

Solving large scale eigenvalue problems

Lecture 10, May 2, 2018: More on Lanczos and Arnoldi http://people.inf.ethz.ch/arbenz/ewp/

Peter Arbenz
Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

- Restarting Arnoldi
- Thick restarts for Lanczos
- Krylov-Schur algorithm
- Rational Krylov space methods
- Polynomial filtering

When is a basis generating a Krylov space?

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be linearly independent n-vectors.
Is the subspace $\mathcal{V}:=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ a Krylov space, i.e., is there a vector $\mathbf{q} \in \mathcal{V}$ such that $\mathcal{V}=\mathcal{K}_{k}(A, \mathbf{q})$?

Theorem
$\mathcal{V}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a Krylov space if and only if there is a k-by-k matrix M such that

$$
\begin{equation*}
R:=A V-V M, \quad V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right] \tag{1}
\end{equation*}
$$

has rank one and $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathcal{R}(R)\right\}$ has dimension $k+1$.

For a proof see the lecture notes or paper by Stewart [1].

The Lanczos algorithm with thick restarts

Apply theorem to the case where a subspace is spanned by some Ritz vectors. For $A=A^{*}$ a Lanczos relation is given by

$$
\begin{equation*}
A Q_{k}-Q_{k} T_{k}=\beta_{k+1} \mathbf{q}_{k+1} \mathbf{e}_{k}^{T} \tag{2}
\end{equation*}
$$

Let spectral decomposition of tridiagonal T_{k} be

$$
T_{k} S_{k}=S_{k} \Theta_{k}, \quad S_{k}=\left[\mathbf{s}_{1}^{(k)}, \ldots, \mathbf{s}_{k}^{(k)}\right], \quad \Theta_{k}=\operatorname{diag}\left(\vartheta_{1}, \ldots, \vartheta_{k}\right)
$$

Then, for all i, the Ritz vector

$$
\mathbf{y}_{i}=Q_{k} \mathbf{s}_{i}^{(k)} \in \mathcal{K}_{k}(A, \mathbf{q})
$$

gives rise to the residual

$$
\mathbf{r}_{i}=A \mathbf{y}_{i}-\mathbf{y}_{i} \vartheta_{i}=\beta_{k+1} \mathbf{q}_{k+1} s_{k i}^{(k)} \in \mathcal{K}_{k+1}(A, \mathbf{q}) \ominus \mathcal{K}_{k}(A, \mathbf{q}) .
$$

The Lanczos algorithm with thick restarts (cont.)

So, for any set of indices $1 \leq i_{1}<\cdots<i_{j} \leq k$ we have

$$
\begin{gathered}
A\left[\mathbf{y}_{\left.\mathbf{y}_{1}, \mathbf{y}_{i_{2}}, \ldots, \mathbf{y}_{i_{j}}\right]-\left[\mathbf{y}_{i_{1}}, \mathbf{y}_{i_{2}}, \ldots, \mathbf{y}_{i_{j}}\right] \operatorname{diag}\left(\vartheta_{i_{1}}, \ldots, \vartheta_{i_{j}}\right)}=\beta_{k+1} \mathbf{q}_{k+1}\left[s_{k, i_{1}}, s_{k, i_{2}}, \ldots, s_{\left.k, i_{i}\right]}^{(k)} .\right.\right.
\end{gathered}
$$

Theorem \Longrightarrow any set $\left[\mathbf{y}_{i_{1}}, \mathbf{y}_{i}, \ldots, \mathbf{y}_{i_{j}}\right]$ of Ritz vectors forms a Krylov space.
The generating vector differs for each set $\left\{i_{1}, \cdots, i_{j}\right\}$.
Split the indices $1, \ldots, k$ in two sets.

- First set: 'good' Ritz vectors that we want to keep and that we collect in Y_{1}
- Second set: 'bad' Ritz vectors that we want to remove. They go into Y_{2}.

The Lanczos algorithm with thick restarts (cont.)

$$
A\left[Y_{1}, Y_{2}\right]-\left[Y_{1}, Y_{2}\right]\left[\begin{array}{ll}
\Theta_{1} & \tag{3}\\
& \Theta_{2}
\end{array}\right]=\beta_{k+1} \mathbf{q}_{k+1}\left[\mathbf{s}_{1}^{*}, \mathbf{s}_{2}^{*}\right] .
$$

Keeping the first set of Ritz vectors and purging (deflating) the rest yields

$$
A Y_{1}-Y_{1} \Theta_{1}=\beta_{k+1} \mathbf{q}_{k+1} \mathbf{s}_{1}^{*}
$$

We now can restart a Lanczos procedure by orthogonalizing $A \mathbf{q}_{k+1}$ against $Y_{1}=:\left[\mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{j}^{*}\right]$ and \mathbf{q}_{k+1}.

The Lanczos algorithm with thick restarts (cont.)

From the equation

$$
A \mathbf{y}_{i}-\mathbf{y}_{i} \vartheta_{i}=\mathbf{q}_{k+1} \sigma_{i}, \quad \sigma_{i}=\beta_{k+1} \mathbf{e}_{k}^{*} \mathbf{s}_{i}^{(k)}
$$

we get

$$
\mathbf{q}_{k+1}^{*} A \mathbf{y}_{i}=\sigma_{i}
$$

whence

$$
\mathbf{r}_{k+1}=A \mathbf{q}_{k+1}-\beta_{k} \mathbf{q}_{k+1}-\sum_{i=1}^{j} \sigma_{i} \mathbf{y}_{i} \perp \mathcal{K}_{k+1}(A, \mathbf{q} .)
$$

From this point on the Lanczos algorithm proceeds with the ordinary three-term recurrence.

The Lanczos algorithm with thick restarts (cont.)

 We finally arrive at relation $A Q_{m}-Q_{m} T_{m}=\beta_{m+1} \mathbf{q}_{m+1} \mathbf{e}_{m}^{T}$ with$$
Q_{m}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{j}, \mathbf{q}_{k+1}, \ldots, \mathbf{q}_{m+k-j}\right]
$$

and

$$
T_{m}=\left(\begin{array}{cccccc}
\vartheta_{1} & & & \sigma_{1} & & \\
& \ddots & & \vdots & & \\
& & \vartheta_{j} & \sigma_{j} & & \\
\sigma_{1} & \cdots & \sigma_{j} & \alpha_{k+1} & \ddots & \\
& & & \ddots & \ddots & \beta_{m+k-j-1} \\
& & & & \beta_{m+k-j-1} & \alpha_{m+k-j}
\end{array}\right)
$$

The Lanczos algorithm with thick restarts (cont.)

- This procedure, called thick restart, has been suggested by Wu \& Simon [2].
- It allows to restart with any number of Ritz vectors.
- In contrast to the implicitly restarted Lanczos procedure, we need the spectral decomposition of T_{m}. (Its computation is not an essential overhead.)
- The spectral decomposition admits a simple sorting of Ritz values.
- We could further split the first set of Ritz pairs into converged and unconverged ones, depending on the value $\beta_{m+1}\left|s_{k, i}\right|$. If this quantity is below a given threshold we set the value to zero and lock (deflate) the corresponding Ritz vector, i.e., accept it as an eigenvector.

Thick restart Lanczos algorithm

1: Let us be given k Ritz vectors \mathbf{y}_{i} and a residual vector \mathbf{r}_{k} such that $A \mathbf{y}_{i}=\vartheta_{i} \mathbf{y}_{i}+\sigma_{i} \mathbf{r}_{k+1}, i=1, \ldots, k$. The value k may be zero in which case \mathbf{r}_{0} is the initial guess.
This algorithm computes an orthonormal basis
$\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}, \mathbf{q}_{k+1}, \ldots, \mathbf{q}_{m}$ that spans a m-dimensional Krylov space whose generating vector is not known unless $k=0$.
2: $\mathbf{z}:=A \mathbf{q}_{k+1}$;
3: $\alpha_{k+1}:=\mathbf{q}_{k+1}^{*} \mathbf{z}$;
4: $\mathbf{r}_{k+1}=\mathbf{z}-\alpha_{k+1} \mathbf{q}_{k+1}-\sum_{i=1}^{k} \sigma_{i} \mathbf{y}_{i}$
5: $\beta_{k+1}:=\left\|\mathbf{r}_{k+1}\right\|$
6: for $i=k+2, \ldots, m$ do
7: $\quad \mathbf{q}_{i}:=\mathbf{r}_{i-1} / \beta_{i-1}$.
8: $\quad \mathbf{z}:=A \mathbf{q}_{i}$;

Thick restart Lanczos algorithm (cont.)

9: $\quad \alpha_{i}:=\mathbf{q}_{i}^{*} \mathbf{z} ;$
10: $\quad \mathbf{r}_{i}=\mathbf{z}-\alpha_{i} \mathbf{q}_{i}-\beta_{i-1} \mathbf{q}_{i-1}$
11: $\quad \beta_{i}=\left\|\mathbf{r}_{i}\right\|$
12: end for

- Problem of losing orthogonality is similar to plain Lanczos.
- Wu-Simon [2] investigate various reorthogonalizing strategies known from plain Lanczos (full, selective, partial).
- In their numerical experiments the simplest procedure, full reorthogonalization, performs similarly or even faster than the more sophisticated reorthogonalization procedures.

Krylov-Schur algorithm

Krylov-Schur algorithm (Stewart [1]) is generalization of the thick-restart procedure for non-Hermitian problems.

The Arnoldi algorithm constructs the Arnoldi relation

$$
A Q_{m}=Q_{m} H_{m}+\mathbf{r}_{m} \mathbf{e}_{m}^{*}
$$

where H_{m} is Hessenberg and [Q_{m}, \mathbf{r}_{m}] has full rank. Let $H_{m}=S_{m} T_{m} S_{m}^{*}$ be a Schur decomposition of H_{m} with unitary S_{m} and upper triangular T_{m}. Similarly as before we have

$$
\begin{equation*}
A Y_{m}=Y_{m} T_{m}+\mathbf{r}_{m} \mathbf{s}^{*}, \quad Y_{m}=Q_{m} S_{m}, \quad \mathbf{s}^{*}=\mathbf{e}_{m}^{*} S_{m} \tag{4}
\end{equation*}
$$

Krylov-Schur algorithm (cont.)

The upper triangular form of T_{m} eases analysis of Ritz pairs.
It admits moving unwanted Ritz values to the lower-right of T_{m}.
We collect 'good' and 'bad' Ritz vectors in matrices Y_{1} and Y_{2} :

$$
A\left[Y_{1}, Y_{2}\right]-\left[Y_{1}, Y_{2}\right]\left[\begin{array}{cc}
T_{11} & T_{12} \tag{5}\\
& T_{22}
\end{array}\right]=\beta_{k+1} \mathbf{q}_{k+1}\left[\mathbf{s}_{1}^{*}, \mathbf{s}_{2}^{*}\right]
$$

Keeping the first set of Ritz vectors and purging the rest yields

$$
A Y_{1}-Y_{1} T_{11}=\beta_{k+1} \mathbf{q}_{k+1} \mathbf{s}_{1}^{*}
$$

Krylov-Schur algorithm (cont.)

Thick-restart Lanczos: eigenpair considered found if $\beta_{k+1}\left|s_{i k}\right|$ sufficiently small.
Determination of converged subspace not so easy with general Krylov-Schur.
However, if we manage to bring \mathbf{s}_{1} into the form

$$
\mathbf{s}_{1}=\left[\begin{array}{l}
\mathbf{s}_{1}^{\prime} \\
\mathbf{s}_{1}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{s}_{1}^{\prime \prime}
\end{array}\right]
$$

then we found an invariant subspace:

$$
A\left[Y_{1}^{\prime}, Y_{1}^{\prime \prime}\right]-\left[Y_{1}^{\prime}, Y_{1}^{\prime \prime}\right]\left[\begin{array}{ll}
T_{11}^{\prime} & T_{12}^{\prime} \\
& T_{22}^{\prime}
\end{array}\right]=\beta_{k+1} \mathbf{q}_{k+1}\left[\mathbf{0}^{T}, \mathbf{s}_{1}^{\prime \prime *}\right]
$$

i.e.,

$$
A Y_{1}^{\prime}=Y_{1}^{\prime} T_{11}^{\prime}
$$

Krylov-Schur algorithm (cont.)

- In most cases \mathbf{s}_{1}^{\prime} consists of a single small element or of two small elements in the case of a complex-conjugate eigenpair of a real nonsymmetric matrix [1].
- These small elements are then declared zero and the columns in Y_{1}^{\prime} are locked, i.e., they are not altered anymore in the future computations.
- Orthogonality against them has to be enforced in the continuation of the eigenvalue computation though.

Polynomial filtering

- SI-Lanczos/Arnoldi are the standard way to compute eigenvalues close to some target/shift σ.
- This works as long as the factorization of $A-\sigma I$ (or of $A-\sigma B)$ is feasible.
- An alternative that has emerged in the last few years is polynomial filtering:
Replace the matrix A by $p(A)$ where $p \in \mathbb{P}_{d}$ for some d.

$$
A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad \Longrightarrow \quad p(A) \mathbf{u}_{i}=p\left(\lambda_{i}\right) \mathbf{u}_{i} .
$$

Eigenvectors remain unchanged (at least if $\lambda_{i} \neq \lambda_{j}$ implies $p\left(\lambda_{i}\right) \neq p\left(\lambda_{j}\right)$).

Polynomial filtering (cont.)

- Let's assume that $A=A^{*}$, whence $\sigma(A) \subset \mathbb{R}$.
- Let's further assume that $\sigma(A) \in[-1,1]$. (This requires some knowledge about $\lambda_{\min }(A)$ and $\lambda_{\max }(A)$). Scaling.
- If we wanted to compute eigenvalues in the interval [.3, .6] we could choose $p(\lambda)=1-0.4(\lambda-0.45)^{2}$:

- Eigenvalues are poorly separated \longrightarrow slow convergence.

Polynomial filtering (cont.)

- The spectral decomposition of $A \in \mathbb{F}^{n \times n}$ is given by

$$
A=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{*}
$$

(Multiple eigenvalues are taken into account according to their multiplicities.) Spectral projector for interval $[a, b]$:

$$
P_{[a, b]}=\sum_{a \leq \lambda_{i} \leq b} \mathbf{u}_{i} \mathbf{u}_{i}^{*}
$$

(It may be useful to know how many eigenvalues λ_{i} are in $[a, b]$.)

$$
P_{[a, b]}=\sum_{i=1}^{n} \chi_{[a, b]}\left(\lambda_{i}\right) \mathbf{u}_{i} \mathbf{u}_{i}^{*}=\chi_{[a, b]}(A), \quad \chi_{[a, b]}(x)= \begin{cases}1, & x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

Polynomial filtering (cont.)

- To actually apply $\chi_{[a, b]}(A)$ we would need to know the eigenvectors \mathbf{u}_{i} associated with the eigenvalues $\lambda_{i} \in[a, b]$.
- An idea is to approximate $\chi_{[a, b]}$ by a polynomial.

We could write

$$
\chi_{[a, b]}(x)=\sum_{j=0}^{d} \gamma_{j} T_{j}(x)
$$

where $T_{j}(x), j=0,1, \ldots$, are Chebyshev polynomials.

- Chebyshev polynomials $T_{j}(x)=\cos (j \arccos x) \equiv \cos (j \vartheta)$ are orthogonal with respect to the inner product

$$
\langle f, g\rangle \equiv \int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi} f(\cos \vartheta) g(\cos \vartheta) d \vartheta
$$

Note: $x=\cos \vartheta \longrightarrow d x=-\sin \vartheta d \vartheta$.

Polynomial filtering (cont.)

- Any function f with $\langle f, f\rangle<\infty$ can be expanded in a series of Chebyshev polynomials:

$$
f(x)=\sum_{j=0}^{\infty} \frac{\left\langle f, T_{j}\right\rangle}{\left\langle T_{j}, T_{j}\right\rangle} T_{j}(x)
$$

- For $f=\chi_{[a, b]}$ we get

$$
\gamma_{j}=\frac{\left\langle\chi_{[a, b]}, T_{j}\right\rangle}{\left\langle T_{j}, T_{j}\right\rangle}= \begin{cases}\frac{1}{\pi}(\arccos (a)-\arccos (b)), & j=0, \\ \frac{2}{\pi} \frac{\sin (\arccos (a))-\sin (\arccos (b))}{j}, & j>0 .\end{cases}
$$

By truncation we get a polynomial approximation $p \in \mathbb{P}_{d}$ of $\chi_{[a, b]}$ that is optimal in the norm $\langle\cdot, \cdot\rangle^{1 / 2}$.

Polynomial filtering (cont.)

- The relation

$$
\cos (k+1) \vartheta+\cos (k-1) \vartheta=2 \cos \vartheta \cos k \vartheta
$$

gives rise to the three-term recurrence

$$
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x), k>0, \quad T_{0}(x)=1, T_{1}(x)=x
$$

- Let $\mathbf{t}_{k}=T_{k}(A) \mathbf{x}$. Then $\mathbf{t}_{0}=T_{0}(A) \mathbf{x}=/ \mathbf{x}$ and $\mathbf{t}_{1}=T_{1}(A) \mathbf{x}=A \mathbf{x}$, and

$$
\mathbf{t}_{k+1}=2 A \mathbf{t}_{k}-\mathbf{t}_{k-1}, \quad k>0
$$

- Since the $p(x) \approx \chi_{[a, b]}(x)$ oscillate very much at the discontinuities of $\chi_{[a, b]}$ (Gibbs phenomenon), the coefficients γ_{k} are often damped. Jackson damping is popular, see e.g. Schofield, Chelikowsky, Saad [3].

Solving large scale eigenvalue problems

$\left\llcorner_{\text {Polynomial filtering }}\right.$

Polynomial filtering (cont.)

Filter of degree $d=40$ for $[a, b]=[.3, .6]$.

Solving large scale eigenvalue problems

$\left\llcorner_{\text {Polynomial filtering }}\right.$

Polynomial filtering (cont.)

Filter of degree $d=80$ for $[a, b]=[.3, .6]$.

Polynomial filtering (cont.)

- Very large eigenvalue problems have huge memory requirements
- A solution: spectrum slicing:
- Devide spectrum in 'slices' / 'windows' of a few hundred or thousand eigenvalues at a time.

- Deceivingly simple looking idea for computing interior eigenvalues, generating parallelism.
- Issues:
- Deal with interfaces: duplicate/missing eigenvalues
- Window size: need to estimate number of eigenvalues in slice
- Polynomial degree increases with shrinking slice width

References

[1] G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 601-614.
[2] K. Wu and H. D. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602-616.
[3] G. Schofield, J. R. Chelikowsky, Y. Saad: A spectrum slicing method for the Kohn-Sham problem. Comput. Phys. Comm. 183 (2012), pp. 487-505.

