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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

I Rayleigh quotient minimization

I Method of steepest descent

I Conjugate gradient algorithm

I Preconditioned conjugate gradient algorithm

I Locally optimal PCG (LOPCG)

I Locally optimal block PCG (LOBPCG)
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Solving large scale eigenvalue problems

Rayleigh quotient

Rayleigh quotient

We consider symmetric/Hermitian eigenvalue problem

Ax = λMx , A = A∗, M = M∗ > 0.

The Rayleigh quotient is defined as

ρ(x) =
x∗Ax

x∗Mx
.

We want to exploit that

λ1 = min
x 6=0

ρ(x) (1)

and
λk = min

Sk⊂Rn
max
x 6=0
x∈Sk

ρ(x)

where Sk is a subspace of dimension k .
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Solving large scale eigenvalue problems

Rayleigh quotient

Rayleigh quotient minimization

Want to construct sequence {xk}k=0,1,... such that

ρ(xk+1) < ρ(xk) for all k .

The hope is that the sequence {ρ(xk)} converges to λ1 and by
consequence the vector sequence {xk} towards the corresponding
eigenvector.
Procedure: For any given xk we choose a search direction pk s.t.

xk+1 = xk + δkpk .

Parameter δk determined s.t. Rayleigh quotient of xk+1 is minimal:

ρ(xk+1) = min
δ
ρ(xk + δpk).
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Solving large scale eigenvalue problems

Rayleigh quotient

Rayleigh quotient minimization (cont.)

ρ(xk + δpk) =
x∗kAxk + 2δx∗kApk + δ2p∗kApk
x∗kMxk + 2δx∗kMpk + δ2p∗kMpk

=

(
1
δ

)∗ [
x∗kAxk x∗kApk
p∗kAxk p∗kApk

](
1
δ

)
(

1
δ

)∗ [
x∗kMxk x∗kMpk
p∗kMxk p∗kMpk

](
1
δ

) .
This is Rayleigh quotient associated with eigenvalue problem[

x∗kAxk x∗kApk
p∗kAxk p∗kApk

](
α
β

)
= λ

[
x∗kMxk x∗kMpk
p∗kMxk p∗kMpk

](
α
β

)
. (2)

Smaller of the two eigenvalues of (2) is the searched value
ρk+1 := ρ(xk+1) that minimizes the Rayleigh quotient.
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Solving large scale eigenvalue problems

Rayleigh quotient

Rayleigh quotient minimization (cont.)
We normalize corresponding eigenvector such that its first
component equals one. (Is this always possible?)
Second component of eigenvector is δ = δk .
Second line of (2) gives

p∗kA(xk + δkpk) = ρk+1p
∗
kM(xk + δkpk)

or
p∗k(A− ρk+1M)(xk + δkpk) = p∗krk+1 = 0. (3)

‘Next’ residual rk+1 is orthogonal to actual search direction pk .

How shall we choose the search directions pk?
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Solving large scale eigenvalue problems

The method of steepest descent

Detour: steepest descent method for linear systems

We consider linear systems

Ax = b, (4)

where A is SPD (or HPD). We define the functional

ϕ(x) ≡ 1

2
x∗Ax − x∗b +

1

2
b∗A−1b =

1

2
(Ax − b)∗A−1(Ax − b).

ϕ is minimized (actually zero) at the solution x∗ of (4). The
negative gradient of ϕ is

−∇ϕ(x) = b − Ax =: r(x). (5)

This is the direction in which ϕ decreases the most. Clearly,
∇ϕ(x) 6= 0 ⇐⇒ x 6= x∗.
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Solving large scale eigenvalue problems

The method of steepest descent

Steepest descent method for eigenvalue problem

We choose pk to be the negative gradient of the Rayleigh quotient

pk = −gk = −∇ρ(xk) = − 2

x∗kMxk
(Axk − ρ(xk)Mxk).

Since we only care about directions we can equivalently set

pk = rk = Axk − ρkMxk , ρk = ρ(xk).

With this choice of search direction we have from (3)

r∗k rk+1 = 0. (6)

The method of steepest descent often converges slowly, as for
linear systems. This happens if the spectrum is very much spread
out, i.e., if the condition number of A relative to M is big.
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Solving large scale eigenvalue problems

The method of steepest descent

Slow convergence of steepest descent method

Picture: M. Gutknecht
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Detour: Conjugate gradient algorithm for linear systems

As with linear systems of equations a remedy against the slow
convergence of steepest descent are conjugate search directions.
In the cg algorithm, we define search directions as

pk = −gk + βkpk−1, k > 0. (7)

where coefficient βk is determined s.t. pk and pk−1 are conjugate:

p∗kApk−1 = −g∗kApk−1 + βkp
∗
k−1Apk−1 = 0,

So,

βk =
g∗kApk−1
p∗k−1Apk−1

= · · · =
g∗k gk

g∗k−1gk−1
. (8)

One can show that p∗kApj = g∗k gj = 0 for j < k .
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

The conjugate gradient algorithm

The conjugate gradient algorithm can be adapted to eigenvalue
problems.

The idea is straightforward: consecutive search directions must
satisfy p∗kApk−1 = 0.

The crucial difference to linear systems stems from the fact, that
the functional that is to be minimized, i.e., the Rayleigh quotient,
is not quadratic anymore. (E.g., there is no finite termination
property.)

The gradient of ρ(x) is

g = ∇ρ(xk) =
2

x∗Mx
(Ax − ρ(x)Mx).
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

The conjugate gradient algorithm (cont.)
In the case of eigenvalue problems the different expressions for βk
in (7)–(8) are not equivalent anymore. We choose

p0 = −g0, k = 0,

pk = −gk +
g∗kMgk

g∗k−1Mgk−1
pk−1, k > 0,

(9)

which is the best choice according to Feng and Owen [1].

The above formulae is for the generalized eigenvalue problem
Ax = λMx .
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

The Rayleigh quotient algorithm

1: Let x0 be a unit vector, ‖x0‖M = 1.

2: v0 := Ax0, u0 := Mx0, ρ0 :=
v∗
0 x0
u∗
0 x0

, g0 := 2(v0 − ρ0u0)

3: while ‖gk‖ > tol do
4: if k = 1 then
5: pk := −gk−1;
6: else

7: pk := −gk−1 +
g∗
k−1Mgk−1

g∗
k−2Mgk−2

pk−1;

8: end if
9: Determine smallest Ritz value and associated Ritz vector xk of

(A,M) in R([xk−1,pk ])
10: vk := Axk , uk := Mxk
11: ρk := x∗

k vk/x
∗
k uk

12: gk := 2(vk − ρkuk)
13: end while
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Convergence

Construction of algorithm guarantees that ρ(xk+1) < ρ(xk) unless
rk = 0, in which case xk is the searched eigenvector.

In general, i.e., if the initial vector x0 has a nonvanishing
component in the direction of the ‘smallest’ eigenvector u1,
convergence is toward the smallest eigenvalue λ1.

Let
xk = cosϑku1 + sinϑkzk =: cosϑku1 + wk , (10)

where ‖xk‖M = ‖u1‖M = ‖zk‖M = 1 and u∗1Mzk = 0. Then we
have

ρ(xk) = cos2 ϑkλ1 + 2 cosϑk sinϑku
∗
1Azk + sin2 ϑkz

∗
kAzk

= λ1(1− sin2 ϑk) + sin2 ϑkρ(zk),
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Convergence (cont.)
Thus,

ρ(xk)− λ1 = sin2 ϑk (ρ(zk)− λ1) ≤ (λn − λ1) sin2 ϑk .

As seen earlier, in symmetric eigenvalue problems, the eigenvalues
are much more accurate than the eigenvectors.

Let us suppose that eigenvalue has converged, ρ(xk) = ρk ∼= λ1,
but the eigenvector is not yet as accurate as desired. Then,

rk = (A− ρkM)xk ∼= (A− λ1M)xk =
n∑

j=1

(λj − λ1)Muj u
∗
j Mxk

=
n∑

j=2

(λj − λ1)Muj u
∗
j Mxk ,
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Convergence (cont.)
Therefore, u∗1 rk = 0. From (10) we have wk = sinϑkzk ⊥M u1.
Thus, {

(A− λ1M)wk = (A− λ1M)xk = rk ⊥u1,

w∗kMu1 = 0.

If λ1 is a simple eigenvalue of the pencil (A;M) then A− λ1M is a
bijective mapping of R(u1)⊥M onto R(u1)⊥.

If rk ∈ R(u1)⊥ then the equation

(A− λ1M)wk = rk , w∗kMu1 = 0, (11)

has a unique solution wk in R(u1)⊥M .
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Convergence (cont.)
Close to convergence, Rayleigh quotient minimization does nothing
but solve equation (11). i.e., CG algorithm is applied to solve (11).

Convergence of RQMIN is determined by the condition number of
A− λ1M (as a mapping of R(u1)⊥M onto R(u1)⊥):

κ0 = K(A− λ1M)
∣∣∣
R(u1)

⊥M
=
λn − λ1
λ2 − λ1

,

High condition number if |λ1 − λ2| � |λ1 − λn|.
Rate of convergence: √

κ0 − 1
√
κ0 + 1

.
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Preconditioning

We try to turn
Ax = λMx

into
Ãx̃ = λ̃M̃ x̃ ,

such that

κ(Ã− λ̃1M̃)
∣∣∣
R(ũ1)

⊥
M̃
� κ(A− λ1M)

∣∣∣
R(u1)

⊥M
.

Change of variables: y = Cx with C nonsingular

ρ(x) =
x∗Ax

x∗Mx
=

y∗C−∗AC−1y

y∗C−∗MC−1y
=

y∗Ãy

ỹ∗M̃y
= ρ̃(y)
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Preconditioning (cont.)
Thus,

Ã− λ1M̃ = C−∗(A− λ1M)C−1,

or, after a similarity transformation,

C−1(Ã− λ1M̃)C = (C ∗C )−1(A− λ1M).

How should we choose C to satisfy (18)?

Let us tentatively set C ∗C = A. Then

(C ∗C )−1(A− λ1M)uj = (I − λ1A−1M)uj =

(
1− λ1

λj

)
uj .

Note that

0 ≤ 1− λ1
λj

< 1.
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Preconditioning (cont.)
The ‘true’ condition number of the modified problem is

κ1 := κ
(
A−1(A− λ1M)

∣∣
R(u1)

⊥M

)
=

1− λ1
λn

1− λ1
λ2

=
λ2
λn

λn − λ1
λ2 − λ1

=
λ2
λn
κ0.

If λ2 � λn then condition number is much reduced. Further,

κ1 =
1− λ1/λn
1− λ1/λ2

.
1

1− λ1/λ2
.

In FE applications, κ1 does not dependent on mesh-width h.

Conclusion: choose C such that C ∗C ∼= A, e.g. IC(0).
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Solving large scale eigenvalue problems

The conjugate gradient algorithm

Preconditioning (cont.)
Transformation x −→ y = Cx need not be made explicitly.

In the code of page 12 we modify the computation of the gradient
gk .

Statement 12 becomes

gk = 2(C ∗C )−1(vk − ρkuk)

Then preconditioner need not be an (incomplete) factorization
of A.
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Solving large scale eigenvalue problems

Locally optimal PCG (LOPCG)

Locally optimal PCG (LOPCG)

Parameters δk and αk in RQMIN and (P)CG:

ρ(xk+1) = ρ(xk + δkpk), pk = −gk + αkpk−1

The parameters are determined such that ρ(xk+1) is minimized
and consecutive search directions are conjugate.

Knyazev [2]: optimize both parameters, αk and δk , at once

ρ(xk+1) = min
δ,γ

ρ(xk − δgk + γpk−1) (12)

Results in potentially smaller values for the Rayleigh quotient, as

min
δ,γ

ρ
(
xk − δgk + γpk−1

)
≤ min

δ

(
xk − δ(gk − αkpk)

)
.

Procedure is “locally optimal”.
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Solving large scale eigenvalue problems

Locally optimal PCG (LOPCG)

Locally optimal PCG (LOPCG) (cont.)
ρ(xk+1) in (12) is minimal eigenvalue of 3× 3 eigenvalue problem x∗k
−g∗k
p∗k−1

A[xk ,−gk ,pk−1]

αβ
γ

 = λ

 x∗k
−g∗k
p∗k−1

M[xk ,−gk ,pk−1]

αβ
γ


We normalize eigenvector such that first component is 1:

[1, δk , γk ] := [1, β/α, γ/α].

Then

xk+1 = xk−δkgk+γkpk−1 = xk+δk (−gk + (γk/δk)pk−1)︸ ︷︷ ︸
=:pk

= xk+δkpk .

RQ minimization from xk along pk = −gk + (γk/δk)pk−1.
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Solving large scale eigenvalue problems

Comparison

Test: car cross section: 1st eigenvalue
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Solving large scale eigenvalue problems

Block versions

Block versions

Above procedures converge very slowly if eigenvalues are clustered.

Hence, these methods should be applied only in blocked form.

BRQMIN: Rayleigh quotient is minimized in 2q-dimensional
subspace generated by the eigenvector approximations Xk and
search directions

Pk = −Hk + Pk−1Bk .

Hk : preconditioned residuals
Bk chosen such that the block of search directions is conjugate.

LOBPCG: Similar as BRQMIN, but search space is 3q
dimensional: R([Xk ,Hk ,Pk−1]).
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Solving large scale eigenvalue problems

Block versions

Block versions (cont.)

0 5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

430 system solves are needed to get 10 eigenpairs (283 with locking).
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization

Theorem

(Trace theorem for the generalized eigenvalue problem) Let
A = A and M be as in (3). Then,

λ1 + λ2 + · · ·+ λp = min
X∈Fn×p , X∗MX=Ip

trace(X ∗AX ) (13)

where λ1, . . . , λn are the eigenvalues of problem (3). Equality
holds in (13) if and only if the columns of the matrix X that
achieves the minimum span the eigenspace corresponding to the
smallest p eigenvalues.

Let’s try to use the theorem to derive an algorithm.
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization (cont.)
Sameh and coworkers [3] suggested the tracemin algorithm that
follows the lines of Rayleigh quotient minimization.

Let Xk ∈ Fn×p with X ∗kMXk = Ip and

X ∗kAXk = Σk = diag(σ
(k)
1 , . . . , σ

(k)
p ).

Want to construct the next iterate Xk+1 by setting

Xk+1 = (Xk −∆k)Sk

Sk needed to enforce orthogonality of Xk+1.
We choose the correction ∆k to be orthogonal to Xk ,

∆∗kMXk = 0. (14)
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization (cont.)
Want to minimize

trace((Xk −∆k)∗A(Xk −∆k)) =

p∑
i=1

e∗i (Xk −∆k)∗A(Xk −∆k)ei

=

p∑
i=1

(xi − di )
∗A(xi − di )

with xi = Xkei and di = ∆kei .

These are p individual minimization problems:

Minimize (xi−di )∗A(xi−di ) subject to X ∗kMdi = 0, i = 1, . . . , p.

To solve this eq. we define the functional

f (d , l ) := (xi − d )∗A(xi − d ) + l ∗X ∗kMd .
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization (cont.)
The method of Lagrange multipliers leads to[

A MXk

X ∗kM O

](
d

l

)
=

(
Axi

0

)
, 1 ≤ i ≤ p.

Collecting all p equations in one yields[
A MXk

X ∗kM O

](
∆k

L

)
=

(
AXk

O

)
. (15)

By Gaussian elimination we obtain

L = (X ∗kMA−1MXk)−1.

Multiplying the first equation in (15) by A−1 we get

∆k + A−1MXkL = Xk ,
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization (cont.)
So,

Zk+1 ≡ Xk −∆k = A−1MXkL = A−1MXk(X ∗kMA−1MXk)−1.

such that, one step of the above trace minimization algorithm
amounts to one step of subspace iteration with shift σ = 0.

This implies convergence. Bit requires factorization of A.

Rewrite saddle point problem (15) as a simple linear problem,
which can be solved iteratively.
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Solving large scale eigenvalue problems

Trace minimization

Trace minimization (cont.)
Let P be the orthogonal projection onto R(MXk)⊥,

P = I −MXk(X ∗kM
2Xk)−1X ∗kM.

Then the linear systems of equations (15) and

PAP∆k = PAXk , X ∗kM∆k = 0, (16)

are equivalent, i.e., they have the same solution ∆k .

PAP is positive semidefinite. Can use modification of PCG or
MINRES to solve (16).
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Solving large scale eigenvalue problems

Trace minimization

Tricks of the trade

I Simple shifts. Choose a shift σ1 ≤ λ1 until the first eigenpair
is found. Then proceed with the shift σ2 ≤ λ2 and lock the
first eigenvector. In this way PCG can be used to solve the
linear systems as before.

I Multiple dynamic shifts. Each linear system

P(A− σ(k)i M)Pd
(k)
i = Pri , d

(k)
i ⊥M Xk

is solved with an individual shift. The shift is ‘turned on’ close
to convergence. Systems indefinite ⇒ PCG has to be adapted.

I Preconditioning. Systems above can be preconditioned, e.g.,
by a matrix of the form M = CC ∗ where CC ∗ ≈ A is an
incomplete Cholesky factorization.
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Solving large scale eigenvalue problems

Trace minimization

The Tracemin algorithm

1: Choose matrix V1 ∈ Rn×q with V T
1 MV1 = Iq, q ≥ p.

2: for k = 1, 2, . . . until convergence do
3: Compute Wk = AVk and Hk := V ∗

k Wk .
4: Compute spectral decomposition Hk = UkΘkU

∗
k ,

with Θk = diag(ϑ
(k)
1 , . . . , ϑ

(k)
q ), ϑ

(k)
1 ≤ . . . ≤ ϑ

(k)
q .

5: Compute Ritz vectors Xk = VkUk and residuals
Rk = WkUk −MXkΘk

6: For i = 1, . . . , q solve approximatively

P(A− σ(k)
i M)Pd

(k)
i = Pri , d

(k)
i ⊥M Xk

by some modified PCG solver.

7: Compute Vk+1 = (Xk −∆k)Sk , ∆k = [d
(k)
1 , . . . ,d

(k)
q ], by a

M-orthogonal modified Gram-Schmidt procedure.
8: end for

Large scale eigenvalue problems, Lecture 12, May 16, 2018 34/37



Solving large scale eigenvalue problems

Trace minimization

Numerical experiment (from [3])

Problem Size Max # Block Jacobi–Davidson Davidson-type Tracemin
inner its #its A mults time[sec] #its A mults time[sec]

BCSST08 1074 40 34 3954 4.7 10 759 0.8
BCSST09 1083 40 15 1951 2.2 15 1947 2.2
BCSST11 1473 100 90 30990 40.5 54 20166 22.4
BCSST21 3600 100 40 10712 35.1 39 11220 36.2
BCSST26 1922 100 60 21915 32.2 39 14102 19.6

Table 1: Numerical results for problems from the Harwell–Boeing
collection with four processors.
IC(0) of A was used as preconditioner.
Davidson-type trace minimization algorithm with multiple dynamic shifts
works better than block Jacobi–Davidson for three out of five problems.
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Solving large scale eigenvalue problems

The end
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