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When is a basis generating a Krylov space?

Let vi,...,Vk be linearly independent n-vectors.
Is the subspace V :=span{vy,..., vk} a Krylov space, i.e., is there
a vector q € V such that V = Ky (A, q)?

Theorem

V = span{vi,...,vx} is a Krylov space if and only if there is a
k-by-k matrix M such that

R:= AV — VM, V =[vi,..., v, (1)

has rank one and span{vi,...,vi, R(R)} has dimension k + 1.

For a proof see the lecture notes or paper by Stewart [1].
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The Lanczos algorithm with thick restarts

Apply theorem to the case where a subspace is spanned by some
Ritz vectors. For A = A* a Lanczos relation is given by

AQ — Qi T = Bri19k+184 - (2)
Let spectral decomposition of tridiagonal Ty be
TS =S5Ok Se=[s, ... s, o, =diag®,...,0%).
Then, for all i, the Ritz vector
yi = ka,('k) € K«(A,q)

gives rise to the residual

P
ri=Ay -y = 5k+1Qk+15,(<,-) € Kr+1(A,q) © Ki(A, q).
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The Lanczos algorithm with thick restarts (cont.)

So, for any set of indices 1 < iy < --- < i; < k we have

A[yf17yi27' . 7yl_,] - [yi17yl'2a s 7Yij]diag(’19i17 s 7191'])

k) (k k
= 5k+1q/<+1[5/(<,i3’51(<,i2’ o ’S’(ﬂ"f)‘]'

Theorem == any set [y;;, Y, ---,Y;] of Ritz vectors forms a
Krylov space.

The generating vector differs for each set {i,--- ,i;}.

Split the indices 1, ..., k in two sets.

» First set: ‘good’ Ritz vectors that we want to keep and that
we collect in Y;

» Second set: ‘bad’ Ritz vectors that we want to remove. They
go into Yb.

Large scale eigenvalue problems, Lecture 10, May 2, 2018 5/25



Solving large scale eigenvalue problems

LSurvey

The Lanczos algorithm with thick restarts (cont.)

A[Y1, Ya] = [Y1, Y2 [@1 @2] = Brkt+1Gk+1[81,83]- (3)

Keeping the first set of Ritz vectors and purging (deflating) the

rest yields
AY1 — Y101 = Biq1dk418]-

We now can restart a Lanczos procedure by orthogonalizing Aqx+1
against Y1 =: [y7,...,y/] and qx41.
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The Lanczos algorithm with thick restarts (cont.)

From the equation

K
Ay; — yivi = qk4107, o = 5k+1ei5§ )

we get
i1 Ay = 0j,

whence

J
Fir1 = AQigr — Biksr — D oiyi L Kira(A )
i—1

From this point on the Lanczos algorithm proceeds with the
ordinary three-term recurrence.
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The Lanczos algorithm with thick restarts (cont.)

We finally arrive at relation AQm — QmTm = ﬁm+1qm+1el with

Qm = [Y17 o Y QK+, - - 7qm+k—j]

and
% o1
vj o
Tm =
o1 -+ 0j Okl
Bmik—j—1

/Bm—i-k—j—l AUm4k—j
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The Lanczos algorithm with thick restarts (cont.)

>

This procedure, called thick restart, has been suggested by
Wu & Simon [2].

It allows to restart with any number of Ritz vectors.

In contrast to the implicitly restarted Lanczos procedure, we
need the spectral decomposition of Tp,. (Its computation is
not an essential overhead.)

The spectral decomposition admits a simple sorting of Ritz
values.

We could further split the first set of Ritz pairs into converged
and unconverged ones, depending on the value S41|sk,i|. If
this quantity is below a given threshold we set the value to
zero and lock (deflate) the corresponding Ritz vector, i.e.,
accept it as an eigenvector.
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Thick restart Lanczos algorithm

1: Let us be given k Ritz vectors y; and a residual vector ry such
that Ay; = ¥;y; + ojrky1, i = 1,..., k. The value k may be
zero in which case rg is the initial guess.

This algorithm computes an orthonormal basis
Yi,---,Yk; dk+1, - - - , Qm that spans a m-dimensional Krylov
space whose generating vector is not known unless k = 0.

2: 2= Aqgk+1;

30 Qpq1 = q2+1z;

4: g1 =Z — Op410k+1 — fozl oiYi

5 Bryr = [[reqal|

6: fori=k+2,..., mdo
7 qii=ri_1/Bi-1.

8 z:= Aq;;
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Thick restart Lanczos algorithm (cont.)
9 «aj=(qjz
10 ri=z—qaiq; — 3i-19i-1

1 B = Iril

12: end for

» Problem of losing orthogonality is similar to plain Lanczos.

> Wu-Simon [2] investigate various reorthogonalizing strategies
known from plain Lanczos (full, selective, partial).

» In their numerical experiments the simplest procedure, full
reorthogonalization, performs similarly or even faster than the more
sophisticated reorthogonalization procedures.
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Krylov=Schur algorithm

Krylov—Schur algorithm (Stewart [1]) is generalization of the
thick-restart procedure for non-Hermitian problems.

The Arnoldi algorithm constructs the Arnoldi relation
AQm = QmHm + rmeTm

where Hp, is Hessenberg and [Qm, rm] has full rank. Let
Hm = SmTmS;, be a Schur decomposition of Hy,, with unitary Sp,
and upper triangular T,,. Similarly as before we have

AYy = Y T + tms™, Ym= QmSm, s =e;,Sn. (4)
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Krylov=Schur algorithm (cont.)

The upper triangular form of T, eases analysis of Ritz pairs.
It admits moving unwanted Ritz values to the lower-right of Tp,.

We collect ‘good’ and ‘bad’ Ritz vectors in matrices Y7 and Y5:

T11 T .
A1, Y2] — [, Y2 [ H le = Bi+19k+1(s1,82].  (5)
Keeping the first set of Ritz vectors and purging the rest yields

AY1 — Y1 T11 = Br+19k+151-
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Krylov=Schur algorithm (cont.)

Thick-restart Lanczos: eigenpair considered found if Sx1]|sik]
sufficiently small.

Determination of converged subspace not so easy with general
Krylov=Schur.
However, if we manage to bring s; into the form

sh 0
S1 = S/l/ = Sll/

then we found an invariant subspace:

T/ T/ *
A= ]| T8 T = a0

. AY{ = Y{Ti,
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Krylov=Schur algorithm (cont.)

» In most cases s consists of a single small element or of two
small elements in the case of a complex-conjugate eigenpair of
a real nonsymmetric matrix [1].

> These small elements are then declared zero and the columns
in Y{ are locked, i.e., they are not altered anymore in the
future computations.

» Orthogonality against them has to be enforced in the
continuation of the eigenvalue computation though.
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Polynomial filtering

» Sl-Lanczos/Arnoldi are the standard way to compute
eigenvalues close to some target/shift o.

» This works as long as the factorization of A — o/ (or of
A — oB) is feasible.

» An alternative that has emerged in the last few years is
polynomial filtering:
Replace the matrix A by p(A) where p € P4 for some d.
Auj = Au; = p(A)u; = p(Aj)u;.
Eigenvectors remain unchanged

(at least if A; # \; implies p(A;) # p()))).
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Polynomial filtering (cont.)
> Let's assume that A = A*, whence o(A) C R.

» Let’s further assume that o(A) € [—1,1]. (This requires some
knowledge about Amin(A) and Amax(A)). Scaling.

» If we wanted to compute eigenvalues in the interval [.3,.6] we
could choose p(\) =1 — 0.4 (\ — 0.45):

» Eigenvalues are poorly separated — slow convergence.
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Polynomial filtering (cont.)

» The spectral decomposition of A € F"*" is given by

n

*

A= E )\,-u,-u,-.
i=1

(Multiple eigenvalues are taken into account according to
their multiplicities.) Spectral projector for interval [a, b]:

P[a,b] = Z u,-uf.
aS)\,Sb
(It may be useful to know how many eigenvalues \; are in [a, b].)

1, xe€lab

Py = Auiut = A), - _
(o ’;X[a,b]( Juitt} = X(a,b(A), - Xjap)(x) {o, otherwise.
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Polynomial filtering (cont.)

» To actually apply x[,,5(A) we would need to know the eigenvectors
u; associated with the eigenvalues \; € [a, b].

> An idea is to approximate X[, 5 by a polynomial.

We could write
X]a, b] Z % T j

where Tj(x), j=0,1,..., are Chebyshev polynomials.

> Chebyshev polynomials T;(x) = cos(j arccos x) = cos(j1}) are
orthogonal with respect to the inner product

/ md = /07T f(cos ¥)g(cos V) d.

Note: x = costy — dx = —sind d¥.

(f.g)
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Polynomial filtering (cont.)

> Any function f with (f, f) < co can be expanded in a series of
Chebyshev polynomials:

) = Y 2T,

Jj=0

[

> For f = x[a,b We get

(X Ty | 7 (arceos(a) — arccos(b)), j—o,

= (T;, T;) ) 2sin(arccos(a)) — sin(arccos(b))
™ J 9

Jj>0.

By truncation we get a polynomial approximation p € Py of X[y
that is optimal in the norm (-, -)1/2,
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Polynomial filtering (cont.)

> The relation
cos(k 4+ 1)¥ + cos(k — 1) = 2 cos ¥ cos ki
gives rise to the three-term recurrence
Tii1(x) = 2xTi(x) — Ty—1(x), k>0, To(x) =1, T1(x) = x.

> Let ty = Tx(A)x. Then tg = To(A)x = Ix and t; = T1(A)x = Ax,
and
tiy1 = 2At, — ty_1, k > 0.

> Since the p(x) = X[a,5)(x) oscillate very much at the discontinuities

of X[a,5] (Gibbs phenomenon), the coefficients 7, are often damped.

Jackson damping is popular,
see e.g. Schofield, Chelikowsky, Saad [3].
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Polynomial filtering (cont.)

Jackson-Chebyshev

T T
Characteristic function
0.8

"~ Standard Chebyshev
06
04r

MY/
L L L
-1 -0.8 -

0.2

1
Filter of degree d = 40 for [a, b] = [.3,.6].
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Polynomial filtering (cont.)

12 T T T T T T T T T
ni Jackson-Chebyshev |
Characteristic function
— Standard Chebyshev
08l b
061 b
041 b
02r b
AL 2
0 vy LA
02 . I . . I I I . .
-1 08 08 04 02 0 02 04 06 08 1

Filter of degree d = 80 for [a, b] = [.3,.6].

[m] = = =

Large scale eigenvalue problems, Lecture 10, May 2, 2018



Solving large scale eigenvalue problems

L Polynomial filtering

Polynomial filtering (cont.)

> Very large eigenvalue problems have huge
memory requirements “

» A solution: spectrum slicing: g

» Devide spectrum in ‘slices’ / ‘windows' of a “
few hundred or thousand eigenvalues at a w
time. o

» Deceivingly simple looking idea for computing
interior eigenvalues, generating parallelism.

> |ssues:

> Deal with interfaces: duplicate/missing eigenvalues
> Window size: need to estimate number of eigenvalues in slice
> Polynomial degree increases with shrinking slice width
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