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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

I Restarting Arnoldi

I Thick restarts for Lanczos

I Krylov-Schur algorithm

I Rational Krylov space methods

I Polynomial filtering
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Survey

When is a basis generating a Krylov space?

Let v1, . . . , vk be linearly independent n-vectors.
Is the subspace V := span{v1, . . . , vk} a Krylov space, i.e., is there
a vector q ∈ V such that V = Kk(A,q)?

Theorem

V = span{v1, . . . , vk} is a Krylov space if and only if there is a
k-by-k matrix M such that

R := AV − VM, V = [v1, . . . , vk ], (1)

has rank one and span{v1, . . . , vk ,R(R)} has dimension k + 1.

For a proof see the lecture notes or paper by Stewart [1].
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The Lanczos algorithm with thick restarts

Apply theorem to the case where a subspace is spanned by some
Ritz vectors. For A = A∗ a Lanczos relation is given by

AQk − QkTk = βk+1qk+1eTk . (2)

Let spectral decomposition of tridiagonal Tk be

TkSk = SkΘk , Sk = [s
(k)
1 , . . . , s

(k)
k ], Θk = diag(ϑ1, . . . , ϑk).

Then, for all i , the Ritz vector

yi = Qks
(k)
i ∈ Kk(A,q)

gives rise to the residual

ri = Ayi − yiϑi = βk+1qk+1s
(k)
ki ∈ Kk+1(A,q)	Kk(A,q).
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The Lanczos algorithm with thick restarts (cont.)
So, for any set of indices 1 ≤ i1 < · · · < ij ≤ k we have

A[yi1 , yi2 , . . . , yij ]− [yi1 , yi2 , . . . , yij ] diag(ϑi1 , . . . , ϑij )

= βk+1qk+1[s
(k)
k,i1
, s

(k)
k,i2
, . . . , s

(k)
k,ij

].

Theorem =⇒ any set [yi1 , yi2 , . . . , yij ] of Ritz vectors forms a
Krylov space.
The generating vector differs for each set {i1, · · · , ij}.

Split the indices 1, . . . , k in two sets.

I First set: ‘good’ Ritz vectors that we want to keep and that
we collect in Y1

I Second set: ‘bad’ Ritz vectors that we want to remove. They
go into Y2.

Large scale eigenvalue problems, Lecture 10, May 2, 2018 5/25



Solving large scale eigenvalue problems

Survey

The Lanczos algorithm with thick restarts (cont.)

A[Y1,Y2]− [Y1,Y2]

[
Θ1

Θ2

]
= βk+1qk+1[s∗1, s

∗
2]. (3)

Keeping the first set of Ritz vectors and purging (deflating) the
rest yields

AY1 − Y1Θ1 = βk+1qk+1s∗1.

We now can restart a Lanczos procedure by orthogonalizing Aqk+1

against Y1 =: [y∗1, . . . , y
∗
j ] and qk+1.
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The Lanczos algorithm with thick restarts (cont.)
From the equation

Ayi − yiϑi = qk+1σi , σi = βk+1e∗ks
(k)
i

we get
q∗k+1Ayi = σi ,

whence

rk+1 = Aqk+1 − βkqk+1 −
j∑

i=1

σiyi ⊥ Kk+1(A,q.)

From this point on the Lanczos algorithm proceeds with the
ordinary three-term recurrence.
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The Lanczos algorithm with thick restarts (cont.)
We finally arrive at relation AQm − QmTm = βm+1qm+1eTm with

Qm = [y1, . . . , yj ,qk+1, . . . ,qm+k−j ]

and

Tm =



ϑ1 σ1
. . .

...
ϑj σj

σ1 · · · σj αk+1
. . .

. . .
. . . βm+k−j−1

βm+k−j−1 αm+k−j
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The Lanczos algorithm with thick restarts (cont.)
I This procedure, called thick restart, has been suggested by

Wu & Simon [2].

I It allows to restart with any number of Ritz vectors.

I In contrast to the implicitly restarted Lanczos procedure, we
need the spectral decomposition of Tm. (Its computation is
not an essential overhead.)

I The spectral decomposition admits a simple sorting of Ritz
values.

I We could further split the first set of Ritz pairs into converged
and unconverged ones, depending on the value βm+1|sk,i |. If
this quantity is below a given threshold we set the value to
zero and lock (deflate) the corresponding Ritz vector, i.e.,
accept it as an eigenvector.
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Thick restart Lanczos algorithm

1: Let us be given k Ritz vectors yi and a residual vector rk such
that Ayi = ϑiyi + σi rk+1, i = 1, . . . , k . The value k may be
zero in which case r0 is the initial guess.
This algorithm computes an orthonormal basis
y1, . . . , yk ,qk+1, . . . ,qm that spans a m-dimensional Krylov
space whose generating vector is not known unless k = 0.

2: z := Aqk+1;
3: αk+1 := q∗k+1z;

4: rk+1 = z− αk+1qk+1 −
∑k

i=1 σiyi
5: βk+1 := ‖rk+1‖
6: for i = k + 2, . . . ,m do
7: qi := ri−1/βi−1.
8: z := Aqi ;
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Thick restart Lanczos algorithm (cont.)
9: αi := q∗i z;

10: ri = z− αiqi − βi−1qi−1
11: βi = ‖ri‖
12: end for

I Problem of losing orthogonality is similar to plain Lanczos.

I Wu–Simon [2] investigate various reorthogonalizing strategies
known from plain Lanczos (full, selective, partial).

I In their numerical experiments the simplest procedure, full
reorthogonalization, performs similarly or even faster than the more
sophisticated reorthogonalization procedures.
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Krylov–Schur algorithm

Krylov–Schur algorithm (Stewart [1]) is generalization of the
thick-restart procedure for non-Hermitian problems.

The Arnoldi algorithm constructs the Arnoldi relation

AQm = QmHm + rme∗m,

where Hm is Hessenberg and [Qm, rm] has full rank. Let
Hm = SmTmS

∗
m be a Schur decomposition of Hm with unitary Sm

and upper triangular Tm. Similarly as before we have

AYm = YmTm + rms∗, Ym = QmSm, s∗ = e∗mSm. (4)
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Krylov–Schur algorithm (cont.)
The upper triangular form of Tm eases analysis of Ritz pairs.

It admits moving unwanted Ritz values to the lower-right of Tm.

We collect ‘good’ and ‘bad’ Ritz vectors in matrices Y1 and Y2:

A[Y1,Y2]− [Y1,Y2]

[
T11 T12

T22

]
= βk+1qk+1[s∗1, s

∗
2]. (5)

Keeping the first set of Ritz vectors and purging the rest yields

AY1 − Y1T11 = βk+1qk+1s∗1.
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Krylov–Schur algorithm (cont.)
Thick-restart Lanczos: eigenpair considered found if βk+1|sik |
sufficiently small.
Determination of converged subspace not so easy with general
Krylov–Schur.
However, if we manage to bring s1 into the form

s1 =

[
s′1
s′′1

]
=

[
0
s′′1

]
then we found an invariant subspace:

A[Y ′1,Y
′′
1 ]− [Y ′1,Y

′′
1 ]

[
T ′11 T ′12

T ′22

]
= βk+1qk+1[0T , s′′1

∗
]

i.e.,
AY ′1 = Y ′1T

′
11

Large scale eigenvalue problems, Lecture 10, May 2, 2018 14/25



Solving large scale eigenvalue problems

Krylov–Schur algorithm

Krylov–Schur algorithm (cont.)
I In most cases s′1 consists of a single small element or of two

small elements in the case of a complex-conjugate eigenpair of
a real nonsymmetric matrix [1].

I These small elements are then declared zero and the columns
in Y ′1 are locked, i.e., they are not altered anymore in the
future computations.

I Orthogonality against them has to be enforced in the
continuation of the eigenvalue computation though.
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Polynomial filtering

I SI-Lanczos/Arnoldi are the standard way to compute
eigenvalues close to some target/shift σ.

I This works as long as the factorization of A− σI (or of
A− σB) is feasible.

I An alternative that has emerged in the last few years is
polynomial filtering:
Replace the matrix A by p(A) where p ∈ Pd for some d .

Aui = λiui =⇒ p(A)ui = p(λi )ui .

Eigenvectors remain unchanged
(at least if λi 6= λj implies p(λi ) 6= p(λj)).
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Polynomial filtering (cont.)
I Let’s assume that A = A∗, whence σ(A) ⊂ R.

I Let’s further assume that σ(A) ∈ [−1, 1]. (This requires some
knowledge about λmin(A) and λmax(A)). Scaling.

I If we wanted to compute eigenvalues in the interval [.3, .6] we
could choose p(λ) = 1− 0.4 (λ− 0.45)2:

I Eigenvalues are poorly separated −→ slow convergence.
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Polynomial filtering (cont.)
I The spectral decomposition of A ∈ Fn×n is given by

A =
n∑

i=1

λiuiu
∗
i .

(Multiple eigenvalues are taken into account according to
their multiplicities.) Spectral projector for interval [a, b]:

P[a,b] =
∑

a≤λi≤b
uiu
∗
i .

(It may be useful to know how many eigenvalues λi are in [a, b].)

P[a,b] =
n∑

i=1

χ[a,b](λi )uiu
∗
i = χ[a,b](A), χ[a,b](x) =

{
1, x ∈ [a, b],

0, otherwise.
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Polynomial filtering (cont.)
I To actually apply χ[a,b](A) we would need to know the eigenvectors

ui associated with the eigenvalues λi ∈ [a, b].

I An idea is to approximate χ[a,b] by a polynomial.
We could write

χ[a,b](x) =
d∑

j=0

γjTj(x),

where Tj(x), j = 0, 1, . . . , are Chebyshev polynomials.

I Chebyshev polynomials Tj(x) = cos(j arccos x) ≡ cos(jϑ) are
orthogonal with respect to the inner product

〈f , g〉 ≡
∫ 1

−1

f (x)g(x)√
1− x2

dx =

∫ π

0

f (cosϑ)g(cosϑ)dϑ.

Note: x = cosϑ −→ dx = − sinϑ dϑ.
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Polynomial filtering (cont.)
I Any function f with 〈f , f 〉 <∞ can be expanded in a series of

Chebyshev polynomials:

f (x) =
∞∑
j=0

〈f ,Tj〉
〈Tj ,Tj〉

Tj(x).

I For f = χ[a,b] we get

γj =
〈χ[a,b],Tj〉
〈Tj ,Tj〉

=


1
π (arccos(a)− arccos(b)), j = 0,

2
π

sin(arccos(a))− sin(arccos(b))
j , j > 0.

By truncation we get a polynomial approximation p ∈ Pd of χ[a,b]

that is optimal in the norm 〈·, ·〉1/2.
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Polynomial filtering (cont.)
I The relation

cos(k + 1)ϑ+ cos(k − 1)ϑ = 2 cosϑ cos kϑ

gives rise to the three-term recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x), k > 0, T0(x) = 1,T1(x) = x .

I Let tk = Tk(A)x. Then t0 = T0(A)x = Ix and t1 = T1(A)x = Ax,
and

tk+1 = 2Atk − tk−1, k > 0.

I Since the p(x) ≈ χ[a,b](x) oscillate very much at the discontinuities
of χ[a,b] (Gibbs phenomenon), the coefficients γk are often damped.
Jackson damping is popular,
see e.g. Schofield, Chelikowsky, Saad [3].
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Polynomial filtering (cont.)

Filter of degree d = 40 for [a, b] = [.3, .6].
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Polynomial filtering (cont.)

Filter of degree d = 80 for [a, b] = [.3, .6].
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Polynomial filtering (cont.)

I Very large eigenvalue problems have huge
memory requirements

I A solution: spectrum slicing:

I Devide spectrum in ‘slices’ / ‘windows’ of a
few hundred or thousand eigenvalues at a
time.

I Deceivingly simple looking idea for computing
interior eigenvalues, generating parallelism.

I Issues:

I Deal with interfaces: duplicate/missing eigenvalues
I Window size: need to estimate number of eigenvalues in slice
I Polynomial degree increases with shrinking slice width
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