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Arnoldi Method

Computes a basis Vm of Km(A, v1) and Hm = V ∗
mAVm

for j = 1, 2, . . . ,m
w = Avj
for i = 1, 2, . . . , j

hi,j = v∗iw
w = w − hi,jvi

end
hj+1,j = ‖w‖2
vj+1 = w/hj+1,j

end

Very elegant algorithm, BUT what else is required for addressing
the needs of real applications?
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Eigenproblems

Large-scale eigenvalue problems are among the most demanding
calculations in scientific computing

Example application areas:

I Dynamic structural analysis (e.g. civil engineering)

I Stability analysis (e.g. control engineering)

I Eigenfunction determination (e.g. electromagnetics)

I Bifurcation analysis (e.g. fluid dynamics)

I Information retrieval (e.g. latent semantic indexing)
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Application 1: Molecular Clusters

Goal: Analysis of high-nuclearity spin clusters

I Bulk magnetic properties (magnetic susceptibility and
magnetization)

I Spectroscopic properties (inelastic neutron scattering spectra)

Example: Chain of Ni atoms with antiferromagnetic interaction
(use closed ring to simulate infinite chain; for 10 ions n=59,049)

[Ramos, R., Cardona-Serra, Clemente-Juan, 2010] (submitted)
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Application 2: FE in Schrödinger Equation

Goal: Facilitate the finite-element analysis of the Schrödinger
Equation HΨ = εΨ

I SLEPc together with deal.II finite-element library

Features:

I Automatic mesh creation and adaptive refinement

I Computation of local matrices from a library of element types

I Automatic assembly of system matrices A,B

I Robust computation of energies/eigenstates with SLEPc
(A− εnB)ψ̃n = 0

Initial work: simple harmonic oscillator [Young, Romero, R., 2009]

Long term: Hartree-Fock self-consistent field formalism
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Application 2: FE in Schrödinger Equation (cont’d)

λ = 1 λ = 2 λ = 3

Square domain, discretized with quadrangular Lagrange elements
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Application 3: SIESTA

SIESTA: a parallel code for self-consistent DFT calculations

Generalized
symmetric-definite
problem:
(A− εnB)ψ̃n = 0

Challenges:

I Large number
of eigenpairs

I High
multiplicity -1.1
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Application 4: Structural Dynamics
Smallest eigenfrequencies of Kx = λMx (real symmetric-definite)
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Application 5: Plasma Physics

Plasma turbulence in a tokamak determines its energy confinement

Simulation based on the nonlinear gyrokinetic equations

I GENE parallel code, scalable to 1000’s of processors

I Numerical solution with initial value solver
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Application 5: Plasma Physics (cont’d)

Knowledge of the operator’s spectrum can be useful

Ax = λx

I Complex, non-Hermitian eigenproblem

I The matrix is not built explicitly

I Sizes ranging from a few millions to a billion

Uses:

1. Largest magnitude eigenvalue to estimate
optimal timestep

2. Track sub-dominant instabilities (rightmost
eigenvalues)

[R., Kammerer, Merz, Jenko, 2010]
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Application 6: Nuclear Engineering

Modal analysis of nuclear reactor cores

Objectives:

I Improve safety

I Reduce operation costs

Lambda Modes Equation

Lφ = 1
λMφ

Want modes associated to largest λ

I Criticality (eigenvalues)

I Prediction of instabilities and
transient analysis (eigenvectors)
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Application 6: Nuclear Engineering (cont’d)

Discretized eigenproblem (two energy groups):[
L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1

λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
Can be formulated as

Gψ1 = λψ1 , G = L−1
11 (M11 +M12L

−1
22 L21)

I Matrix should not be computed explicitly

I In some applications, many successive problems are solved

Other modes may be of interest [Verdú, Ginestar, R., Vidal, 2010]

Sample Applications
Overview of SLEPc

Implementation Details

Application 7: Computational Electromagnetics

Analysis of resonant cavities

Source-free wave
equations

∇× (µ̂−1
r ∇× ~E)− κ20ε̂r ~E=0

∇× (ε̂−1
r ∇× ~H)− κ20µ̂r ~H=0

FEM discretization leads to Ax = κ20Bx
Target: smallest nonzero eigenfrequencies (large nullspace)

λ1, λ2, . . . , λk︸ ︷︷ ︸
=0

, λk+1, λk+2︸ ︷︷ ︸
Target

, . . . , λn

Eigenfunctions associated to 0 are irrotational electric fields,
~E = −∇Φ. This allows the computation of a basis of N (A)

Constrained Eigenvalue Problem Ax = κ20Bx
CTBx = 0

}



Sample Applications
Overview of SLEPc

Implementation Details

Facts Observed from the Examples

I Various problem characteristics
I Real/complex, Hermitian/non-Hermitian
I Need to support complex in real arithmetic

I Many formulations
I Standard, generalized, quadratic, non-linear, SVD
I Special cases: implicit matrix, block-structured problems,

constrained problems, structured spectrum

I Wanted solutions
I Usually only a few eigenpairs, but may be many
I Any part of the spectrum (exterior, interior), intervals

I Robustness and usability
I Singular B and other special cases, high multiplicity
I Interoperability (linear solvers, FE), flexibility
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Eigenvalue Problems

Consider the following eigenvalue problems

Standard Eigenproblem

Ax = λx

Generalized Eigenproblem

Ax = λBx

where

I λ is a (complex) scalar: eigenvalue

I x is a (complex) vector: eigenvector

I Matrices A and B can be real or complex

I Matrices A and B can be symmetric (Hermitian) or not

I Typically, B is symmetric positive (semi-) definite
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Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I A few of the dominant eigenvalues (largest magnitude)

I A few λi’s with smallest or largest real parts

I A few λi’s closest to a target value in the complex plane
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Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A+ σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead
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What Users Need

Provided by PETSc

I Abstraction of mathematical objects: vectors and matrices

I Efficient linear solvers (direct or iterative)

I Easy programming interface

I Run-time flexibility, full control over the solution process

I Parallel computing, mostly transparent to the user

Provided by SLEPc

I State-of-the-art eigensolvers (or SVD solvers)

I Spectral transformations
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Summary

PETSc: Portable, Extensible Toolkit for Scientific Computation

Software for the scalable (parallel) solution of algebraic systems
arising from partial differential equation (PDE) simulations

I Developed at Argonne National Lab since 1991

I Usable from C, C++, Fortran77/90

I Focus on abstraction, portability, interoperability

I Extensive documentation and examples

I Freely available and supported through email

http://www.mcs.anl.gov/petsc

Current version: 3.1 (released March 2010)

http://www.mcs.anl.gov/petsc
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Summary

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

I For standard and generalized eigenproblems

I For real and complex arithmetic

I For Hermitian or non-Hermitian problems

Also support for the partial SVD decomposition

http://www.grycap.upv.es/slepc

Current version: 3.0.0 (released Feb 2009)
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PETSc/SLEPc Numerical Components

PETSc

Vectors

Index Sets

Indices Block Indices Stride Other

Matrices

Compressed
Sparse Row

Block Compressed
Sparse Row

Block
Diagonal Dense Other

Preconditioners

Additive
Schwarz

Block
Jacobi

Jacobi ILU ICC LU Other

Krylov Subspace Methods

GMRES CG CGS Bi-CGStab TFQMR Richardson Chebychev Other

Nonlinear Systems

Line
Search

Trust
Region Other

Time Steppers

Euler
Backward

Euler

Pseudo
Time Step Other

SLEPc

SVD Solvers

Cross
Product

Cyclic
Matrix

Lanczos
Thick Res.

Lanczos

Eigensolvers

Krylov-Schur Arnoldi Lanczos Other

Spectral Transform

Shift Shift-and-invert Cayley Fold

http://www.grycap.upv.es/slepc
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EPS: Basic Usage

Usual steps for solving an eigenvalue problem with SLEPc:

1. Create an EPS object

2. Define the eigenvalue problem

3. (Optionally) Specify options for the solution

4. Run the eigensolver

5. Retrieve the computed solution

6. Destroy the EPS object

All these operations are done via a generic interface, common to
all the eigensolvers
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EPS: Simple Example

EPS eps; /* eigensolver context */

Mat A, B; /* matrices of Ax=kBx */

Vec xr, xi; /* eigenvector, x */

PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);

EPSSetOperators(eps, A, B);

EPSSetProblemType(eps, EPS_GNHEP);

EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);

for (i=0; i<nconv; i++) {

EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);
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EPS: Run-Time Examples

% program -eps_view -eps_monitor

% program -eps_type krylovschur -eps_nev 6 -eps_ncv 24

% program -eps_type arnoldi -eps_tol 1e-8 -eps_max_it 2000

% program -eps_type subspace -eps_hermitian -log_summary

% program -eps_type lapack

% program -eps_type arpack -eps_plot_eigs -draw_pause -1

% program -eps_type primme -eps_smallest_real
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EPS: Viewing Current Options

Sample output of -eps view

EPS Object:

problem type: symmetric eigenvalue problem

method: krylovschur

selected portion of spectrum: largest eigenvalues in magnitude

number of eigenvalues (nev): 1

number of column vectors (ncv): 16

maximum dimension of projected problem (mpd): 16

maximum number of iterations: 100

tolerance: 1e-07

dimension of user-provided deflation space: 0

IP Object:

orthogonalization method: classical Gram-Schmidt

orthogonalization refinement: if needed (eta: 0.707100)

ST Object:

type: shift

shift: 0
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Built-in Support Tools

I Plotting computed eigenvalues

% program -eps_plot_eigs

I Printing profiling information

% program -log_summary

I Debugging

% program -start_in_debugger

% program -malloc_dump
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Built-in Support Tools

I Monitoring convergence
(textually)

% program -eps_monitor

I Monitoring convergence
(graphically)

% program -draw_pause 1

-eps_monitor_draw
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Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A+ σI B−1A+ σI
fold (A+ σI)2 (B−1A+ σI)2

sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A+ τI) (A− σB)−1(A+ τB)
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Illustration of Spectral Transformation

Spectrum folding

θ

σ λ
λ1

θ1

λ2

θ2

λ3

θ3

θ=(λ−σ)2

Shift-and-invert
θ

0 σ λ
λ1

θ1

λ2

θ2

θ= 1
λ−σ
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ST: Run-Time Examples

% program -eps_type power -st_type shift -st_shift 1.5

% program -eps_type power -st_type sinvert -st_shift 1.5

% program -eps_type power -st_type sinvert

-eps_power_shift_type rayleigh

% program -eps_type arpack -eps_tol 1e-6

-st_type sinvert -st_shift 1

-st_ksp_type cgs -st_ksp_rtol 1e-8

-st_pc_type sor -st_pc_sor_omega 1.3

Sample Applications
Overview of SLEPc

Implementation Details

SLEPc Technical Reports

Contain technical description of actual implementation

STR-1 Orthogonalization Routines in SLEPc

STR-2 Single Vector Iteration Methods in SLEPc

STR-3 Subspace Iteration in SLEPc

STR-4 Arnoldi Methods in SLEPc

STR-5 Lanczos Methods in SLEPc

STR-6 A Survey of Software for Sparse Eigenvalue Problems

STR-7 Krylov-Schur Methods in SLEPc

STR-8 Restarted Lanczos Bidiagonalization for the SVD in SLEPc

STR-9 Practical Implementation of Harmonic Krylov-Schur

Available at http://www.grycap.upv.es/slepc

http://www.grycap.upv.es/slepc
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Orthogonalization

In Krylov methods, we need good quality of orthogonalization

I Classical GS is not numerically robust

I Modified GS is bad for parallel computing

I Modified GS can also be unstable in some cases

Solution: iterative
Gram-Schmidt

Default in SLEPc:
classical GS with selective
reorthogonalization
[Hernandez, Tomas, R.,

2007]

h1:j,j = 0
repeat

ρ = ‖w‖2
c1:j,j = V ∗

j w

w = w − Vjc1:j,j
h1:j,j = h1:j,j + c1:j,j

hj+1,j =
√
ρ2 −

∑j
i=1 c

2
i,j

until hj+1,j > η ρ
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Restart

In most applications, restart is essential

Implicit restart

I Explicit restart is not powerful enough

I Implicit/thick restart keeps a lot of useful information...

I ... and purges unwanted eigenpairs

I Krylov-Schur is much easier to implement

Also

I Restart with locking is necessary in Lanczos for problems with
multiple eigenvalues

I Semi-orthogonalization for Lanczos may not be worth with
restart
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Computation of Many Eigenpairs

By default, a subspace of dimension 2 · nev is used...

For large nev, this is not appropriate

I Excessive storage and inefficient computation

A Vm = Vm

Sm

b∗m+1

Strategy: restrict the dimension of the projected problem

% program -eps_nev 2000 -eps_mpd 300
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Stopping Criterion

Krylov methods provide an estimate of the residual norm

‖ri‖ = βm+1|sm,i|

The stopping criterion based on the normwise backward errors

‖ri‖
(a+ |θi| · b)‖xi‖

< tol

where

I a = ‖A‖, b = ‖B‖, or

I a = 1, b = 1

Warning: in shift-and-invert the above residual estimate is for
‖(A− σB)−1Bxi − θixi‖
In SLEPc we allow for explicit computation of the residual
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Preserving the Symmetry

In symmetric-definite generalized eigenproblems symmetry is lost
because, e.g., (A− σB)−1B is not symmetric

Choice of Inner Product

I Standard Hermitian inner product: 〈x, y〉 = y∗x

I B-inner product: 〈x, y〉B = y∗B x

Observations:

I 〈·, ·〉B is a genuine inner product only if B is symmetric
positive definite

I Rn with 〈·, ·〉B is isomorphic to the Euclidean n-space Rn
with the standard Hermitian inner product

I (A− σB)−1B is self-adjoint with respect to 〈·, ·〉B
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SLEPc Abstraction

Appropriate
inner product
is performed

Appropriate
matrix-vector

 product
is performed

The user can specify 
the spectral transform

The user can specify 
the problem type

General
Hermitian Positive Definite
Complex Symmetric

Shift
Shift-and-invert
Cayley
Fold

The user selects the solver

Power / RQI
Subspace Iteration
Arnoldi
Lanczos
Krylov-Schur
External Solvers

These operations are virtual functions: STInnerProduct and STApply
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Purification of Eigenvectors

When B is singular some additional precautions are required.
If T = (A− σB)−1B, then all finite eigenvectors belong to R(T )

I 〈x, y〉B is a semi-inner product

I ‖x‖B is a semi-norm

I 〈x, y〉B is a true inner product on R(T )

Strategy:

I Force initial vector to lie in R(T )

I Use Krylov method with 〈·, ·〉B

In finite precision arithmetic we need purification: remove
components in the nullspace of B (e.g., with xi ← Txi)
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Problems with Implicit Matrix

Example: cross-product matrix A∗A (for the SVD)

Example: linearized QEP[
0 I
−K −C

]
x = λ

[
I 0
0 M

]
x

In SLEPc it is very easy to work with implicit matrices

1. Create an empty matrix (shell matrix)

2. Register functions to be called for certain operations
(matrix-vector product but maybe others)

3. Use the matrix as a regular matrix
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Options for Subspace Expansion

Initial Subspace

I Provide an initial trial subspace, e.g., from a previous
computation (EPSSetInitialSpace)

I Krylov methods can only use one initial vector

Deflation Subspace

I Provide a deflation space with EPSSetDeflationSpace

I The eigensolver operates in the restriction to the orthogonal
complement

I Useful for constrained eigenproblems or problems with a
known nullspace

I Currently implemented as an orthogonalization

Sample Applications
Overview of SLEPc

Implementation Details

Parallel Layout - Vectors

Each process locally owns a subvector of
contiguously numbered global indices

I simple block-row division of vectors

I other orderings through permutation

Vector dot products are inefficient (global
reduction)

I avoid them if possible, or

I merge several together
Proc 4

Proc 3

Proc 2

Proc 1

Proc 0
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Parallel Layout - Matrices

Each process locally owns a contiguous chunk of rows

Proc 0

Proc 1

Proc 2

Proc 3

Proc 4

Each processor stores the diagonal and off-diagonal parts separately
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Parallel Performance on MareNostrum

Speed-up

Sp =
Ts
Tp

Matrix PRE2

I University of Florida

I Dimension 659,033

I 5,834,044 nonzero elem.

I 10 eigenvalues with 30 basis
vectors

I 1 processor per node
1

64

128

192

256

320

1 64 128 192 256 320

S
p

ee
d

-u
p

Nodes

Ideal
ARPACK

SLEPc
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Wrap Up

SLEPc highlights:

I Free software

I Growing list of solvers

I Seamlessly integrated spectral transformation

I Easy programming with PETSc’s object-oriented style

I Data-structure neutral implementation

I Run-time flexibility

I Portability to a wide range of parallel platforms

I Usable from code written in C, C++, Fortran, Python

I Extensive documentation

Next release: Jacobi-Davidson and QEP solvers

Sample Applications
Overview of SLEPc

Implementation Details

More Information

Homepage:
http://www.grycap.upv.es/slepc

Hands-on Exercises:
http://www.grycap.upv.es/slepc/handson

Contact email:
slepc-maint@grycap.upv.es

http://www.grycap.upv.es/slepc
http://www.grycap.upv.es/slepc/handson
slepc-maint@grycap.upv.es
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