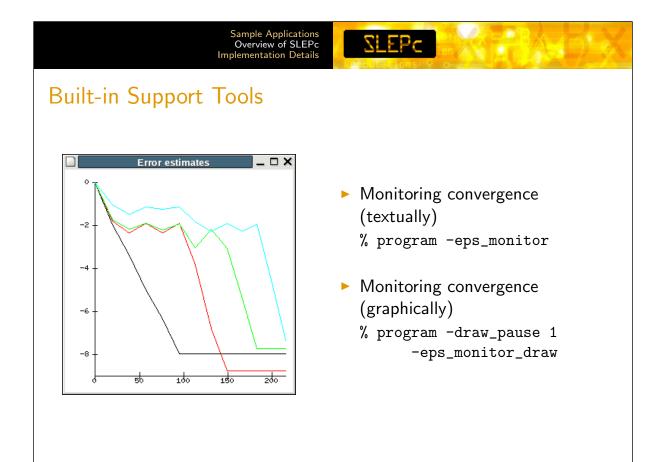


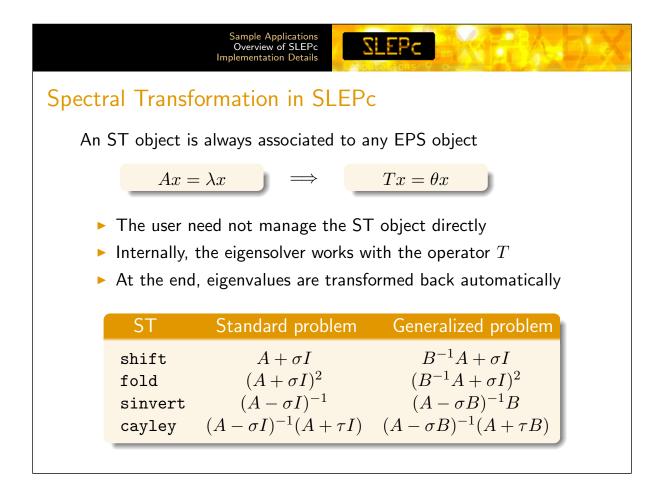
	Sample Applic Overview of S Implementation [SLEPc						
EPS: Simple Exa	ample							
Mat Vec PetscScalar EPSCreate(PE EPSSetOperate EPSSetProblem	<pre>Mat A, B; /* matrices of Ax=kBx */ Vec xr, xi; /* eigenvector, x */ PetscScalar kr, ki; /* eigenvalue, k */ EPSCreate(PETSC_COMM_WORLD, &eps); EPSSetOperators(eps, A, B); EPSSetProblemType(eps, EPS_GNHEP); EPSSetFromOptions(eps);</pre>							
EPSGetConver; for (i=0; i< EPSGetEige: } EPSDestroy(ej	nconv; i++) npair(eps,) {	v); %kr, &ki, xr, xi);					

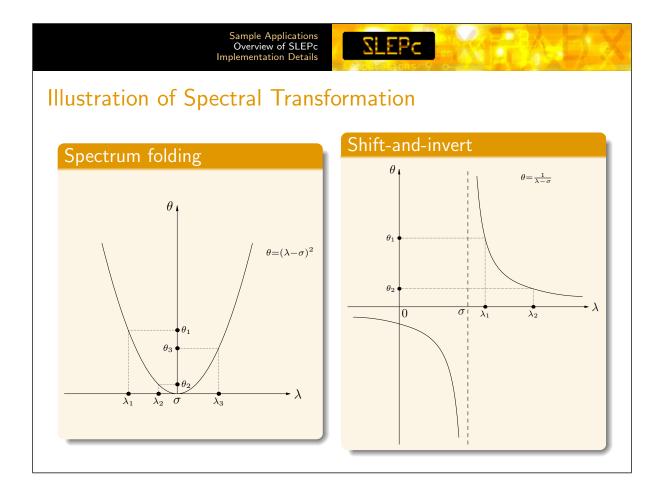


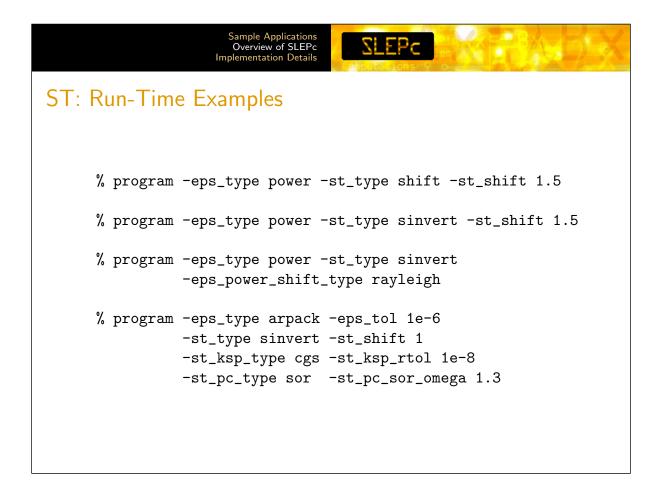


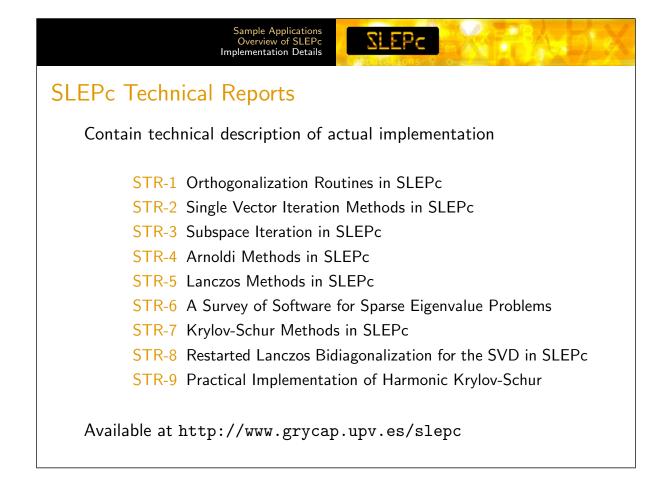




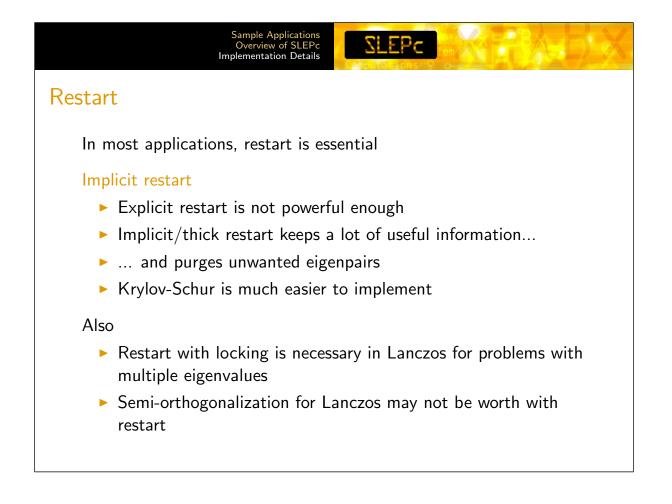


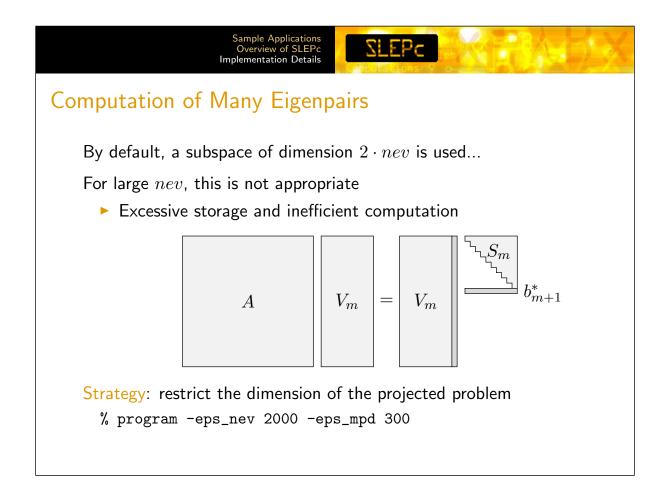






Sample Applications Overview of SLEPc Implementation Details SLEPc Orthogonalization In Krylov methods, we need good quality of orthogonalization Classical GS is not numerically robust Modified GS is bad for parallel computing Modified GS can also be unstable in some cases Solution: iterative $h_{1:j,j} = 0$ Gram-Schmidt repeat $\rho = \|w\|_2$ $c_{1:j,j} = V_j^* w$ Default in SLEPc: $w = w - V_j c_{1:j,j}$ classical GS with selective $h_{1:j,j} = h_{1:j,j} + c_{1:j,j}$ $h_{j+1,j} = \sqrt{\rho^2 - \sum_{i=1}^j c_{i,j}^2}$ reorthogonalization [Hernandez, Tomas, R., until $h_{j+1,j} > \eta \rho$ 2007]





Sample Applications Overview of SLEPc Implementation Details
Stopping Criterion
Krylov methods provide an estimate of the residual norm
$\ r_i\ = \beta_{m+1} s_{m,i} $
The stopping criterion based on the normwise backward errors
$\frac{\ r_i\ }{(a+ \theta_i \cdot b)\ x_i\ } < tol$ where
▶ $a = A , b = B $, or
$\blacktriangleright a = 1, b = 1$
Warning: in shift-and-invert the above residual estimate is for $\ (A - \sigma B)^{-1}Bx_i - \theta_i x_i\ $ In SLEPc we allow for explicit computation of the residual

Preserving the Symmetry

In symmetric-definite generalized eigenproblems symmetry is lost because, e.g., $(A-\sigma B)^{-1}B$ is not symmetric

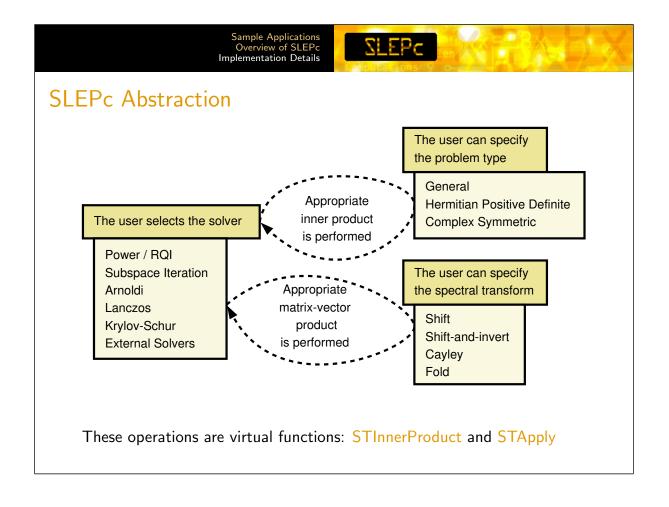
SLEPc

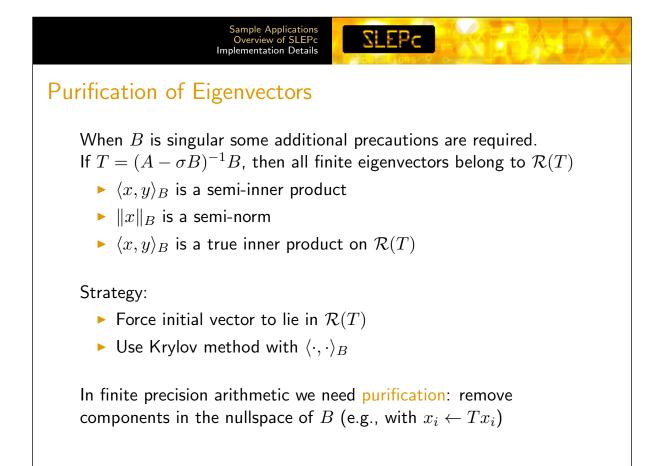
Choice of Inner Product

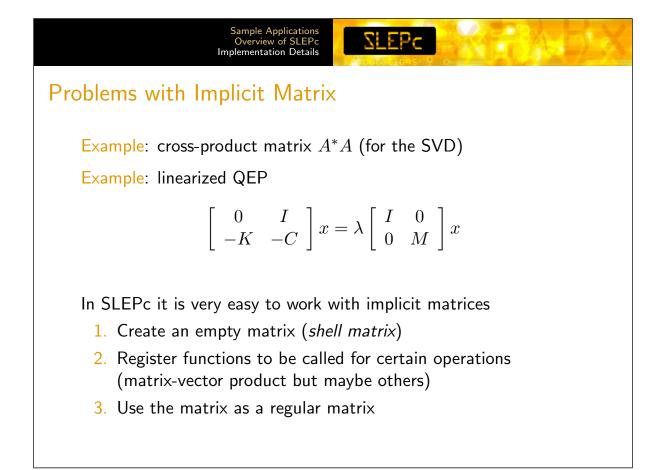
- ▶ Standard Hermitian inner product: $\langle x, y \rangle = y^* x$
- *B*-inner product: $\langle x, y \rangle_B = y^* B x$

Observations:

- $\langle \cdot, \cdot \rangle_B$ is a genuine inner product only if B is symmetric positive definite
- \mathbb{R}^n with $\langle \cdot, \cdot \rangle_B$ is isomorphic to the Euclidean *n*-space \mathbb{R}^n with the standard Hermitian inner product
- $(A \sigma B)^{-1}B$ is self-adjoint with respect to $\langle \cdot, \cdot \rangle_B$







Options for Subspace Expansion

Initial Subspace

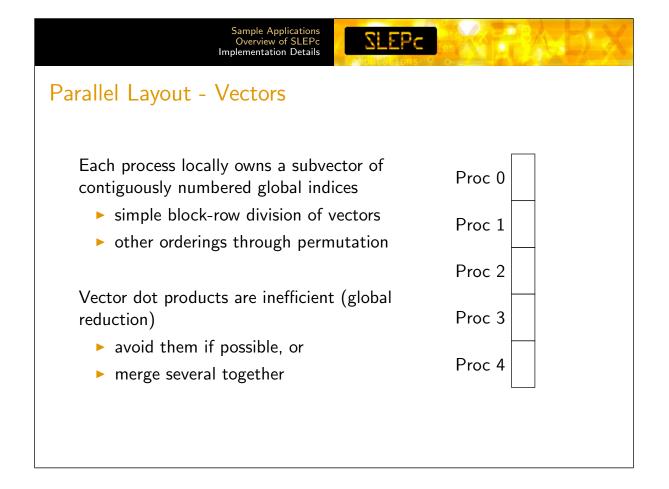
 Provide an initial trial subspace, e.g., from a previous computation (EPSSetInitialSpace)

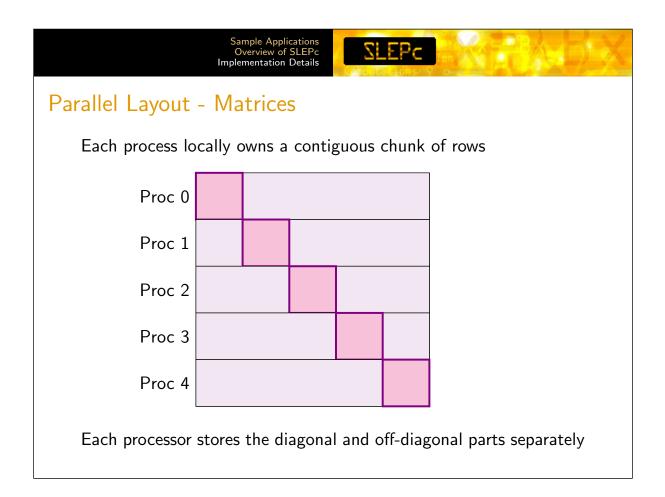
SLEPc

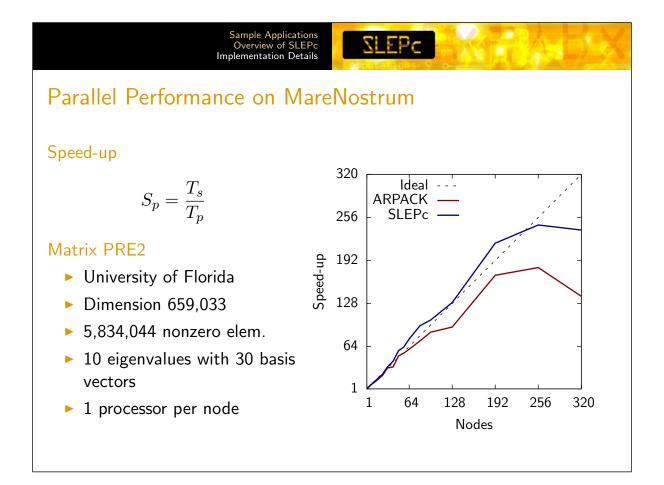
Krylov methods can only use one initial vector

Deflation Subspace

- Provide a deflation space with EPSSetDeflationSpace
- The eigensolver operates in the restriction to the orthogonal complement
- Useful for constrained eigenproblems or problems with a known nullspace
- Currently implemented as an orthogonalization







SLEPc

Wrap Up

SLEPc highlights:

- Free software
- Growing list of solvers
- Seamlessly integrated spectral transformation
- Easy programming with PETSc's object-oriented style
- Data-structure neutral implementation
- Run-time flexibility
- Portability to a wide range of parallel platforms
- ▶ Usable from code written in C, C++, Fortran, Python
- Extensive documentation

Next release: Jacobi-Davidson and QEP solvers

