

Solving large scale eigenvalue problems Lecture 10, May 2, 2018: More on Lanczos and Arnoldi http://people.inf.ethz.ch/arbenz/ewp/

> Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

- Restarting Arnoldi
- Thick restarts for Lanczos
- Krylov-Schur algorithm
- Rational Krylov space methods
- Polynomial filtering

<ロ> (四) (四) (三) (三) (三)

When is a basis generating a Krylov space?

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be linearly independent *n*-vectors. Is the subspace $\mathcal{V} := \operatorname{span}{\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}}$ a Krylov space, i.e., is there a vector $\mathbf{q} \in \mathcal{V}$ such that $\mathcal{V} = \mathcal{K}_k(A, \mathbf{q})$?

Theorem

 $\mathcal{V}=\text{span}\{v_1,\ldots,v_k\}$ is a Krylov space if and only if there is a k-by-k matrix M such that

$$R := AV - VM, \qquad V = [\mathbf{v}_1, \dots, \mathbf{v}_k], \tag{1}$$

has rank one and span{ $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathcal{R}(R)$ } has dimension k + 1.

For a proof see the lecture notes or paper by Stewart [1].

The Lanczos algorithm with thick restarts

Apply theorem to the case where a subspace is spanned by some Ritz vectors. For $A = A^*$ a Lanczos relation is given by

$$AQ_k - Q_k T_k = \beta_{k+1} \mathbf{q}_{k+1} \mathbf{e}_k^T.$$
(2)

Let spectral decomposition of tridiagonal T_k be

$$T_k S_k = S_k \Theta_k, \qquad S_k = [\mathbf{s}_1^{(k)}, \dots, \mathbf{s}_k^{(k)}], \quad \Theta_k = \operatorname{diag}(\vartheta_1, \dots, \vartheta_k).$$

Then, for all *i*, the Ritz vector

$$\mathbf{y}_i = Q_k \mathbf{s}_i^{(k)} \in \mathcal{K}_k(A, \mathbf{q})$$

gives rise to the residual

$$\mathbf{r}_i = A\mathbf{y}_i - \mathbf{y}_i \vartheta_i = \beta_{k+1} \mathbf{q}_{k+1} s_{ki}^{(k)} \in \mathcal{K}_{k+1}(A, \mathbf{q}) \ominus \mathcal{K}_k(A, \mathbf{q}).$$

The Lanczos algorithm with thick restarts (cont.) So, for any set of indices $1 \le i_1 < \cdots < i_j \le k$ we have

$$\begin{aligned} \mathcal{A}[\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots, \mathbf{y}_{i_j}] &- [\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots, \mathbf{y}_{i_j}] \operatorname{diag}(\vartheta_{i_1}, \dots, \vartheta_{i_j}) \\ &= \beta_{k+1} \mathbf{q}_{k+1} [s_{k,i_1}^{(k)}, s_{k,i_2}^{(k)}, \dots, s_{k,i_j}^{(k)}]. \end{aligned}$$

Theorem \implies any set $[\mathbf{y}_{i_1}, \mathbf{y}_{i_2}, \dots, \mathbf{y}_{i_j}]$ of Ritz vectors forms a Krylov space.

The generating vector differs for each set $\{i_1, \dots, i_j\}$.

Split the indices $1, \ldots, k$ in two sets.

- ► First set: 'good' Ritz vectors that we want to keep and that we collect in Y₁
- Second set: 'bad' Ritz vectors that we want to remove. They go into Y₂.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Lanczos algorithm with thick restarts (cont.)

$$\mathcal{A}[Y_1, Y_2] - [Y_1, Y_2] \begin{bmatrix} \Theta_1 \\ \Theta_2 \end{bmatrix} = \beta_{k+1} \mathbf{q}_{k+1}[\mathbf{s}_1^*, \mathbf{s}_2^*].$$
(3)

Keeping the first set of Ritz vectors and purging (deflating) the rest yields

$$AY_1 - Y_1\Theta_1 = \beta_{k+1}\mathbf{q}_{k+1}\mathbf{s}_1^*.$$

We now can restart a Lanczos procedure by orthogonalizing $A\mathbf{q}_{k+1}$ against $Y_1 =: [\mathbf{y}_1^*, \dots, \mathbf{y}_j^*]$ and \mathbf{q}_{k+1} .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … �

The Lanczos algorithm with thick restarts (cont.) From the equation

$$A\mathbf{y}_i - \mathbf{y}_i \vartheta_i = \mathbf{q}_{k+1} \sigma_i, \qquad \sigma_i = \beta_{k+1} \mathbf{e}_k^* \mathbf{s}_i^{(k)}$$

we get

$$\mathbf{q}_{k+1}^* A \mathbf{y}_i = \sigma_i,$$

whence

$$\mathbf{r}_{k+1} = A\mathbf{q}_{k+1} - \beta_k \mathbf{q}_{k+1} - \sum_{i=1}^j \sigma_i \mathbf{y}_i \perp \mathcal{K}_{k+1}(A, \mathbf{q}_i)$$

From this point on the Lanczos algorithm proceeds with the ordinary three-term recurrence.

The Lanczos algorithm with thick restarts (cont.) We finally arrive at relation $AQ_m - Q_m T_m = \beta_{m+1} \mathbf{q}_{m+1} \mathbf{e}_m^T$ with

$$Q_m = [\mathbf{y}_1, \ldots, \mathbf{y}_j, \mathbf{q}_{k+1}, \ldots, \mathbf{q}_{m+k-j}]$$

and

$$T_m = \begin{pmatrix} \vartheta_1 & \sigma_1 & & & \\ & \ddots & \vdots & & \\ & & \vartheta_j & \sigma_j & & \\ \sigma_1 & \cdots & \sigma_j & \alpha_{k+1} & \ddots & & \\ & & & \ddots & \ddots & \beta_{m+k-j-1} & \\ & & & & \beta_{m+k-j-1} & \alpha_{m+k-j} & & \end{pmatrix}$$

Solving large	scale	eigenvalue	problems
Survey			

The Lanczos algorithm with thick restarts (cont.)

- This procedure, called thick restart, has been suggested by Wu & Simon [2].
- It allows to restart with any number of Ritz vectors.
- In contrast to the implicitly restarted Lanczos procedure, we need the spectral decomposition of T_m . (Its computation is not an essential overhead.)
- The spectral decomposition admits a simple sorting of Ritz values.
- ▶ We could further split the first set of Ritz pairs into converged and unconverged ones, depending on the value $\beta_{m+1}|s_{k,i}|$. If this quantity is below a given threshold we set the value to zero and lock (deflate) the corresponding Ritz vector, i.e., accept it as an eigenvector.

Solving large	scale	eigenvalue	problems
Survey			

Thick restart Lanczos algorithm

1: Let us be given k Ritz vectors \mathbf{y}_i and a residual vector \mathbf{r}_k such that $A\mathbf{y}_i = \vartheta_i \mathbf{y}_i + \sigma_i \mathbf{r}_{k+1}$, i = 1, ..., k. The value k may be zero in which case \mathbf{r}_0 is the initial guess.

This algorithm computes an orthonormal basis

 $\mathbf{y}_1, \ldots, \mathbf{y}_k, \mathbf{q}_{k+1}, \ldots, \mathbf{q}_m$ that spans a *m*-dimensional Krylov space whose generating vector is not known unless k = 0.

10/25

2:
$$z := Aq_{k+1};$$

3:
$$\alpha_{k+1} := \mathbf{q}_{k+1}^* \mathbf{z};$$

4: $\mathbf{r}_{k+1} = \mathbf{z} - \alpha_{k+1} \mathbf{q}_{k+1} - \sum_{i=1}^k \sigma_i \mathbf{y}_i$
5: $\beta_{k+1} := \|\mathbf{r}_{k+1}\|$
6: for $i = k+2, \dots, m$ do
7: $\mathbf{q}_i := \mathbf{r}_{i-1}/\beta_{i-1}.$
8: $\mathbf{z} := A\mathbf{q}_i;$

Thick restart Lanczos algorithm (cont.)

9: $\alpha_i := \mathbf{q}_i^* \mathbf{z};$

10:
$$\mathbf{r}_i = \mathbf{z} - \alpha_i \mathbf{q}_i - \beta_{i-1} \mathbf{q}_{i-1}$$

- 11: $\beta_i = \|\mathbf{r}_i\|$
- 12: end for
 - Problem of losing orthogonality is similar to plain Lanczos.
 - Wu–Simon [2] investigate various reorthogonalizing strategies known from plain Lanczos (full, selective, partial).
 - In their numerical experiments the simplest procedure, full reorthogonalization, performs similarly or even faster than the more sophisticated reorthogonalization procedures.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … �

Krylov–Schur algorithm

Krylov–Schur algorithm (Stewart [1]) is generalization of the thick-restart procedure for non-Hermitian problems.

The Arnoldi algorithm constructs the Arnoldi relation

$$AQ_m = Q_m H_m + \mathbf{r}_m \mathbf{e}_m^*,$$

where H_m is Hessenberg and $[Q_m, \mathbf{r}_m]$ has full rank. Let $H_m = S_m T_m S_m^*$ be a Schur decomposition of H_m with unitary S_m and upper triangular T_m . Similarly as before we have

$$AY_m = Y_m T_m + \mathbf{r}_m \mathbf{s}^*, \qquad Y_m = Q_m S_m, \quad \mathbf{s}^* = \mathbf{e}_m^* S_m.$$
(4)

Large scale eigenvalue problems, Lecture 10, May 2, 2018

◆□ ▶ ◆圖 ▶ ◆ 注 ▶ ◆ 注 ▶ ─ 注 …

Krylov–Schur algorithm (cont.)

The upper triangular form of T_m eases analysis of Ritz pairs. It admits moving unwanted Ritz values to the lower-right of T_m . We collect 'good' and 'bad' Ritz vectors in matrices Y_1 and Y_2 :

$$A[Y_1, Y_2] - [Y_1, Y_2] \begin{bmatrix} T_{11} & T_{12} \\ & T_{22} \end{bmatrix} = \beta_{k+1} \mathbf{q}_{k+1} [\mathbf{s}_1^*, \mathbf{s}_2^*].$$
(5)

<ロ> (四) (四) (三) (三) (三) (三)

13/25

Keeping the first set of Ritz vectors and purging the rest yields

$$AY_1 - Y_1T_{11} = \beta_{k+1}\mathbf{q}_{k+1}\mathbf{s}_1^*.$$

-Krylov-Schur algorithm

Krylov–Schur algorithm (cont.)

Thick-restart Lanczos: eigenpair considered found if $\beta_{k+1}|s_{ik}|$ sufficiently small.

Determination of converged subspace not so easy with general Krylov–Schur.

However, if we manage to bring \mathbf{s}_1 into the form

$$\mathbf{s}_1 = \left[egin{array}{c} \mathbf{s}_1' \ \mathbf{s}_1'' \end{array}
ight] = \left[egin{array}{c} \mathbf{0} \ \mathbf{s}_1'' \ \mathbf{s}_1'' \end{array}
ight]$$

then we found an invariant subspace:

$$A[Y'_{1}, Y''_{1}] - [Y'_{1}, Y''_{1}] \begin{bmatrix} T'_{11} & T'_{12} \\ & T'_{22} \end{bmatrix} = \beta_{k+1} \mathbf{q}_{k+1} [\mathbf{0}^{T}, \mathbf{s}''_{1}]$$

i.e., $AY'_1 = Y'_1 T'_{11}$

Large scale eigenvalue problems, Lecture 10, May 2, 2018

Krylov–Schur algorithm (cont.)

- ► In most cases s'₁ consists of a single *small* element or of two small elements in the case of a complex-conjugate eigenpair of a real nonsymmetric matrix [1].
- These small elements are then declared zero and the columns in Y'₁ are locked, i.e., they are not altered anymore in the future computations.
- Orthogonality against them has to be enforced in the continuation of the eigenvalue computation though.

Polynomial filtering

- SI-Lanczos/Arnoldi are the standard way to compute eigenvalues close to some target/shift σ.
- ► This works as long as the factorization of A − σI (or of A − σB) is feasible.
- An alternative that has emerged in the last few years is polynomial filtering:

Replace the matrix A by p(A) where $p \in \mathbb{P}_d$ for some d.

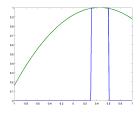
$$A\mathbf{u}_i = \lambda_i \mathbf{u}_i \implies p(A)\mathbf{u}_i = p(\lambda_i)\mathbf{u}_i.$$

Eigenvectors remain unchanged (at least if $\lambda_i \neq \lambda_i$ implies $p(\lambda_i) \neq p(\lambda_i)$).

- Polynomial filtering

Polynomial filtering (cont.)

- Let's assume that $A = A^*$, whence $\sigma(A) \subset \mathbb{R}$.
- Let's further assume that σ(A) ∈ [−1, 1]. (This requires some knowledge about λ_{min}(A) and λ_{max}(A)). Scaling.
- If we wanted to compute eigenvalues in the interval [.3, .6] we could choose p(λ) = 1 − 0.4 (λ − 0.45)²:



• Eigenvalues are poorly separated \longrightarrow slow convergence.

- Polynomial filtering

Polynomial filtering (cont.)

• The spectral decomposition of $A \in \mathbb{F}^{n \times n}$ is given by

$$A = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^*$$

(Multiple eigenvalues are taken into account according to their multiplicities.) Spectral projector for interval [a, b]:

$$P_{[a,b]} = \sum_{a \leq \lambda_i \leq b} \mathbf{u}_i \mathbf{u}_i^*.$$

(It may be useful to know how many eigenvalues λ_i are in [a, b].)

$$P_{[a,b]} = \sum_{i=1}^{n} \chi_{[a,b]}(\lambda_i) \mathbf{u}_i \mathbf{u}_i^* = \chi_{[a,b]}(A), \quad \chi_{[a,b]}(x) = \begin{cases} 1, & x \in [a,b], \\ 0, & \text{otherwise.} \end{cases}$$

Large scale eigenvalue problems, Lecture 10, May 2, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Polynomial filtering

Polynomial filtering (cont.)

- ► To actually apply χ_[a,b](A) we would need to know the eigenvectors u_i associated with the eigenvalues λ_i ∈ [a, b].
- An idea is to approximate χ_[a,b] by a polynomial.
 We could write

$$\chi_{[a,b]}(x) = \sum_{j=0}^d \gamma_j T_j(x),$$

where $T_j(x)$, j = 0, 1, ..., are Chebyshev polynomials.

Chebyshev polynomials T_j(x) = cos(j arccos x) ≡ cos(jϑ) are orthogonal with respect to the inner product

$$\langle f,g\rangle \equiv \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} f(\cos\vartheta)g(\cos\vartheta)d\vartheta.$$

Note:
$$x = \cos \vartheta \longrightarrow dx = -\sin \vartheta d\vartheta$$
.

Large scale eigenvalue problems, Lecture 10, May 2, 2018

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

- Polynomial filtering

Polynomial filtering (cont.)

Any function f with ⟨f, f⟩ < ∞ can be expanded in a series of Chebyshev polynomials:

$$f(x) = \sum_{j=0}^{\infty} \frac{\langle f, T_j \rangle}{\langle T_j, T_j \rangle} T_j(x).$$

• For
$$f = \chi_{[a,b]}$$
 we get

$$\gamma_j = \frac{\langle \chi_{[a,b]}, T_j \rangle}{\langle T_j, T_j \rangle} = \begin{cases} \frac{1}{\pi} (\arccos(a) - \arccos(b)), & j = 0, \\ \frac{2}{\pi} \frac{\sin(\arccos(a)) - \sin(\arccos(b))}{j}, & j > 0. \end{cases}$$

By truncation we get a polynomial approximation $p \in \mathbb{P}_d$ of $\chi_{[a,b]}$ that is optimal in the norm $\langle \cdot, \cdot \rangle^{1/2}$.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖 □

Polynomial filtering (cont.)

The relation

$$\cos(k+1)\vartheta + \cos(k-1)\vartheta = 2\cos\vartheta\cos k\vartheta$$

gives rise to the three-term recurrence

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \ k > 0, \quad T_0(x) = 1, \ T_1(x) = x.$$

• Let $\mathbf{t}_k = T_k(A)\mathbf{x}$. Then $\mathbf{t}_0 = T_0(A)\mathbf{x} = I\mathbf{x}$ and $\mathbf{t}_1 = T_1(A)\mathbf{x} = A\mathbf{x}$, and

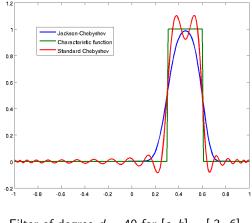
$$\mathbf{t}_{k+1} = 2A\mathbf{t}_k - \mathbf{t}_{k-1}, \qquad k > 0.$$

Since the p(x) ≈ χ_[a,b](x) oscillate very much at the discontinuities of χ_[a,b] (Gibbs phenomenon), the coefficients γ_k are often *damped*. Jackson damping is popular, see e.g. Schofield, Chelikowsky, Saad [3].

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

- Polynomial filtering

Polynomial filtering (cont.)



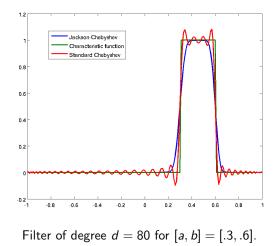
Filter of degree d = 40 for [a, b] = [.3, .6].

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Large scale eigenvalue problems, Lecture 10, May 2, 2018

- Polynomial filtering

Polynomial filtering (cont.)



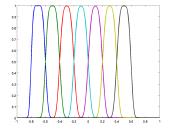
Large scale eigenvalue problems, Lecture 10, May 2, 2018

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

- Polynomial filtering

Polynomial filtering (cont.)

- Very large eigenvalue problems have huge memory requirements
- A solution: spectrum slicing:
- Devide spectrum in 'slices' / 'windows' of a few hundred or thousand eigenvalues at a time.
- Deceivingly simple looking idea for computing interior eigenvalues, generating parallelism.
- Issues:
 - Deal with interfaces: duplicate/missing eigenvalues
 - Window size: need to estimate number of eigenvalues in slice
 - Polynomial degree increases with shrinking slice width



(日)、

References

- G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 601–614.
- [2] K. Wu and H. D. Simon, *Thick-restart Lanczos method for large symmetric eigenvalue problems*, SIAM J. Matrix Anal. Appl., **22** (2000), pp. 602–616.
- G. Schofield, J. R. Chelikowsky, Y. Saad: A spectrum slicing method for the Kohn-Sham problem. Comput. Phys. Comm. 183 (2012), pp. 487–505.