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E-mail: arbenz@inf.ethz.ch

Large scale eigenvalue problems, Lecture 3, March 7, 2018 1/30

http://people.inf.ethz.ch/arbenz/ewp/


Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

I Linear and nonlinear eigenvalue problems

I Eigenvalues as zeros of the determinant function

I Hyman’s method for Hessenberg matrices

I Algorithmic differentiation

I Newton iterations

I Successive linear approximations
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Solving large scale eigenvalue problems

Linear and nonlinear evp’s

Linear and nonlinear eigenvalue problems

I Linear eigenvalue problems

Find values λ ∈ C such that A− λI is singular.
Or equivalently:
Find values λ ∈ C such that there is a nonzero (nontrivial) x

such that

(A− λI )x = 0 ⇐⇒ Ax = λx .
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Solving large scale eigenvalue problems

Linear and nonlinear evp’s

Linear and nonlinear eigenvalue problems (cont.)
I Nonlinear eigenvalue problems

More general: Find λ ∈ C such that A(λ)x = 0 where A(λ) is
a matrix the elements of which depend on λ.

Examples: A(λ) =
d∑

k=0

λkAk ;

d = 1: A(λ) = A0 − λA1, A0 = A, A1 = I .
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Solving large scale eigenvalue problems

Linear and nonlinear evp’s

Linear and nonlinear eigenvalue problems (cont.)
I Matrix polynomials

Matrix polynomials can be linearized.
Example: Ax + λKx + λ2Mx.
We can generate equivalent eigenvalue problems that are
linear but have the size doubled: With y = λx we get(

A O
O I

)(
x
y

)
= λ

(
−K −M
I O

)(
x
y

)
or (

A K
O I

)(
x
y

)
= λ

(
O −M
I O

)(
x
y

)
.

Many other linearizations exist.

(C.f. transformation of high order to first order ODE’s.)
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Solving large scale eigenvalue problems

Linear and nonlinear evp’s

Numerical example

I Example: The matrix

A =


−0.9880 1.8000 −0.8793 −0.5977 −0.7819
−1.9417 −0.5835 −0.1846 −0.7250 1.0422

0.6003 −0.0287 −0.5446 −2.0667 −0.3961
0.8222 1.4453 1.3369 −0.6069 0.8043
−0.4187 −0.2939 1.4814 −0.2119 −1.2771


has eigenvalues given approximately by λ1 = −2,
λ2 = −1 + 2.5ı, λ3 = −1− 2.5ı, λ4 = 2ı, and λ5 = −2ı.

It is known that closed form formulas for the roots of a
polynomial do not generally exist if the polynomial is of
degree 5 or higher. Thus we cannot expect to be able to solve
the eigenvalue problem in a finite procedure.
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Solving large scale eigenvalue problems

Linear and nonlinear evp’s

Numerical example (cont.)

Eigenvalues in C. For real matrices, the complex eigenvalues
come in pairs. If λ is an eigenvalue, then so is λ̄.
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Solving large scale eigenvalue problems

Determinant

Zeros of determinant

Find values λ ∈ C such that A− λI is singular.

Equivalent:

Find values λ ∈ C such that

det A(λ) = 0. (1)

Apply zero finder to eq. (1).

Questions:

1. What zero finder?

2. How to compute f (λ) = det A(λ)?

3. How to compute f ′(λ) = d
dλ det A(λ)?
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Solving large scale eigenvalue problems

Determinant

Gaussian elimination with partial pivoting (GEPP)

Let the factorization

P(λ)A(λ) = L(λ)U(λ)

be obtained by GEPP.

P: permutation matrix,
L: lower unit triangular matrix,
U: upper triangular matrix.

detP(λ) · detA(λ) = det L(λ) · detU(λ).

±1 · detA(λ) = 1 ·
n∏

i=1

uii (λ).
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Solving large scale eigenvalue problems

Determinant

Newton iteration

Need the derivative f ′(λ) of f (λ) = detA(λ).

f ′(λ) = ±1 ·
n∑

i=1

u′ii (λ)
n∏
j 6=i

ujj(λ)

= ±1 ·
n∑

i=1

u′ii (λ)

uii (λ)

n∏
j=1

ujj(λ) =
n∑

i=1

u′ii (λ)

uii (λ)
f (λ).

How do we compute the u′ii?

Possibility: algorithmic differentiation

See: Arbenz & Gander: Solving Nonlinear Eigenvalue Problems by

Algorithmic Differentiation. Computing 36, 205 – 215 (1986).
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Solving large scale eigenvalue problems

Algorithmic differentiation

Algorithmic differentiation

Example: Horner scheme to evaluate polynomial

f (z) =
n∑

i=1

ciz
i .

p0(z) = c0 + z (c1 + z (c2 + · · ·+ z (cn)))

by the recurrence

pn := cn,

pi := z pi+1 + ci , i = n − 1, n − 2, . . . , 0

f (z) := p0.

Consider the pi as functions (polynomials) in z .
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Solving large scale eigenvalue problems

Algorithmic differentiation

Algorithmic differentiation (cont.)

dpn := 0, pn := cn,

dpi := pi+1 + z dpi+1, pi := z pi+1 + ci , i = n−1, n−2, . . . , 0,

f ′(z) := dp0, f (z) := p0.

Can proceed in a similar fashion for computing detA(λ).

Need to be able to compute derivatives a′ij . Then, derive each
single assignment in the algorithm of Gaussian elimination.
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Solving large scale eigenvalue problems

Algorithmic differentiation

Discussion

We restrict ourselves to the standard eigenvalue problem Ax = λx,
i.e., A(λ) = A− λI .

Then A′(λ) = −I .

In the Newton method we have to compute the determinant for
possibly many values λ.

Computing the determinant costs 2
3n

3 flops (floating point
operations).

Can we do better?

Idea: Transform A by a similarity transformation to Hessenberg
form.
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices

Definition
A matrix H is a Hessenberg matrix if its elements below the lower
off-diagonal are zero,

hij = 0, i > j + 1.

Any matrix A can be transformed into a Hessenberg matrix by a
sequence of elementary Householder transformations, for details
see QR algorithm.
Let S∗AS = H, where S is unitary. Then

Ax = λx⇐⇒ Hy = λy, x = Sy.

We assume that H is unreduced, i.e., hi+1,i 6= 0 for all i .
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices (cont.)
Let λ be an eigenvalue of H and

(H − λI )x = 0, (2)

i.e., x is an eigenvector of H associated with the eigenvalue λ.

Then xn 6= 0. (Proof by contradiction.)

W.l.o.g., we can set xn = 1.
If λ is an eigenvalue then there are xi , 1 ≤ i < n, such that

h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ



x1
x2
x3
1

 =


0
0
0
0

 .
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices (cont.)
If λ is not an eigenvalue then we determine the xi such that

h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ



x1
x2
x3
1

 =


∗
0
0
0

 . (∗)

Determine the n− 1 numbers xn−1, xn−2, . . . , x1 by the equations n
down to 2 of the equation above

xi =
−1

hi+1,i

(
(hi+1,i+1 − λ) xi+1 + hi+1,i+2 xi+2 + · · ·+ hi+1,n xn︸︷︷︸

1

)
.

The first equation gives

(h1,1 − λ) x1 + h1,2 x2 + · · ·+ h1,n xn = c · f (λ). (3)
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices (cont.)
We can consider the xi as functions of λ, in fact, xi ∈ Pn−i .

Therefore, we can algorithmically differentiate the x ′i to get f ′(λ).

For i = n − 1, . . . , 1 we have

x ′i =
−1

hi+1,i

(
−xi+1+(hi+1,i+1−λ) x ′i+1+hi+1,i+2 x

′
i+2+· · ·+hi+1,n−1x

′
n−1
)
.

Finally,

c · f ′(λ) = −x1 + (h1,1 − λ) x ′1 + h1,2 x
′
2 + · · ·+ h1,n−1x

′
n−1.
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices (matrix form)

In matrix form (∗) reads

(H − λI )
(

x(λ)
1

)
=

[
h(λ) h1n
R(λ) k(λ)

](
x
1

)
=

(
p(λ)

0

)
.

Computing p:

R(λ)x(λ) + k(λ) = 0 =⇒ x(λ) = −R(λ)−1k(λ),

p(λ) = h(λ)x(λ) + h1n.
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hessenberg matrices (matrix form) (cont.)
Computing q = p′:

R ′(λ)x(λ)+R(λ)x′(λ) = −k′(λ) =


0
...
0
1

 , R ′(λ) =


0 −1

0
. . .
. . . −1

0

 .

x′(λ) = R(λ)−1[−k′(λ)− R ′(λ)x = R(λ)−1


x2
...

xn−1
1


q(λ) = h′(λ)x(λ) + h(λ)x′(λ), h′(λ) = [−1, 0, . . . , 0].
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Solving large scale eigenvalue problems

Hyman’s algorithm

Hyman’s algorithm

We have shown that we can compute f (λ) = det(H(λ)) and its
derivative f ′(λ) of a Hessenberg matrix H in O(n2) operations.
Apply Newton iteration:

Choose initial guess λ0.

While not converged,

λk+1 = λk −
f (λk)

f ′(λk)
, k = 0, 1, . . .

Note: Higher order deriatives of f can be computed in an
analogous fashion. Higher order zero finders are then applicable
(e.g. Laguerre’s zero finder).
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Solving large scale eigenvalue problems

Computing multiple zeros

Computing multiple zeros

If we have found a zero z of f (x) = 0 and want to compute
another one, we want to avoid recomputing the already found z .

We can explicitely deflate the zero by defining a new function

f1(x) :=
f (x)

x − z
,

and apply our method of choice to f1. This procedure can in
particular be done with polynomials. The coefficients of f1 are
however very sensitive to inaccuracies in z .

We can proceed similarly for multiple zeros z1, . . . , zm.

Explicit deflation is not recommended and often not feasible since
f is not given explicitely.
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Solving large scale eigenvalue problems

Computing multiple zeros

Computing multiple zeros (cont.)
For the reciprocal Newton correction for f1 we get

f ′1(x)

f1(x)
=

f ′(x)
x−z −

f (x)
(x−z)2

f (x)
x−z

=
f ′(x)

f (x)
− 1

x − z
.

Then a Newton correction becomes

x (k+1) = xk − 1
f ′(xk)
f (xk)

− 1
xk − z

and similarly for multiple zeros z1, . . . , zm.
The above procedure is called implicit deflation. f is not modified.
In this way errors in z are not propagated to f1
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Solving large scale eigenvalue problems

Inverse Iteration

Inverse Iteration

We consider again the nonlinear eigenvalue problem

A(λ) x = 0,

c
T
x = 1,

(4)

where c is some given vector.

For the linear eigenvalue problem we have A(λ) = λI − A.

Solving (4) is equivalent with finding a zero of the nonlinear
function f (x , λ),

f (x , λ) =

(
A(λ) x
cTx − 1

)
=

(
0
0

)
. (5)
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Solving large scale eigenvalue problems

Inverse Iteration

Inverse Iteration (cont.)
To apply Newton’s zero finding method we need the Jacobian of f ,

J(x , λ) ≡ ∂f (x , λ)

∂(x , λ)
=

(
A(λ) A′(λ)x
cT 0

)
. (6)

Then a step of Newton’s iteration is given by(
xk+1

λk+1

)
=

(
xk

λk

)
− J(xk , λk)−1f (xk , λk), (7)

or, with the abbreviations Ak := A(λk) and A′k := A′(λk),(
Ak A′k xk
cT 0

)(
xk+1 − xk

λk+1 − λk

)
=

(
−Ak xk

1− cTxk

)
. (8)
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Solving large scale eigenvalue problems

Inverse Iteration

Inverse Iteration (cont.)
If xk is normalized, cTxk = 1, then second equation in (8) yields

c
T (xk+1 − xk) = 0 ⇐⇒ c

T
xk+1 = 1. (9)

First equation in (8) gives

Ak (xk+1 − xk) + (λk+1 − λk)A′k xk = −Ak xk

⇐⇒ Ak xk+1 = −(λk+1 − λk)A′k xk .

Introduce auxiliary vector uk+1:

Ak uk+1 = A′k xk . (10)

uk+1 points in the desired direction; it just needs to be normalized.
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Solving large scale eigenvalue problems

Inverse Iteration

Inverse Iteration (cont.)
Normalizing uk+1 gives

1 = c
T
xk+1 = −(λk+1 − λk) cTuk+1, (11)

or

λk+1 = λk −
1

cTuk+1
. (12)
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Solving large scale eigenvalue problems

Inverse Iteration

Algorithm: Newton iteration for solving (5)

1: Choose a starting vector x0 ∈ Rn with cTx0 = 1. k := 0.
2: repeat
3: Solve A(λk)uk+1 := A′(λk) xk for uk+1; (10)
4: µk := cTuk+1;
5: xk+1 := uk+1/µk ; (Normalize uk+1)
6: λk+1 := λk − 1/µk ; (12)
7: k := k + 1;
8: until some convergence criterion is satisfied

Note: • For linear eigenvalue problemswe have A′(λ)x = x .
• In above algorithm: In each iteration step a linear system has to
be solved.
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Solving large scale eigenvalue problems

Successive linear approximations

Successive linear approximations

A(λ)x ≈ (A(λk)− ϑA′(λk))x = 0, λ = λk − ϑ.
This suggests the method of successive linear problems.

1: Start with approximation λ1 of an eigenvalue of A(λ).
2: for k = 1, 2, . . . do
3: Solve the linear eigenvalue problem A(λ)u = ϑA′(λ)u.
4: Choose an eigenvalue ϑ smallest in modulus.
5: λk+1 := λk − ϑ;
6: end for

Remark: If A is twice continuously differentiable, and λ is an
eigenvalue of problem (1) such that A′(λ) is singular and 0 is an
algebraically simple eigenvalue of A′(λ)−1A(λ), then the method in
Algorithm 3 converges quadratically towards λ.
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Solving large scale eigenvalue problems

Discussion

Discussion

I Methods of today can be used to compute a few eigenvalues
of small and/or dense matrices.

I Methods require a factorization of a matrix in each iteration
step.
This may lead to excessive flop counts.

I Hyman’s method is designed for Hessenberg matrices.
Transformation of large sparse matrices to Hessenberg form
leads to dense matrices. So, it not suited for large sparse
matrices.
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Exercise 3

http://people.inf.ethz.ch/arbenz/ewp/Exercises/

exercise03.pdf
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