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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

I Jacobi–Davidson algorithms
I Basic ideas

I Davidson’s subspace expansion
I Jacobi’s orthogonal component correction

I Jacobi–Davidson algorithms
I Correction equation
I JDQR, JDSYM, JDQZ
I Nonlinear Jacobi–Davidson
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

Jacobi–Davidson algorithm

I The Lanczos and Arnoldi methods are effective to compute
extremal eigenvalues.

I Lanczos and Arnoldi methods combined with shift-and-invert
spectral transformation are efficient to compute interior
eigenvalues close to shift σ. Linear systems of the form

(A− σI )x = y, or (A− σM)x = y,

need to be solved in each iteration step.

I Systems have to be solved accurately. Otherwise the Lanczos/
Arnoldi relation does not hold anymore. In most cases the
matrix A− σI (or A− σM) is LU or Cholesky factored.

I The Jacobi–Davidson (JD) algorithm is particularly attractive
if this factorization is not feasible.
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Davidson algorithm

Let v1, . . . , vm be a set of orthonormal vectors, spanning the
search space R(Vm) with Vm = [v1, . . . , vm].

Galerkin approach: we look for m-vector s for which Galerkin
condition holds,

AVms− ϑVms ⊥ v1, . . . , vm.

This leads to (small) eigenvalue problem

V ∗mAVms = ϑV ∗mVms = ϑs

with solutions (ϑ
(m)
j , s

(m)
j ), j = 1, . . . ,m.

In the sequel we omit superscript m.

Large scale eigenvalue problems, Lecture 11, May 9, 2018 4/42



Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Davidson algorithm (cont.)
Consider Ritz pair (ϑj ,uj = Vmsj) and residual rj = Auj − ϑjuj .

Can we improve (ϑj ,uj) if ‖rj‖ is still large?

We try to find a better approximate eigenpair by expanding the
search space.

Davidson [1] suggested to compute vector t from

(DA − ϑj I )t = rj , DA = diag(A).

The vector t is then orthogonalized against v1, . . . , vm. The
resulting vector, after normalization, is chosen as vm+1 by which
R(Vm) is expanded, i.e., Vm+1 = [v1, . . . , vm, vm+1].
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Davidson algorithm (cont.)
I Method turned out to be successful in finding dominant

eigenvalues of (strongly) diagonally dominant matrices.

I Matrix DA − ϑj I has therefore often been viewed as a
preconditioner for the matrix A− ϑj I .

I A number of investigations were made with more
sophisticated preconditioners M − ϑj I .

I They lead to the conclusion that M − ϑj I should not be ‘too
close’ to A− ϑj I which contradicts the notion of a
preconditioner as being an easily invertible (factorizable)
approximation of A− ϑj I .
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Jacobi orthogonal component correction

I Jacobi (1846) introduced Jacobi rotations to solve the
symmetric eigenvalue problem. He also presented an approach
to improve an approximate eigenpair with an iterative
procedure.

I Sleijpen and van der Vorst [2] used Jacobi’s idea to improve
Davidson’s subspace expansion.

I Let uj be approximation to eigenvector x with Ax = λx.

I Jacobi proposed to correct uj by a vector t, uj ⊥ t, such that

A(uj + t) = λ(uj + t), uj ⊥ t. (1)

Sleijpen & van der Vorst called this the Jacobi orthogonal
component correction (JOCC).
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Jacobi orthogonal component correction (cont.)
As t ⊥ uj we may split equation (1) in the part parallel to uj and
in the part orthogonal to uj .

Let ‖uj‖ = 1. (Then uju
∗
j an orthogonal projector.)

Then part parallel to uj is

ujuj
∗A(uj + t) = λujuj

∗(uj + t)

which simplifies to the scalar equation

ϑj + uj
∗At = λ.

Here, ϑj = ρ(uj) is the Rayleigh quotient of uj .
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Jacobi orthogonal component correction (cont.)
The part orthogonal to uj is

(I − ujuj
∗)A(uj + t) = λ(I − ujuj

∗)(uj + t)

which is equivalent to (move t to left, u to right.)

(I − ujuj
∗)(A− λI )t = (I − ujuj

∗)(−Auj + λuj)

= −(I − ujuj
∗)Auj = −(A− ϑj I )uj =: −rj .

As (I − ujuj
∗)t = t we can ‘symmetrize’ this equation:

(I − ujuj
∗)(A− λI )(I − ujuj

∗)t = −rj .

If A is symmetric then the matrix above is symmetric indeed.
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Jacobi–Davidson correction equation

Unfortunately, we do not know λ!

So, we replace λ by ϑj to get Jacobi–Davidson correction equation

(I − uju
∗
j )(A− ϑj I )(I − uju

∗
j )t = −rj = −(A− ϑj I )uj , t ⊥ uj .

As rj ⊥ uj (in fact rj ⊥ Vm) this equation is consistent if A− ϑj I is
nonsingular.

The correction equation is, in general, solved iteratively by the
GMRES or the MINRES algorithm. Often, only little accuracy in
the solution is required.

Vm isn’t a Krylov space!
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Solving large scale eigenvalue problems

Jacobi–Davidson algorithm

The Jacobi–Davidson correction equation (cont.)
Once t is (approximately) known we set

uj+1 = uj + t.

and
ϑj+1 = ϑj + uj

∗At.

If A is symmetric we may set

ϑj+1 = ρ(uj+1).
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Solving large scale eigenvalue problems

Solving the Jacobi–Davidson correction equation

Solving the Jacobi–Davidson correction equation

The matrix (I − uju
∗
j )(A− ϑj I )(I − uju

∗
j ) in the correction

equation is evidently singular.

(I − uju
∗
j )(A− ϑj I )(I − uju

∗
j )t = −rj , t ⊥ uj .

If ϑj 6= σ(A) then A− ϑj I is nonsingular. Since r∗j uj = 0,

rj ∈ R((I − uju
∗
j )(A− ϑj I )(I − uju

∗
j )).

So, there is a solution t. (In fact many.) Uniqueness is obtained
through constraint t∗uj = 0.

How can we solve the correction equation?
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Solving large scale eigenvalue problems

Solving the Jacobi–Davidson correction equation

Solving the Jacobi–Davidson correction equation (cont.)
How can we solve the correction equation?

(I − uju
∗
j )(A− ϑj I )t = (A− ϑj I )t− αuj = −rj

with the scalar α = u∗j (A− ϑj I )t. Assuming that ϑj 6= σ(A) we get

t = α(A− ϑj I )−1uj − (A− ϑj I )−1rj .

The constraint u∗j t = 0 allows us to determine the free variable α,

0 = αu∗j (A− ϑj I )−1uj − u∗j (A− ϑj I )−1rj ,

whence

α =
u∗j (A− ϑj I )−1rj
u∗j (A− ϑj I )−1uj

.
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Solving large scale eigenvalue problems

Solving the Jacobi–Davidson correction equation

Solving the Jacobi–Davidson correction equation (cont.)
So, the next approximate is (up to normalization)

uj+1 = uj + t

= uj + α(A− ϑj I )−1uj − (A− ϑj I )−1rj︸ ︷︷ ︸
uj

= α(A− ϑj I )−1uj

which is a step of Rayleigh quotient iteration! This implies a fast
convergence rate of this algorithm:

I quadratic for general matrices and

I cubic in the Hermitian case.
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Solving large scale eigenvalue problems

Solving the Jacobi–Davidson correction equation

Iterative solution of the correction equation

In general the correction equation

Ã t := (I − uju
∗
j )(A− ϑj I )(I − uju

∗
j )t = −rj ,

(I − uju
∗
j )t = t

is solved iteratively with a Krylov space solver like GMRES or
MINRES.
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Solving large scale eigenvalue problems

Solving the Jacobi–Davidson correction equation

JD algorithm to compute eigenvalue closest to τ

1: Let A ∈ Rn×n. Let t be initial vector. Set V0 = [], m = 1.
2: loop
3: t = (I − Vm−1V

∗
m−1)t

4: vm := t/‖t‖; Vm := [Vm−1, vm];
5: M = V ∗mAVm

6: Rayleigh–Ritz step: Compute eigenpair (ϑ, s) of M closest
to τ : Ms = ϑs; ‖s‖ = 1;

7: u := Vms; r := Au− ϑu;
8: if ‖r‖ < tol then
9: return (λ̃ = ϑ, x̃ = u)

10: end if
11: (Approximatively) solve the correction equation for t,

(I − uu∗)(A− ϑj I )(I − uu∗)t = −r, t ⊥ u;
12: end loop
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Solving large scale eigenvalue problems

Krylov space solvers

Detour on Krylov space solvers

Let x0 (e.g. x0 = 0) be an initial guess for the solution of the linear
system of equations

Ax = b.

Krylov space methods like the conjugate gradient (CG) method or
the generalized minimal residual (GMRES) method search for
solutions in Krylov spaces generated with the initial residual

r0 = b− Ax.

The GMRES (Generalized Minimal Residual) algorithm computes
xm ∈ x0 +Km(A, r0) that leads to the smallest residual exploiting
the Arnoldi relation.
The MINRES algorithm does the same for symmetric matrices
using the Lanczos relation.
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Solving large scale eigenvalue problems

Krylov space solvers

Detour on Krylov space solvers (cont.)
Goal: Cheaply minimize

‖rm‖2 = ‖b− Axm‖2, xm ∈ x0 +Km(A, r0),

using the Arnoldi relation

AVm = VmHm + wme
T
m = Vm+1H̄m

and R(Vm) = Km(A, r0).
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Solving large scale eigenvalue problems

Krylov space solvers

Detour on Krylov space solvers (cont.)
Arnoldi basis expansion xm = x0 + Vmy gives with β := ‖r0‖2:

min ‖rm‖2 = min ‖b− A(x0 + Vmy)‖2
= min ‖r0 − AVmy‖2
= min ‖r0 − Vm+1H̄my‖2
= min ‖Vm+1

(
βe1 − H̄my

)
‖2

= min ‖βe1 − H̄my‖2.

I Hessenberg least squares problem of dimension (m + 1)×m.

I QR factorization of H̄m can be cheaply computed using
Givens rotations.
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Solving large scale eigenvalue problems

Krylov space solvers

Detour on Krylov space solvers (cont.)
Convergence is good if

I A has just a few eigenvalues (at least eigenvalue clusters), or

I A is well-conditioned (A ≈ I )

In linear systems (in contrast to eigenvalue problems) we can
modify the original equation using a preconditioner K

K−1Ax = K−1b.

K is chosen such that

I one of the above goals is achieved (approximately) for K−1A
and

I it is easy (cheap) to solve linear system Kx = b.

Large scale eigenvalue problems, Lecture 11, May 9, 2018 20/42



Solving large scale eigenvalue problems

Solution of the correction equation

Iterative solution of the correction equation

In general the correction equation

Ã t := (I − uju
∗
j )(A− ϑj I )(I − uju

∗
j )t = −rj , t ⊥ uj , (2)

is solved iteratively with a Krylov space solver like GMRES or
MINRES.
For decent performance a preconditioner is needed. We set [2]

K̃ = (I − uju
∗
j )K (I − uju

∗
j ), K ≈ A− ϑj I . (3)

K is a preconditioner for A ≈ A− ϑj I . We assume that K is
(easily) invertible, i.e., that it is computationaly much cheaper to
solve a system of equation with K than with A.
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Solving large scale eigenvalue problems

Solution of the correction equation

Iterative solution of the correction equation (cont.)
The first residual in the Arnoldi/Lanczos procedure is

v1 = −rj − Ãt0.

Clearly, v1 ⊥ uj since rj ⊥ uj .
The preconditioned residual is obtained by solving

K̃z1 = v1, z1 ⊥ uj .

z1 is (up to normalization) the first Arnoldi/Lanczos basis vector.
Clearly, z1 ⊥ uj .
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Solving large scale eigenvalue problems

Solution of the correction equation

Iterative solution of the correction equation (cont.)
The solution of

K̃z1 = (I − uju
∗
j )Kz1 = v1, z1 ⊥ uj ,

is obtained similarly as earlier:

Kz1 = v1 + βuj

The scalar factor β is determined such that z∗1uj = 0.

The further basis vectors z2, z3, . . . , are obtained in the same
fashion.

In particular, z∗kuj = 0, k = 2, 3, . . .
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Solving large scale eigenvalue problems

Solution of the correction equation

Restarts

I The dimension m of the search space can get large.

I To limit memory consumption, we bound m: m ≤ mmax.

I If m = mmax we restart: Vm = Vmmax is replaced by the, say,
q Ritz vectors corresponding to the Ritz values closest to τ .

I The restart is easy because we do not need to respect the
Krylov space structure.
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Solving large scale eigenvalue problems

Solution of the correction equation

Computing multiple eigenvalues

Let x̃1, x̃2, . . . , x̃k be already computed eigenvectors or Schur
vectors with x̃∗i x̃j = δij , 1 ≤ i , j ≤ k. Then

AQk = QkTk , Qk = [x̃1, . . . , x̃k ].

is a partial Schur decomposition of A.

We want to extend the partial Schur decomposition by one vector
employing the Jacobi–Davidson algorithm.

Since Schur vectors are mutually orthogonal we apply the JD
algorithm in R(Qk)⊥, i.e., we apply JD algorithm to matrix

(I − QkQ
∗
k )A (I − QkQ

∗
k ), Qk = [x̃1, . . . , x̃k ].
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Solving large scale eigenvalue problems

Solution of the correction equation

Computing multiple eigenvalues (cont.)
The correction equation gets the form

(I − Q̃kQ̃
∗
k )(A− ϑj I )(I − Q̃kQ̃

∗
k )t = −rj , Q̃∗k t = 0.

with Q̃k = [x̃1, . . . , x̃k ,uj ].
If the iteration has converged to vector x̃k+1 we can extend the
partial Schur decomposition. Setting

Qk+1 := [Qk , x̃k+1],

we get
AQk+1 = Qk+1Tk+1 (4)

with

Tk+1 =

[
Tk Q∗kAx̃k+1

0 x̃∗k+1Ax̃k+1

]
.
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Solving large scale eigenvalue problems

Solution of the correction equation

Spectral shifts

I In correction equation and implicitly in preconditioner a
spectral shift ϑj appears.

I It is not wise to always choose Rayleigh quotient ρ(q̃) as shift.
In first few iteration steps, Rayleigh quotient may be far away
from the (desired) eigenvalue, and even may direct the JD
iteration to an unwanted solution.

I One proceeds similarly as in Rayleigh quotient iteration:
Initially, the shift is held fixed, usually equal to the target
value. As soon as the norm of the residual is small enough,
the Rayleigh quotient of actual approximate is chosen as
spectral shift in the correction equation.
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Solving large scale eigenvalue problems

Solution of the correction equation

Spectral shifts (cont.)
I For efficiency reasons, the spectral shift in the preconditioner

K is always fixed. In this way it has to be computed just once.
Notice that K̃ is changing with each correction equation.

I As long as the shift is held fixed Jacobi–Davidson is actually
performing a shift-and-invert Arnoldi iteration.
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Solving large scale eigenvalue problems

Solution of the correction equation

JDQR algo to compute the p eigenvalues closest to τ

1: Choose v1 with ‖v1‖ = 1. Q0 := []; k := 0. (# conv. ev’s)
2: H1 := v∗1A v1; V1 := [v1]; j := 1. (dim. search space)
3: q̃ := v1; ϑ̃ := q̃∗Aq̃; r := Aq̃− ϑ̃q̃.
4: while k < p do {Compute Schur vectors one after the other}
5: Approximatively solve correction equation for t

(I − Q̃kQ̃
∗
k )(A− ϑ̃I )(I − Q̃kQ̃

∗
k )t = −rj , Q̃∗k t = 0.

with Q̃k = [Qk , q̃].
6: vj := (I − Vj−1V

∗
j−1)t.

7: vj := vj/‖vj‖; Vj := [Vj−1, vj ].
8: Hj := V ∗j AVj .
9: Compute Schur decomposition of Hj =: SjRjSj with the

eigenvalues r
(j)
ii sorted according to their distance to τ .
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Solving large scale eigenvalue problems

Solution of the correction equation

JDQR algo to compute the p eigenvalues closest to τ
(cont.)

10: {Test for convergence}
11: ϑ̃ = λ

(j)
1 ; q̃ = Vjs1; r = A q̃− ϑ̃q̃

12: if ‖r‖ < ε then
13: Qk+1 = [Qk , q̃]; k := k + 1;
14: end if
15: {Restart}
16: if j = jmax then
17: Vjmin

:= Vj [s1, . . . , smin]; Tjmin
:= Tj(1 : jmin, 1 : jmin);

18: Hjmin
:= Tjmin

; Sjmin
:= Ijmin

; J := jmin

19: end if
20: end while
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Solving large scale eigenvalue problems

Solution of the correction equation

Numerical experiment

We compute the 5 smallest eigenvalues and associated
eigenvectors of the accustic behavior in the interior of a car.
The problem size is n = 1095. The dimension of the search space
varies between 10 and 20. The target is τ = 0.

An eigenpair is considered converged if the residual norm
‖Aq̃− λ̃Mq̃‖ < 10−8‖q̃‖. The shift is changed from fixed ϑj = σ
to ϑj = ρ(q̃) when ‖Aq̃− λ̃Mq̃‖ < 10−4‖q̃‖.

The correction equation is solved with MINRES. The
preconditioner is K = diag(A− τM). The linear system solver
stops iterating if the residual is below

‖̃ri‖ < γ−j ‖̃r0‖, γ = 2.

where j is the JD iteration number.
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Solving large scale eigenvalue problems

Solution of the correction equation

Numerical experiment (cont.)

0 5 10 15 20 25 30 35

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Typical Jacobi–Davidson convergence history
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

The Jacobi–Davidson algorithm for interior eigenvalues

Interior eigenvalues are eigenvalues that do not lie at the ‘border’
of the convex hull of the spectrum.

View of a spectrum σ(A) in the complex plane. The eigenvalues in the

red circle are to be computed
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

The Jacobi–Davidson algorithm for interior eigenvalues
(cont.)

Success of Jacobi–Davidson algorithm depends heavily on quality
of actual Ritz pair (ϑ̃j , q̃).
However, the Rayleigh–Ritz procedure can lead to problems if it is
applied to interior eigenvalues.

A =

 0 0 0
0 1 0
0 0 −1

 , U =

1 0

0
√

0.5

0
√

0.5

 , U∗AU =

[
0 0
0 0

]
, U∗U = I2.

Any linear combination of columns of U is a Ritz vector
corresponding to the Ritz value 0, e.g.,

U

(√
0.5√
0.5

)
=

√0.5
0.5
0.5

 .
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

The Jacobi–Davidson algorithm for interior eigenvalues
(cont.)

Although basis contains the correct eigenvector associated with the
eigenvalue 0, the Rayleigh–Ritz procedure fails to find it and,
instead, returns a very bad eigenvector approximation.

Contrieved example?

A Matlab experiment with the same A but with a randomly
perturbed U
U1=U+1e-4*rand(size(U))

shows analogous result:

We get a reasonable approximation ϑ for the eigenvalue 0.
However, the large norm of the residual indicates that the Ritz
vector is a bad approximation of the eigenvector.
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

Harmonic Ritz values and vectors

We need an idea how to get at better approximations for the
eigenvector.

Shift-and-invert Arnoldi: basic operator is A− σI with some
shift σ.

The algorithm finds the largest eigenvalues of (A− σI )−1, i.e., the
eigenvalues of A closest to the shift.

However, factorization of A− σI is infeasible.

Clever way out: apply Ritz–Galerkin procedure with the matrix
(A− σI )−1 and some cleverly chosen subspace R(V ) ⊂ Rn.
Small eigenvalue problem

V ∗(A− σI )−1V s = µV ∗V s. (5)
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

Harmonic Ritz values and vectors (cont.)
Largest eigenvalues of (5) approximate largest Ritz values µj .

µj ≈
1

λj − σ
⇐⇒ λj ≈ σ +

1

µj
,

where λj is an eigenvalue of A close to the shift σ.

The trick is in the choice of V . We set V := (A− σI )U. Then (5)
becomes

U∗(A− σI )∗(A− σI )Us = τU∗(A− σI )∗Us, τ = 1/µ.

or
V ∗V s = τV ∗Us. (6)
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

Harmonic Ritz values and vectors (cont.)

Definition

Let (τ, s) be an eigenpair of (6). Then the pair (σ + τ,Us) is
called a harmonic Ritz pair of A with shift σ.

I In practice, we are interested only in the harmonic Ritz pair
corresponding to the smallest harmonic Ritz values.

I In correction equation of the JD algorithm the harmonic Ritz
vector is used as the latest eigenvector approximation and the
harmonic Ritz value as the shift.

I In the symmetric case the harmonic Ritz value is replaced by
the Rayleigh quotient of the harmonic Ritz vector x, as

‖Ax− ρ(x)x‖ ≤ ‖Ax− µx‖, for all µ.
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Solving large scale eigenvalue problems

The Jacobi–Davidson algorithm for interior eigenvalues

Numerical example revisited

V = (A-theta*eye(3))*U1;

[v,l] = eig(V’*V, V’*U1)

theta + l(1,1) % Harmonic Ritz value

x = U1*v(:,1) % Harmonic Ritz vector

x’*A*x

Result: The procedure is able to extract a very good vector as
eigenvector approximation.

In the algorithm we only have to modify extraction phase (step 9).

I Compute smallest eigenvalue τ of
(AVj − σVj)

∗(AVj − σVj)s = τ(AVj − σVj)
∗Vjs.

I Set q̃ = Vj s̃ and ϑ̃ = σ + τ or ϑ̃ = q̃∗Aq̃/q̃∗q̃.
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The Jacobi–Davidson algorithm for interior eigenvalues

Refined Ritz vectors

Alternative to harmonic Ritz vectors are refined Ritz vectors [3].

Definition

Let µ be a Ritz value of A restricted to U. A solution of the
minimization problem

min
x̂∈U,‖x̂‖=1

‖Ax̂− µx̂‖ = min
‖s‖=1

‖(A− µI )Us‖ (7)

is called a refined Ritz vector.

The problem is solved by the ‘smallest’ right singular vector of
(A− µI )U or, equivalently, the ‘smallest’ eigenvector of
U∗(A− µI )∗(A− µI )U.
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The Jacobi–Davidson algorithm for interior eigenvalues

Numerical example continued

[u,s,v]=svd((A - 0*eye(3))*U)

U*v(:,2)

[u,s,v]=svd((A - L(1,1)*eye(3))*U1)

U1*v(:,2)

Again, in the algorithm we only have to modify the extraction
phase (step 9).

I Compute the Ritzpair (ϑ̃, q̃) of A closest to the target value.

I Compute the ‘smallest’ singular vector s̃ of AVj − ϑ̃Vj .
Replace q̃ by Vj s̃.
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