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Solving large scale eigenvalue problems

Introduction

Introduction: Survey on lecture

1. Introduction (today)
I What makes eigenvalues interesting?
I Some examples.

2. Some linear algebra basics
I Definitions
I Similarity transformations
I Schur decompositions
I SVD
I Jordan normal forms
I Functions of matrices

3. Newton’s method for linear and nonlinear eigenvalue problems

4. The QR Algorithm for dense eigenvalue problems

5. Vector iteration (power method) and subspace iterations
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Solving large scale eigenvalue problems

Introduction

Introduction: Survey on lecture (cont.)
6. Krylov subspaces methods

I Arnoldi and Lanczos algorithms
I Krylov-Schur methods

7. Davidson/Jacobi-Davidson methods

8. Rayleigh quotient minimization for symmetric systems

9. Locally-optimal block preconditioned conjugate gradient
(LOBPCG) method

Lecture notes at
http://people.inf.ethz.ch/arbenz/ewp/lnotes.html
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Solving large scale eigenvalue problems

Introduction

Organization

I 12–13 lectures

I No lecture on April 4 (easter break) and May 30.
I Complementary exercises

I To get hands-on experience
I Based on Matlab

I Examination
I First week of semester break (week of June 4)
I 30’ oral
I No testat required
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Solving large scale eigenvalue problems

Introduction

I Introduction
I What makes eigenvalues interesting?
I Example 1: The vibrating string
I Numerical methods for solving 1-dimensional problems
I Example 2: The heat equation
I Example 3: The wave equation
I The 2D Laplace eigenvalue problem
I (Cavity resonances in particle accelerators)
I Spectral clustering
I Google’s PageRank
I (Other sources of eigenvalue problems)
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Solving large scale eigenvalue problems

What makes eigenvalues interesting?

I In physics, eigenvalues are usually connected to vibrations.
(violin strings, drums, bridges, sky scrapers)
Prominent examples of vibrating structures.

I On November 7, 1940, the Tacoma narrows bridge collapsed,
less than half a year after its opening. Strong winds excited the
bridge so much that the platform in reinforced concrete fell
into pieces.

I A few years ago the London millennium footbridge started
wobbling in a way that it had to be closed. The wobbling had
been excited by the pedestrians passing the bridge, see
https://www.youtube.com/watch?v=eAXVa__XWZ8

I Electric fields in cyclotrons (particle accelerators)

I The solutions of the Schrödinger equation from quantum
physics and quantum chemistry have solutions that correspond
to vibrations of the, say, molecule it models. The eigenvalues
correspond to energy levels that molecule can occupy.
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Solving large scale eigenvalue problems

What makes eigenvalues interesting?

Many characteristic quantities in science are eigenvalues:

I decay factors,

I frequencies,

I norms of operators (or matrices),

I singular values,

I condition numbers.

Notations
Scalars : lowercase letters, a, b, c. . ., and α, β, γ . . ..
Vectors : boldface lowercase letters, a, b, c, . . ..
Matrices : uppercase letters, A, B, C. . ., and Γ,∆,Λ, . . ..
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Solving large scale eigenvalue problems

Example 1: The vibrating string

Example 1: The vibrating string

A vibrating string fixed at both ends.

u

x
L0

u(x,t)

I u(x , t): The
displacement of the rest
position at x , 0 < x < L,
and time t.

I

Assume

∣∣∣∣∂u∂x
∣∣∣∣ is small.

I v(x , t):the velocity of the
string at position x and
at time t.

Large scale eigenvalue problems, Lecture 1, February 21, 2018 9/90



Solving large scale eigenvalue problems

Example 1: The vibrating string

The kinetic energy of a string

The kinetic energy of a string section ds of mass dm = ρ ds:

dT =
1

2
dm v2 =

1

2
ρ ds

(
∂u

∂t

)2

. (1)

ds

dx

I ds2 = dx2 +
(
∂u
∂x

)2
dx2

⇒ ds

dx
=

√
1 +

(
∂u

∂x

)2

= 1 + h.o.t.

h.o.t. = higher order terms.
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Solving large scale eigenvalue problems

Example 1: The vibrating string

The kinetic energy of a string (cont.)
Plugging this into (1) and omitting also the second order term
(leaving just the number 1) gives

dT =
ρ dx

2

(
∂u

∂t

)2

.

The kinetic energy of the whole string:

T =

∫ L

0
dT (x) =

1

2

∫ L

0
ρ(x)

(
∂u

∂t

)2

dx
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Solving large scale eigenvalue problems

Example 1: The vibrating string

The potential energy of the string

1. the stretching times the exerted strain τ ,

τ

∫ L

0
ds − τ

∫ L

0
dx = τ

∫ L

0

√1 +

(
∂u

∂x

)2

− 1

 dx

= τ

∫ L

0

(
1

2

(
∂u

∂x

)2

+ h.o.t.

)
dx

2. exterior forces of density f ,

−
∫ L

0
fudx .

The potential energy of the string:

V =

∫ L

0

(
τ

2

(
∂u

∂x

)2

− fu

)
dx . (2)
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Solving large scale eigenvalue problems

Example 1: The vibrating string

T : kinetic energy
V : potential energy

I (u) =

∫ t2

t1

(T−V ) dt =
1

2

∫ t2

t1

∫ L

0

[
ρ(x)

(
∂u

∂t

)2

− τ
(
∂u

∂x

)2

+ 2fu

]
dx dt

(3)

I u(x , t) is differentiable with respect to x and t

I satisfies the boundary conditions (BC)

u(0, t) = u(L, t) = 0, t1 ≤ t ≤ t2, (4)

I satisfies the initial conditions and end conditions,

u(x , t1) = u1(x),
u(x , t2) = u2(x),

0 < x < L. (5)
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Solving large scale eigenvalue problems

Example 1: The vibrating string

According to the principle of Hamilton a mechanical system behaves in a
time interval t1 ≤ t ≤ t2 for given initial and end positions such that

I =

∫ t2

t1

L dt, L = T − V ,

is minimized.
u(x , t) such that I (u) ≤ I (w) for all w , that satisfy the initial, end, and
boundary conditions.
w = u + ε v with

v(0, t) = v(L, t) = 0, v(x , t1) = v(x , t2) = 0.

v is called a variation. I (u + ε v) a function of ε.

I (u) minimal ⇐⇒ dI
dε (u) = 0 for all admissible v .
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Solving large scale eigenvalue problems

Example 1: The vibrating string

Plugging u + ε v into eq. (3), for all admissible v :

I (u + ε v) =
1

2

t2∫
t1

L∫
0

[
ρ(x)

(
∂(u + ε v)

∂t

)2

− τ
(
∂(u + ε v)

∂x

)2

+ 2f (u + ε v)

]
dx dt

= I (u) + ε

t2∫
t1

L∫
0

[
ρ(x)

∂u

∂t

∂v

∂t
− τ ∂u

∂x

∂v

∂x
+ 2fv

]
dx dt +O(ε2).

(6)

∂I

∂ε
=

∫ t2

t1

∫ L

0

[
ρ
∂2u

∂t2
− τ ∂

2u

∂x2
+ 2 f

]
︸ ︷︷ ︸ v dx dt = 0

Euler-Lagrange equation

− ρ∂
2u

∂t2
+ τ

∂2u

∂x2
= 2 f . (7)
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Solving large scale eigenvalue problems

Example 1: The vibrating string

If the force is proportional to the displacement u(x , t):

−ρ(x)∂
2u
∂t2 + ∂

∂x

(
p(x)∂u

∂x

)
+ q(x)u(x , t) = 0.

u(0, t) = u(1, t) = 0
(8)

which is a special case of the Euler-Lagrange equation.

I ρ(x) > 0 mass density

I p(x) > 0 locally varying elasticity module.

I no initial and end conditions

I no external forces present in (8).

For simplicity assume that ρ(x) = 1.
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Solving large scale eigenvalue problems

The method of separation of variables

To solve (8), we make the ansatz

u(x , t) = v(t)w(x). (9)

With this ansatz (8) becomes

v ′′(t)w(x)− v(t)(p(x)w ′(x))′ − q(x)v(t)w(x) = 0. (10)

separate the variables depending on t from those depending on x ,

v ′′(t)

v(t)
=

1

w(x)
(p(x)w ′(x))′ + q(x) = −λ︸ ︷︷ ︸

Sturm–Liouville problem

for any t and x

−v ′′(t) = λv(t)⇐⇒ v(t) = a · cos(
√
λt) + b · sin(

√
λt), λ > 0
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Solving large scale eigenvalue problems

The method of separation of variables

Sturm–Liouville problem

−(p(x)w ′(x))′ + q(x)w(x) = λw(x), w(0) = w(1) = 0.

(11)

I A value λ has a non-trivial solution w

I λ is called an eigenvalue;

I w is a corresponding eigenfunction.

I All eigenvalues of (11) are positive.

I (11) has infinitely many real positive eigenvalues
0 < λ1 ≤ λ2 ≤ · · · , (λk −→

k→∞
∞)

I has a non-zero solution, wk(x), only for these particular values
λk .
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Solving large scale eigenvalue problems

The method of separation of variables

Solution of Euler-Lagrange Equation (8)

u(x , t) = w(x)
[
a · cos(

√
λt) + b · sin(

√
λt)
]

wk(x) for the particular values λk

u(x , t) =
∞∑
k=0

wk(x)
[
ak · cos(

√
λk t) + bk · sin(

√
λk t)

]
. (12)

The coefficients ak and bk are determined by initial and end
conditions. u0 and u1 are given functions.

u(x , 0) =
∞∑
k=0

akwk(x) = u0(x),

∂u

∂t
(x , 0) =

∞∑
k=0

√
λk bkwk(x) = u1(x),
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Solving large scale eigenvalue problems

The method of separation of variables

I wk form an orthogonal basis in the space of square integrable
functions L2(0, 1). Therefore, it is not difficult to compute the
coefficients ak and bk .

I In concluding, we see that the difficult problem to solve is the
eigenvalue problem (11). Knowing the eigenvalues and
eigenfunctions the general solution of the time-dependent
problem (8) is easy to form.

I Eq. (11) can be solved analytically only in very special
situations, e.g., if all coefficients are constants. In general a
numerical method is needed to solve the Sturm–Liouville
problem (11).
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Numerical methods for solving 1-dimensional problems

Three methods to solve the Sturm–Liouville problem

−(p(x)w ′(x))′ + q(x)w(x) = λw(x)

with homogeneous Dirichlet boundary conditions

w(0) = w(1) = 0.

1. Finite difference method

2. The finite element method

3. Global functions
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Finite differences

Approximate w(x) by its values at the discrete points xi = ih,
h = 1/(n + 1), i = 1, . . . , n.

x

L0 x x x
i−1 i i+1

At point xi we approximate the derivatives by finite differences.

d

dx
g(xi ) ≈

g(xi+ 1
2
)− g(xi− 1

2
)

h
.

For g = p dw
dx we get

g(xi+ 1
2
) = p(xi+ 1

2
)
w(xi+1)− w(xi )

h
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Finite differences

− d

dx

(
p
dw

dx
(xi )

)
≈ −1

h

[
p(xi+ 1

2
)
w(xi+1)− w(xi )

h
− p(xi− 1

2
)
w(xi )− w(xi−1)

h

]
=

1

h2

[
−p(xi− 1

2
)wi−1 + (p(xi− 1

2
) + p(xi+ 1

2
))wi − p(xi+ 1

2
)wi+1

]
.

At the interval endpoints w0 = wn+1 = 0.
In a matrix equation,

p(x 1
2
) + p(x 3

2
)

h2 + q(x1) −
p(x 3

2
)

h2

−
p(x 3

2
)

h2

p(x 3
2
) + p(x 5

2
)

h2 + q(x2) −
p(x 5

2
)

h2

−
p(x 5

2
)

h2

. . .
. . .




w1

w2

w3

...
wn

 = λ


w1

w2

w3

...
wn

 ,

Aw = λw. (13)
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Finite differences

I A is symmetric and tridiagonal.

I A is positive definite as well.

I A has just a few nonzeros: out of the n2 elements of A only
3n − 2 are nonzero. This is a first example of a sparse matrix.
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

The finite element method

The finite element method

Find a twice differentiable function w with w(0) = w(1) = 0∫ 1

0

[
−(p(x)w ′(x))′ + q(x)w(x)− λw(x)

]
φ(x)dx = 0

for all smooth functions φ that satisfy φ(0) = φ(1) = 0.

Integrate by parts and get the weak form of the problem:

Find a differentiable function w with w(0) = w(1) = 0∫ 1

0

[
p(x)w(x)′φ′(x) + q(x)w(x)φ(x)− λw(x)φ(x)

]
dx = 0

(14)
for all differentiable functions φ that satisfy φ(0) = φ(1) = 0.
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

The finite element method

The finite element method (cont.)
A basis function of the finite element space: a hat function.

x

L0 x x x
i−1 i i+1

1Ψ
i

The linear combination of w(x) =
n∑

i=1

ξi ψi (x)

ψi (x) =

(
1− |x − xi |

h

)
+

= max{0, 1− |x − xi |
h
}, (15)

is the function that is linear in each interval (xi , xi+1) and satisfies

ψi (xk) = δik :=

{
1, i = k ,
0, i 6= k .
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

The finite element method

The finite element method (cont.)
I replace w by the linear combination

∑
ξi ψi (x)

I replace testing ‘against all φ’ by testing against all ψj

Weak form becomes∫ 1

0

(
−p(x)(

n∑
i=1

ξi ψ
′
i (x))ψ′j (x) + (q(x)− λ)

n∑
i=1

ξi ψi (x)ψj(x)

)
dx , for all j ,

n∑
i=1

ξi

∫ 1

0

(
p(x)ψ′i (x)ψ′j (x) + (q(x)− λ)ψi (x)ψj(x)

)
dx = 0, for all j .

(16)

Rayleigh–Ritz–Galerkin equations.
Unknows: n values ξi and the eigenvalue λ.
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

The finite element method

The finite element method (cont.)
In matrix notation

Ax = λMx (17)

aij =

∫ 1

0

(
p(x)ψ′iψ

′
j + q(x)ψiψj

)
dx and mij =

∫ 1

0
ψiψj dx

For the specific case p(x) = 1 + x and q(x) = 1:

akk =

∫ kh

(k−1)h

[
(1 + x)

1

h2
+

(
x − (k − 1)h

h

)2
]
dx

+

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(
(k + 1)h − x

h

)2
]
dx = 2(n + 1 + k) +

2

3

1

n + 1

ak,k+1 =

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(k + 1)h − x

h
· x − kh

h

]
dx = −n − 3

2
− k +

1

6

1

n + 1
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

The finite element method

The finite element method (cont.)
We get:

M =
1

6(n + 1)


4 1

1 4
. . .

. . .
. . . 1
1 4


A and M are symmetric tridiagonal and positive definite.
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Global functions

Global functions

Choose the ψk(x) in the weak form (16) to be functions with
global support

I differentiable

I satisfy the homogeneous boundary conditions

(The support of a function f is the set of arguments x for which f (x) 6= 0.)

ψk(x) = sin kπx ,

ψk are eigenfunctions of the ‘nearby’ problem

−u′′(x) = λu(x), u(0) = u(1) = 0,

corresponding to the eigenvalue λk = k2π2.
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

Global functions

Global functions (cont.)
The elements of matrix A are given by

akk =

∫ 1

0

[
(1 + x)k2π2 cos2 kπx + sin2 kπx

]
dx =

3

4
k2π2 +

1

2
,

akj =

∫ 1

0

[
(1 + x)kjπ2 cos kπx cos jπx + sin kπx sin jπx

]
dx

=
kj(k2 + j2)((−1)k+j − 1)

(k2 − j2)2
, k 6= j .
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

A numerical comparison

A numerical comparison: 1D eigenvalue problem

−((1 + x)w ′(x))′ + w(x) = λw(x)

w(0) = w(1) = 0

solve it with 3 different methods.

1. Finite differences

2. The finite element method

3. Global functions
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

A numerical comparison

Numerical solutions of problem

Finite difference method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.245 15.312 15.331 15.336
2 56.918 58.048 58.367 58.451
3 122.489 128.181 129.804 130.236
4 206.419 224.091 229.211 230.580
5 301.499 343.555 355.986 359.327
6 399.367 483.791 509.358 516.276
7 492.026 641.501 688.398 701.185
8 578.707 812.933 892.016 913.767
9 672.960 993.925 1118.969 1153.691

10 794.370 1179.947 1367.869 1420.585
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

A numerical comparison

Numerical solutions of problem (cont.)

Finite element method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.447 15.367 15.345 15.340
2 60.140 58.932 58.599 58.511
3 138.788 132.657 130.979 130.537
4 257.814 238.236 232.923 231.531
5 426.223 378.080 365.047 361.648
6 654.377 555.340 528.148 521.091
7 949.544 773.918 723.207 710.105
8 1305.720 1038.433 951.392 928.983
9 1702.024 1354.106 1214.066 1178.064

10 2180.159 1726.473 1512.784 1457.733
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

A numerical comparison

Numerical solutions of problem (cont.)

Global function method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.338 15.338 15.338 15.338
2 58.482 58.480 58.480 58.480
3 130.389 130.386 130.386 130.386
4 231.065 231.054 231.053 231.053
5 360.511 360.484 360.483 360.483
6 518.804 518.676 518.674 518.674
7 706.134 705.631 705.628 705.628
8 924.960 921.351 921.344 921.344
9 1186.674 1165.832 1165.823 1165.822

10 1577.340 1439.083 1439.063 1439.063
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Solving large scale eigenvalue problems

Numerical methods for solving 1-dimensional problems

A numerical comparison

Numerical solutions of problem (cont.)
I The global function method is the most powerful of them all.

The convergence rate is exponential.

I With the finite difference and finite element methods the
eigenvalues exhibit quadratic convergence rates.
If the mesh width h is reduced by a factor of q = 2, the error
in the eigenvalues is reduced by the factor q2 = 4.

(Note thate there are higher order finite difference and finite element

methods that give rise to higher convergence rates.)
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Solving large scale eigenvalue problems

Example 2: The heat equation

Example 2: The heat equation

u(x, t) : The instationary temperature distribution in an insulated
container

∂u(x, t)

∂t
−∆u(x, t) = 0, x ∈ Ω, t > 0,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(18)

Ω is a 3-dimensional domain with boundary ∂Ω.
∂u
∂n : the derivative of u in direction of the outer normal vector n
u0(x), x = (x1, x2, x3)T ∈ R3, is a given bounded, sufficiently
smooth function.
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Solving large scale eigenvalue problems

Example 2: The heat equation

Laplace operator: ∆u =
∑ ∂2u

∂xi
2

Method of separation of variables:

u(x, t) = v(t)w(x).

If a constant λ can be found such that

∆w(x) + λw(x) = 0, w(x) 6= 0, x in Ω,

∂w(x, t)

∂n
= 0, x on ∂Ω,

(19)

the product u = vw is a solution if and only if

dv(t)

dt
+ λv(t) = 0,
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Solving large scale eigenvalue problems

Example 2: The heat equation

If λn is an eigenvalue with corresponding eigenfunction wn, then

e−λntwn(x)

is a solution of the first two equations in (18).
Infinitely many real eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · , (λn −→

t→∞
∞).

An arbitrary bounded piecewise continuous function can be
represented as a linear combination of the eigenfunctions
w1,w2, . . ..
The solution

u(x, t) =
∞∑
n=1

cne
−λntwn(x),

where the coefficients cn are determined by the initial conditions

u0(x) =
∞∑
n=1

cnwn(x).
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Example 2: The heat equation

The smallest eigenvalue is λ1 = 0 with w1 = 1 and λ2 > 0. We
can see that

u(x, t) −→
t→∞

c1.

The convergence rate towards this equilibrium is determined by the
smallest positive eigenvalue λ2 of (19):

‖u(x, t)− c1‖ = ‖
∞∑
n=2

cne
−λntwn(x)‖ ≤

∞∑
n=2

|e−λnt |‖cnwn(x)‖

≤ e−λ2t
∞∑
n=2

‖cnwn(x)‖ ≤ e−λ2t‖u0(x)‖.

Note: we have assumed that the value of the constant function w1(x) is

set to unity.
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Example 3: The wave equation

Example 3: The wave equation

u(x, t): air pressure in a volume with acoustically “hard” walls

∂2u(x, t)

∂t2
−∆u(x, t) = 0, x ∈ Ω, t > 0, (20)

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0, (21)

u(x, 0) = u0(x), x ∈ Ω, (22)

∂u(x, 0)

∂t
= u1(x), x ∈ Ω. (23)

Sound propagates with speed −∇u, along the (negative) gradient
from high to low pressure.
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Example 3: The wave equation

Example 3: The wave equation (cont.)
Separation of variables leads again to equation (19) but now
together with

d2v(t)

dt2
+ λv(t) = 0. (24)

The general solution of the wave equation has the form

u(x , t) =
∞∑
k=0

wk(x)
[
ak · cos(

√
λk t) + bk · sin(

√
λk t)

]
. (12)

where the wk , k = 1, 2, . . ., are the eigenfunctions of the
eigenvalue problem (19). The coefficients ak and bk are
determined by (22) and (23).
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Example 3: The wave equation

Inhomogeneous problem

If a harmonic oscillation is forced on the system, an
inhomogeneous problem is obtained,

∂2u(x, t)

∂t2
−∆u(x, t) = f (x, t). (25)

The boundary and initial conditions are taken from (20)–(23). This
problem can be solved by setting

u(x, t) :=
∞∑
n=1

ṽn(t)wn(x),

f (x, t) :=
∞∑
n=1

φn(t)wn(x).

(26)

Large scale eigenvalue problems, Lecture 1, February 21, 2018 43/90



Solving large scale eigenvalue problems

Example 3: The wave equation

Inhomogeneous problem (cont.)
=⇒ ṽn has to satisfy equation

d2ṽn
dt2

+ λnṽn = φn(t). (27)

If φn(t) = a sinωt, then the solution becomes

ṽn = An cos
√
λnt + Bn sin

√
λnt +

1

λn − ω2
a sinωt. (28)

An and Bn are real constants determined by the initial conditions.

I If ω gets close to
√
λn, then the last term can be very large.

I If ω =
√
λn, ṽn gets the form

ṽn = An cos
√
λnt + Bn sin

√
λnt + at sinωt. (29)
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Example 3: The wave equation

Inhomogeneous problem (cont.)
ṽn is not bounded in time =⇒ is called resonance.
Remark: Vibrating membranes satisfy the wave equation. If the
membrane (of a drum) is fixed at its boundary, the condition
u(x, t) = 0 is called Dirichlet boundary conditions.
Boundary Conditions:

u(x, t) = gD(x), ⇒ Dirichlet boundary conditions

∂u(x, t)

∂n
= gN(x), ⇒ Neumann boundary conditions

αu + β
∂u

∂n
= g , ⇒ Mixed or Cauchy or Robin boundary conditions
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The 2D Laplace eigenvalue problem

The 2D Laplace eigenvalue problem

−∆u(x) = λu(x), x ∈ Ω, (30)

with the more general boundary conditions

u(x) = 0, x ∈ C1 ⊂ ∂Ω, (31)

∂u

∂n
(x) + α(x)u(x) = 0, x ∈ C2 ⊂ ∂Ω. (32)

C1 and C2 are disjoint subsets of ∂Ω with C1 ∪ C2 = ∂Ω.
In general not possible to solve exactly → numerical approx.
Two methods for the discretization of eigenvalue problems:

I Finite Difference Method

I Finite Element Method
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The finite difference method

The finite difference method

For simplicity, assume that the domain Ω is a square with sides of
length 1: Ω = (0, 1)× (0, 1). The eigenvalue problem

−∆u(x , y) = λu(x , y), 0 < x , y < 1

u(0, y) = u(1, y) = u(x , 0) = 0, 0 < x , y < 1,

∂u
∂n (x , 1) = 0, 0 < x < 1.

(33)

This eigenvalue problem

I occurs in the computation of eigenfrequencies and eigenmodes
of a homogeneous quadratic membrane with three fixed and
one free side.

I can be solved analytically by separation of the two spatial
variables x and y .
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The 2D Laplace eigenvalue problem

The finite difference method

The finite difference method (cont.)
The eigenvalues are

λk,l =

(
k2 +

(2l − 1)2

4

)
π2, k , l ∈ N,

and the corresponding eigenfunctions are

uk,l(x , y) = sin kπx sin
2l − 1

2
πy .

Define a rectangular grid with grid points (xi , yj), 0 ≤ i , j ≤ N.
The coordinates of the grid points are

(xi , yj) = (ih, jh), h = 1/N.
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The 2D Laplace eigenvalue problem

The finite difference method

The finite difference method (cont.)
By a Taylor expansion, for sufficiently smooth functions u

−∆u(x , y) =
1

h2
(4u(x , y)−u(x−h, y)−u(x+h, y)−u(x , y−h)−u(x , y+h))+O(h2)

At the interior grid points

4ui ,j−ui−1,j−ui+1,j−ui ,j−1−ui ,j+1 = λh2ui ,j , 0 < i , j < N. (34)

ui ,j ≈ u(xi , xj)

The Dirichlet boundary conditions are replaced by the equations

ui ,0 = ui ,N = u0,i , 0 < i < N. (35)
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The 2D Laplace eigenvalue problem

The finite difference method

The finite difference method (cont.)
At the points at the upper boundary of Ω:

4ui ,N − ui−1,N − ui+1,N − ui ,N−1 − ui ,N+1 = λh2ui ,N , 0 ≤ i ≤ N.
(36)

ui ,N+1: a grid point outside of the domain
The Neumann boundary conditions suggest to reflect the domain
at the upper boundary and to extend the eigenfunction
symmetrically beyond the boundary. ui ,N+1 = ui ,N−1.
Plugging it and multiply the new equation by the factor 1/2 gives

2ui ,N−
1

2
ui−1,N−

1

2
ui+1,N−ui ,N−1 =

1

2
λh2ui ,N , 0 < i < N. (37)
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The 2D Laplace eigenvalue problem

The finite difference method

The finite difference method (cont.)
The matrix equation

4 −1 0 −1
−1 4 −1 0 −1

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0 −1
−1 0 −1 4 −1 0 −1

−1 0 −1 4 0 0 −1

−1 0 0 2 − 1
2

0

−1 0 − 1
2

2 − 1
2

−1 0 − 1
2

2





u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3
u4,1
u4,2
u4,3



= λh2



1
1

1
1

1
1

1
1

1
1
2

1
2

1
2





u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3
u4,1
u4,2
u4,3



.

(38)
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The 2D Laplace eigenvalue problem

The finite difference method

Matrix Eigenvalue Problem

For arbitrary N > 1,

ui :=


ui,1
ui,2

...
ui,N−1

 ∈ RN−1,

T :=


4 −1

−1 4
. . .

. . .
. . . −1
−1 4

 ∈ R(N−1)×(N−1),

I :=


1

1
. . .

1

 ∈ R(N−1)×(N−1).
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The 2D Laplace eigenvalue problem

The finite difference method

Matrix Eigenvalue Problem (cont.)

The discrete eigenvalue problem of size N × (N − 1).
T −I

−I T
. . .

. . .
. . . −I
−I 1

2T




u1
...

u3

u4

 = λh2


I

. . .

I
1
2 I




u1
...

uN−1

uN


Matrix eigenvalue problem:

A︸︷︷︸
symmetric

x = λ M︸︷︷︸
SPD

x,

SPD: Symmetric Positive Definite
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The 2D Laplace eigenvalue problem

The finite difference method

Matrix Eigenvalue Problem (cont.)
M is identity matrix ⇒ special (generalized) eigenvalue problem.

Special (symmetric) eigenvalue problem: (39) left multiplication by
I

I
I √

2I




T −I
−I T −I

−I T −
√

2I

−
√

2I T




u1

u2

u3
1√
2
u4

 = λh2


u1

u2

u3
1√
2
u4

 .

A property common to matrices obtained by the finite difference
method are its sparsity.
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The 2D Laplace eigenvalue problem

The finite difference method

(Ir)regular domains

I If the shapes of the domains get complicated

I If the boundary is not aligned with the coordinate axes

Finite Difference Method can be difficult to implement

⇓

Finite Element Methods
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The finite element method (FEM)

(λ, u) ∈ R× V an eigenpair of 2D Laplace eigenvalue problem∫
Ω

(∆u + λu)v dx dy = 0, ∀v ∈ V , (39)

where V is vector space of bounded twice differentiable functions
that satisfy the boundary conditions (31)–(32). By partial
integration (Green’s formula) this becomes∫

Ω
∇u∇v dx dy +

∫
∂Ω
α u v ds = λ

∫
Ω
u v dx dy , ∀v ∈ V , (40)

or
a(u, v) = (u, v), ∀v ∈ V (41)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The finite element method (FEM) (cont.)
where

a(u, v) =

∫
Ω

∇u∇v dx dy+

∫
∂Ω

α u v ds, and (u, v) =

∫
Ω
u v dx dy .

We complete the space V with respect to the Sobolev norm√∫
Ω

(u2 + |∇u|2) dx dy

to become a Hilbert space H. H is the space of quadratic
integrable functions with quadratic integrable first derivatives that
satisfy the Dirichlet boundary conditions (31)

u(x , y) = 0, (x , y) ∈ C1.

Large scale eigenvalue problems, Lecture 1, February 21, 2018 57/90



Solving large scale eigenvalue problems

The 2D Laplace eigenvalue problem

The finite element method (FEM)

The finite element method (FEM) (cont.)
(Functions in H in general do not satisfy the so-called natural
boundary conditions (32).) One can show that the eigenvalue
problem (30)–(32) is equivalent with the eigenvalue problem

Find (λ, u) ∈ R× H such that
a(u, v) = λ(u, v) ∀v ∈ H.

(42)

(The essential point is to show that the eigenfunctions of (42) are

elements of V .)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The Rayleigh–Ritz–Galerkin method

A set of linearly independent functions

φ1(x , y), · · · , φn(x , y) ∈ H, (43)

These functions span a subspace S of H.
The problem (42) is solved where H is replaced by S .

Find (λ, u) ∈ R× S such that
a(u, v) = λ(u, v) ∀v ∈ S .

(44)

With the Ritz ansatz

u =
n∑

i=1

xiφi , (45)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The Rayleigh–Ritz–Galerkin method (cont.)
equation (44) becomes

Find (λ, x) ∈ R× Rn such that
n∑

i=1
xia(φi , v) = λ

n∑
i=1

xi (φi , v), ∀v ∈ S .
(46)

Eq. (46) must hold for all v ∈ S , in particular for v = φ1, · · · , φn.
But since the φi , 1 ≤ i ≤ n, form a basis of S , equation (46) is
equivalent with

n∑
i=1

xia(φi , φj) = λ
n∑

i=1

xi (φi , φj), 1 ≤ j ≤ n. (47)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The Rayleigh–Ritz–Galerkin method (cont.)
This is a matrix eigenvalue problem of the form

Ax = λMx (48)

where

x =

 x1
...
xn

 , A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 , M =

 m11 · · · m1n
...

. . .
...

mn1 · · · mnn


(49)

with the stiffness matrix

aij = a(φi , φj) =

∫
Ω
∇φi ∇φj dx dy +

∫
∂Ω
αφi φj ds
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

The Rayleigh–Ritz–Galerkin method (cont.)
and the mass matrix

mij = (φi , φj) =

∫
Ω
φi φj dx dy .

The finite element method (FEM) is a special case of the
Rayleigh–Ritz method. In the FEM the subspace S and in
particular the basis {φi} is chosen in a particularly clever way. For
simplicity we assume that the domain Ω is a simply connected
domain with a polygonal boundary, cf. Fig 63. (This means that
the boundary is composed entirely of straight line segments.)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Triangulation

Triangulation of a domain Ω
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Triangulation (cont.)
This domain is partitioned into triangular subdomains T1, · · · ,TN ,
so-called elements, such that

Ti ∩ Tj = ∅ for all i 6= j , and
⋃
e

Te = Ω. (50)

Finite element spaces for solving (30)–(32) are typically composed
of functions that are continuous in Ω and are polynomials on the
individual subdomains Te . Such functions are called piecewise
polynomials. Notice that this construction provides a subspace of
the Hilbert space H but not of V , i.e., the functions in the finite
element space are not very smooth and the natural boundary
conditions are not satisfied.
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Basis functions

The selection of the basis of the finite element space S . S1 ⊂ H is
the space of continuous piecewise linear polynomials.

7
9

21
1411

15 19 23 26

17 20 24 27
29

28

25
22

18

12

8

4

16

13

10

6

3

5
2

1

I Nodes, except those on the
boundary portion C1, are
numbered from 1 to n.

I The coordinates of the i-th
node be (xi , yi ).
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Basis functions (cont.)
φi (x , y) ∈ S1 is defined by

φi ((xj , yj)) := δij =

{
1 i = j
0 i 6= j

(51)

A typical basis function φi :
A piecewise linear basis function (or hat function)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Basis functions (cont.)
Another often used finite element element space is S2 ⊂ H, the
space of continuous, piecewise quadratic polynomials. These
functions are (or can be) uniquely determined by their values at
the vertices and edge midpoints of the triangle.
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Basis functions (cont.)
One immediately sees that for most i 6= j

a(φi , φj) = 0, (φi , φj) = 0. (52)

The matrices A and M in (48) will be sparse. The matrix M is
positive definite as

xTMx =
N∑

i ,j=1

xixjmij =
N∑

i ,j=1

xixj(φi , φj) = (u, u) > 0,

u =
N∑
i=1

xiφi 6= 0,

(The φi are linearly independent and ||u|| =
√

(u, u) is a norm.)
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The 2D Laplace eigenvalue problem

The finite element method (FEM)

Basis functions (cont.)
Similarly it is shown that

xTAx ≥ 0.

It is possible to have xTAx = 0 for a nonzero vector x. This is the
case if the constant function u = 1 is contained in S . This happens
if Neumann boundary conditions ∂u

∂n = 0 are posed on the whole
boundary ∂Ω. Then,

u(x , y) = 1 =
∑
i

φi (x , y),

i.e., we have xTAx = 0 for x = [1, 1, . . . , 1].
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The 2D Laplace eigenvalue problem

A numerical example

A numerical example: acoustic vibration problem

I Determine the acoustic eigenfrequencies and corresponding
modes in the interior of a car.

I Interest in the manufacturing of cars, since an appropriate
shape of the form of the interior can suppress the often
unpleasant droning of the motor.

I The problem is 3D, but by separation of variables the problem
can be reduced to 2D.

I If rigid, acoustically hard walls are assumed, the mathematical
model of the problem is again the Laplace eigenvalue
problem (19) together with Neumann boundary conditions.
The domain is given in Fig. 70 where three finite element
triangulations are shown with 87 (grid1), 298 (grid2), and
1095 (grid3) vertices (nodes), respectively.
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The 2D Laplace eigenvalue problem

A numerical example

A numerical example: acoustic vibration problem (cont.)
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The 2D Laplace eigenvalue problem

A numerical example

Numerical solutions of acoustic vibration problem

I the quadratic convergence rate

I The smallest eigenvalue is always zero.

I The corresponding eigenfunction is the constant function.

Finite element method

k λk(grid1) λk(grid2) λk(grid3)

1 0.0000 -0.0000 0.0000
2 0.0133 0.0129 0.0127
3 0.0471 0.0451 0.0444
4 0.0603 0.0576 0.0566
5 0.1229 0.1182 0.1166
6 0.1482 0.1402 0.1376
7 0.1569 0.1462 0.1427
8 0.2162 0.2044 0.2010
9 0.2984 0.2787 0.2726

10 0.3255 0.2998 0.2927
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The 2D Laplace eigenvalue problem

A numerical example

Fourth eigenmode of the acoustic vibration problem

 

 

−0.1

−0.05

0

0.05

The difference of the pressure at a given location to the normal
pressure. Large amplitudes means that the corresponding noise is
very well noticable.
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Spectral clustering

Spectral clustering

Goal: group a given set of data points x1, . . . , xn into k clusters
such that members from the same cluster are (in some sense) close
to each other and members from different clusters are (in some
sense) well separated from each other.

A popular approach to clustering =⇒ similarity graphs.

s(xi , xj) ≥ 0 between pairs of data points xi and xj .

An undirected graph G = (V ,E ) : V = {x1, . . . , xn}.

Two vertices xi , xj are connected by an edge if the similarity sij
between xi and xj is sufficiently large.

A weight wij > 0 is assigned to the edge, depending on sij .
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Spectral clustering

Spectral clustering (cont.)
If two vertices are not connected we set wij = 0. The weights are
collected into a weighted adjacency matrix

W = (wij)
n
i ,j=1 .

fully connected graph wij = s(xi , xj).
Usually, this will only result in reasonable clusters if the
similarity function models locality very well, e.g.,

s(xi , xj) = exp
(
− ‖xi−xj‖2

2σ2

)
k-nearest neighbors xi , xj are connected if xi is among the

k-nearest neighbors of xj or if xj is among the k-nearest
neighbors of xi (then use wij = s(xi , xj)).

ε-neighbors xi , xj are connected if their pairwise distance is
smaller than ε for some ε > 0. Then, e.g., wij = 1.
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Spectral clustering

Graph Laplacian

Let W be symmetric. Degree of vertex xi : di =
n∑

j=1
wij .

Let D = diag(d1, d2, . . . , dn). Then the graph Laplacian is defined
as

L = D −W .

I The graph Laplacian has at least one zero eigenvalue.

I There is one zero eigenvalue per disconnected component of
the graph.
Eigenvectors = indicator vectors χVi

, of the components.

I Do not use the zero eigenvalues to determine the (number of)
connected components.
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Spectral clustering

Spectral clustering

We cannot simply compute the eigenvectors corresponding to the
zero eigenvalues because

1. The eigenvectors would be mixed up.
An eigensolver would give us U = (v1, . . . , vk)Q

2. Don’t want to compute disconnected components anyway.

To find clusters we compute an eigenbasis belonging to the k
smallest eigenvalues.
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Spectral clustering

Spectral clustering (cont.)
Example: m = 50; randn(’state’,0);

x = [2+randn(m,1)/4;4+randn(m,1)/4;6+randn(m,1)/4;8+randn(m,1)/4];
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Histogram of the distribution of the entries of x and the
eigenvalues of the graph Laplacian for the fully connected similarity
graph with similarity function s(xi , xj) = exp

(
−|xi − xj |2/2

)
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Spectral clustering

Spectral clustering (cont.)
Eigenvectors of the graph Laplacian (4 smallest eigenvalues)
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To solve the issue that the eigenbasis may be transformed by an
arbitrary orthogonal matrix, we “transpose” the basis and consider
the row vectors of U:
UT =

(
u1,u2, . . . ,un

)
, ui ∈ Rk .

If U contained indicator vectors then each of the short vectors ui

would be a unit vector ej for some 1 ≤ j ≤ k .
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Spectral clustering

Spectral clustering (cont.)
Now apply k-means clustering:

1. Compute cluster centers c` as cluster means:

c` =
∑

i in cluster `

ui

/ ∑
i in cluster `

1.

2. Assign each ui to the cluster with the nearest cluster center.

3. Goto Step 1.

The algorithm is stopped when the assigned clusters do not change
in an iteration.
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Spectral clustering (cont.)
Example: continued:
The k-means algorithm applied to the previous eigenbasis
converges in 2 iteration steps and results in the following clustering:

2 4 6 8
1
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2
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Data points
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Google’s page rank

I One of the reasons why Google is such an effective search
engine is the PageRank that determines the importance of a
web page.

I PageRank is determined entirely by the link structure of the
World Wide Web.

I Then, for any particular query, Google finds the pages on the
Web that match that query and lists those pages in the order
of their PageRank.

I Let’s imagine a surfer going from page to page by randomly
choosing an outgoing link from one page to get to the next.
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Google’s page rank (cont.)

I To escape dead ends, a random page of the web is chosen.

I To avoid cycles, at a fraction of time, a random page of the
web is chosen.

I This theoretical random walk is known as a Markov chain or
Markov process.
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Google’s page rank (cont.)
I Let W be the set of (reachable) web pages and let n = |W |.
I Connectivity matrix G ∈ Rn×n:

gij =

{
1 there is a hyperlink j 7→ i ,

0 otherwise.

nnz(G) = number of hyperlinks in W .
Let ri and cj be the row and column sums of G :

ri =
∑
j

gij , cj =
∑
i

gij .

=⇒ ri = in-degree, cj = out-degree of the jth page.
(cj = 0 is a dead end)
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Google’s page rank (cont.)

α β γ δ ρ σ

1 2 3 4 5 6

G =



0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0
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Google’s page rank (cont.)
I Let A be the matrix with elements

aij =

{
gij/cj if cj 6= 0

1/n if cj = 0 (dead end).

A =



0 0 0 1 1
6 1

1
2 0 0 0 1

6 0
0 1

2 0 0 1
6 0

0 1
2

1
3 0 1

6 0
0 0 1

3 0 1
6 0

1
2 0 1

3 0 1
6 0


I Let e = (1, 1, . . . , 1)T . Then ATe = e (or eTA = eT ).

So, 1 ∈ σ(AT ) = σ(A).
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Google’s page rank (cont.)
I To be able to escape cycles or strong components we follows

the links only with a probability α.

I With probability 1− α we choose a random page.

I We replace A by the matrix

Ã = αA + (1− α)peT ,

where p is a personalization vectors. (p has nonnegative
elements that sum to 1, ‖p‖1 = 1.

I We may choose p = e/n.

I Note that eT Ã = eT

I Most of the elements of A are very small. If n = 4 · 109 and
α = 0.85, then the probability of jumping from one page to
another without following a link is δ = 3.75 · 10−11.
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Google’s page rank (cont.)
The Perron–Frobenius theorem applies. It states that a nonzero
solution of the equation

x = Ãx

exists and is unique to within a scaling factor. If this scaling factor
is chosen so that

n∑
i=1

xi = 1

then x is the state vector of the Markov chain and is Google’s
PageRank. The elements of x are all positive and less than one.
This vector x is the eigenvector corresponding to the largest
eigenvalue of Ã. It can be determined by vector iteration,
aka. power method.
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Matlab code

function [x,cnt] = pagerankpow(G)

% PAGERANKPOW PageRank by power method with no matrix operations.

% x = pagerankpow(G) is the PageRank of the graph G.

% [x,cnt] = pagerankpow(G) also counts the number of iterations.

% There are no matrix operations. Only the link structure

% of G is used with the power method.

% Link structure

[n,n] = size(G);

for j = 1:n

L{j} = find(G(:,j)); % set of links coming into node j

c(j) = length(L{j}); % in-degree

end

% Power method

p = .85; delta = (1-p)/n;
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Matlab code (cont.)
x = ones(n,1)/n; z = zeros(n,1);

cnt = 0;

while max(abs(x-z)) > .0001

z = x;

x = zeros(n,1);

for j = 1:n

if c(j) == 0

x = x + z(j)/n;

else

x(L{j}) = x(L{j}) + z(j)/c(j);

end

end

x = p*x + delta;

cnt = cnt+1;

end
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