

Solving large scale eigenvalue problems

Lecture 3, March 7, 2018: Newton methods http://people.inf.ethz.ch/arbenz/ewp/

Peter Arbenz
Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

- Linear and nonlinear eigenvalue problems
- Eigenvalues as zeros of the determinant function
- Hyman's method for Hessenberg matrices
- Algorithmic differentiation
- Newton iterations
- Successive linear approximations

Linear and nonlinear eigenvalue problems

- Linear eigenvalue problems

Find values $\lambda \in \mathbb{C}$ such that $A-\lambda I$ is singular.
Or equivalently:
Find values $\lambda \in \mathbb{C}$ such that there is a nonzero (nontrivial) \boldsymbol{x} such that

$$
(A-\lambda I) \boldsymbol{x}=\mathbf{0} \quad \Longleftrightarrow \quad A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Linear and nonlinear eigenvalue problems (cont.)

- Nonlinear eigenvalue problems

More general: Find $\lambda \in \mathbb{C}$ such that $A(\lambda) \boldsymbol{x}=\mathbf{0}$ where $A(\lambda)$ is a matrix the elements of which depend on λ.
Examples: $A(\lambda)=\sum_{k=0}^{d} \lambda^{k} A_{k}$;
$d=1: A(\lambda)=A_{0}-\lambda A_{1}, A_{0}=A, A_{1}=1$.

Linear and nonlinear eigenvalue problems (cont.)

- Matrix polynomials

Matrix polynomials can be linearized.
Example: $\boldsymbol{A} \mathbf{x}+\lambda K \mathbf{x}+\lambda^{2} \boldsymbol{M} \mathbf{x}$.
We can generate equivalent eigenvalue problems that are linear but have the size doubled: With $\mathbf{y}=\lambda \mathbf{x}$ we get

$$
\left(\begin{array}{ll}
A & O \\
O & l
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\lambda\left(\begin{array}{cc}
-K & -M \\
I & O
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}
$$

or

$$
\left(\begin{array}{cc}
A & K \\
O & I
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\lambda\left(\begin{array}{cc}
O & -M \\
I & O
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}} .
$$

Many other linearizations exist.
(C.f. transformation of high order to first order ODE's.)

Numerical example

- Example: The matrix

$$
A=\left(\begin{array}{rrrrr}
-0.9880 & 1.8000 & -0.8793 & -0.5977 & -0.7819 \\
-1.9417 & -0.5835 & -0.1846 & -0.7250 & 1.0422 \\
0.6003 & -0.0287 & -0.5446 & -2.0667 & -0.3961 \\
0.8222 & 1.4453 & 1.3369 & -0.6069 & 0.8043 \\
-0.4187 & -0.2939 & 1.4814 & -0.2119 & -1.2771
\end{array}\right)
$$

has eigenvalues given approximately by $\lambda_{1}=-2$, $\lambda_{2}=-1+2.5 \imath, \lambda_{3}=-1-2.5 \imath, \lambda_{4}=2 \imath$, and $\lambda_{5}=-2 \imath$.
It is known that closed form formulas for the roots of a polynomial do not generally exist if the polynomial is of degree 5 or higher. Thus we cannot expect to be able to solve the eigenvalue problem in a finite procedure.

Numerical example (cont.)

Eigenvalues in \mathbb{C}. For real matrices, the complex eigenvalues come in pairs. If λ is an eigenvalue, then so is $\bar{\lambda}$.

Zeros of determinant

Find values $\lambda \in \mathbb{C}$ such that $A-\lambda I$ is singular.
Equivalent:
Find values $\lambda \in \mathbb{C}$ such that

$$
\begin{equation*}
\operatorname{det} A(\lambda)=0 \tag{1}
\end{equation*}
$$

Apply zero finder to eq. (1).
Questions:

1. What zero finder?
2. How to compute $f(\lambda)=\operatorname{det} A(\lambda)$?
3. How to compute $f^{\prime}(\lambda)=\frac{d}{d \lambda} \operatorname{det} A(\lambda)$?

Gaussian elimination with partial pivoting (GEPP)

Let the factorization

$$
P(\lambda) A(\lambda)=L(\lambda) U(\lambda)
$$

be obtained by GEPP.
P : permutation matrix,
L : lower unit triangular matrix, U : upper triangular matrix.

$$
\begin{aligned}
\operatorname{det} P(\lambda) \cdot \operatorname{det} A(\lambda) & =\operatorname{det} L(\lambda) \cdot \operatorname{det} U(\lambda) \\
\pm 1 \cdot \operatorname{det} A(\lambda) & =1 \cdot \prod_{i=1}^{n} u_{i i}(\lambda)
\end{aligned}
$$

Newton iteration

Need the derivative $f^{\prime}(\lambda)$ of $f(\lambda)=\operatorname{det} A(\lambda)$.

$$
\begin{aligned}
f^{\prime}(\lambda) & = \pm 1 \cdot \sum_{i=1}^{n} u_{i i}^{\prime}(\lambda) \prod_{j \neq i}^{n} u_{j j}(\lambda) \\
& = \pm 1 \cdot \sum_{i=1}^{n} \frac{u_{i i}^{\prime}(\lambda)}{u_{i i}(\lambda)} \prod_{j=1}^{n} u_{j j}(\lambda)=\sum_{i=1}^{n} \frac{u_{i i}^{\prime}(\lambda)}{u_{i i}(\lambda)} f(\lambda) .
\end{aligned}
$$

How do we compute the $u_{i i}^{\prime}$?
Possibility: algorithmic differentiation
See: Arbenz \& Gander: Solving Nonlinear Eigenvalue Problems by Algorithmic Differentiation. Computing 36, 205 - 215 (1986).

Algorithmic differentiation

Example: Horner scheme to evaluate polynomial

$$
\begin{gathered}
f(z)=\sum_{i=1}^{n} c_{i} z^{i} \\
p_{0}(z)=c_{0}+z\left(c_{1}+z\left(c_{2}+\cdots+z\left(c_{n}\right)\right)\right)
\end{gathered}
$$

by the recurrence

$$
\begin{aligned}
p_{n} & :=c_{n}, \\
p_{i} & :=z p_{i+1}+c_{i}, \quad i=n-1, n-2, \ldots, 0 \\
f(z) & :=p_{0} .
\end{aligned}
$$

Consider the p_{i} as functions (polynomials) in z.

Algorithmic differentiation (cont.)

$$
\begin{aligned}
d p_{n} & :=0, \quad p_{n}:=c_{n} \\
d p_{i} & :=p_{i+1}+z d p_{i+1}, \quad p_{i}:=z p_{i+1}+c_{i}, \quad i=n-1, n-2, \ldots, 0, \\
f^{\prime}(z) & :=d p_{0}, \quad f(z):=p_{0}
\end{aligned}
$$

Can proceed in a similar fashion for computing $\operatorname{det} A(\lambda)$.
Need to be able to compute derivatives $a_{i j}^{\prime}$. Then, derive each single assignment in the algorithm of Gaussian elimination.

Discussion

We restrict ourselves to the standard eigenvalue problem $A \mathbf{x}=\lambda \mathbf{x}$, i.e., $A(\lambda)=A-\lambda I$.

Then $A^{\prime}(\lambda)=-l$.
In the Newton method we have to compute the determinant for possibly many values λ.
Computing the determinant costs $\frac{2}{3} n^{3}$ flops (floating point operations).

Can we do better?
Idea: Transform A by a similarity transformation to Hessenberg form.

Hessenberg matrices

Definition

A matrix H is a Hessenberg matrix if its elements below the lower off-diagonal are zero,

$$
h_{i j}=0, \quad i>j+1
$$

Any matrix A can be transformed into a Hessenberg matrix by a sequence of elementary Householder transformations, for details see QR algorithm.
Let $S^{*} A S=H$, where S is unitary. Then

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow H \mathbf{y}=\lambda \mathbf{y}, \quad \mathbf{x}=S \mathbf{y}
$$

We assume that H is unreduced, i.e., $h_{i+1, i} \neq 0$ for all i.

Hessenberg matrices (cont.)

Let λ be an eigenvalue of H and

$$
\begin{equation*}
(H-\lambda I) \mathbf{x}=\mathbf{0}, \tag{2}
\end{equation*}
$$

i.e., \mathbf{x} is an eigenvector of H associated with the eigenvalue λ.

Then $x_{n} \neq 0$. (Proof by contradiction.)
W.l.o.g., we can set $x_{n}=1$.

If λ is an eigenvalue then there are $x_{i}, 1 \leq i<n$, such that

$$
\left(\begin{array}{cccc}
h_{11}-\lambda & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22}-\lambda & h_{23} & h_{24} \\
& h_{32} & h_{33}-\lambda & h_{34} \\
& & h_{43} & h_{44}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Hessenberg matrices (cont.)

If λ is not an eigenvalue then we determine the x_{i} such that

$$
\left(\begin{array}{ccc|c}
h_{11}-\lambda & h_{12} & h_{13} & h_{14} \tag{*}\\
\hline h_{21} & h_{22}-\lambda & h_{23} & h_{24} \\
& h_{32} & h_{33}-\lambda & h_{34} \\
& & h_{43} & h_{44}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right)=\left(\begin{array}{l}
* \\
0 \\
0 \\
0
\end{array}\right) .
$$

Determine the $n-1$ numbers $x_{n-1}, x_{n-2}, \ldots, x_{1}$ by the equations n down to 2 of the equation above

$$
x_{i}=\frac{-1}{h_{i+1, i}}(\left(h_{i+1, i+1}-\lambda\right) x_{i+1}+h_{i+1, i+2} x_{i+2}+\cdots+h_{i+1, n} \underbrace{x_{n}}_{1}) .
$$

The first equation gives

$$
\begin{equation*}
\left(h_{1,1}-\lambda\right) x_{1}+h_{1,2} x_{2}+\cdots+h_{1, n} x_{n}=c \cdot f(\lambda) \tag{3}
\end{equation*}
$$

Hessenberg matrices (cont.)

We can consider the x_{i} as functions of λ, in fact, $x_{i} \in \mathbb{P}_{n-i}$.
Therefore, we can algorithmically differentiate the x_{i}^{\prime} to get $f^{\prime}(\lambda)$.
For $i=n-1, \ldots, 1$ we have

$$
x_{i}^{\prime}=\frac{-1}{h_{i+1, i}}\left(-x_{i+1}+\left(h_{i+1, i+1}-\lambda\right) x_{i+1}^{\prime}+h_{i+1, i+2} x_{i+2}^{\prime}+\cdots+h_{i+1, n-1} x_{n-1}^{\prime}\right) .
$$

Finally,

$$
c \cdot f^{\prime}(\lambda)=-x_{1}+\left(h_{1,1}-\lambda\right) x_{1}^{\prime}+h_{1,2} x_{2}^{\prime}+\cdots+h_{1, n-1} x_{n-1}^{\prime} .
$$

Hessenberg matrices (matrix form)

In matrix form $(*)$ reads

$$
(H-\lambda I)\binom{\mathbf{x}(\lambda)}{1}=\left[\begin{array}{cc}
\mathbf{h}(\lambda) & h_{1 n} \\
R(\lambda) & \mathbf{k}(\lambda)
\end{array}\right]\binom{\mathbf{x}}{1}=\binom{p(\lambda)}{\mathbf{0}} .
$$

Computing p :

$$
\begin{gathered}
R(\lambda) \mathbf{x}(\lambda)+\mathbf{k}(\lambda)=\mathbf{0} \quad \Longrightarrow \quad \mathbf{x}(\lambda)=-R(\lambda)^{-1} \mathbf{k}(\lambda), \\
p(\lambda)=\mathbf{h}(\lambda) \mathbf{x}(\lambda)+h_{1 n} .
\end{gathered}
$$

Hessenberg matrices (matrix form) (cont.)

Computing $q=p^{\prime}$:

$$
R^{\prime}(\lambda) \mathbf{x}(\lambda)+R(\lambda) \mathbf{x}^{\prime}(\lambda)=-\mathbf{k}^{\prime}(\lambda)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right), \quad R^{\prime}(\lambda)=\left[\begin{array}{cccc}
0 & -1 & & \\
& 0 & \ddots & \\
& \ddots & -1 \\
& & & 0
\end{array}\right] .
$$

$$
\begin{gathered}
\mathbf{x}^{\prime}(\lambda)=R(\lambda)^{-1}\left[-\mathbf{k}^{\prime}(\lambda)-R^{\prime}(\lambda) \mathbf{x}=R(\lambda)^{-1}\left(\begin{array}{c}
x_{2} \\
\vdots \\
x_{n-1} \\
1
\end{array}\right)\right. \\
q(\lambda)=\mathbf{h}^{\prime}(\lambda) \mathbf{x}(\lambda)+\mathbf{h}(\lambda) \mathbf{x}^{\prime}(\lambda), \quad \mathbf{h}^{\prime}(\lambda)=[-1,0, \ldots, 0] .
\end{gathered}
$$

Hyman's algorithm

We have shown that we can compute $f(\lambda)=\operatorname{det}(H(\lambda))$ and its derivative $f^{\prime}(\lambda)$ of a Hessenberg matrix H in $\mathcal{O}\left(n^{2}\right)$ operations. Apply Newton iteration:

Choose initial guess λ_{0}.
While not converged,

$$
\lambda_{k+1}=\lambda_{k}-\frac{f\left(\lambda_{k}\right)}{f^{\prime}\left(\lambda_{k}\right)}, \quad k=0,1, \ldots
$$

Note: Higher order deriatives of f can be computed in an analogous fashion. Higher order zero finders are then applicable (e.g. Laguerre's zero finder).

Computing multiple zeros

If we have found a zero z of $f(x)=0$ and want to compute another one, we want to avoid recomputing the already found z.

We can explicitely deflate the zero by defining a new function

$$
f_{1}(x):=\frac{f(x)}{x-z}
$$

and apply our method of choice to f_{1}. This procedure can in particular be done with polynomials. The coefficients of f_{1} are however very sensitive to inaccuracies in z.

We can proceed similarly for multiple zeros z_{1}, \ldots, z_{m}.
Explicit deflation is not recommended and often not feasible since f is not given explicitely.

Computing multiple zeros (cont.)

For the reciprocal Newton correction for f_{1} we get

$$
\frac{f_{1}^{\prime}(x)}{f_{1}(x)}=\frac{\frac{f^{\prime}(x)}{x-z}-\frac{f(x)}{(x-z)^{2}}}{\frac{f(x)}{x-z}}=\frac{f^{\prime}(x)}{f(x)}-\frac{1}{x-z} .
$$

Then a Newton correction becomes

$$
x^{(k+1)}=x_{k}-\frac{1}{\frac{f^{\prime}\left(x_{k}\right)}{f\left(x_{k}\right)}-\frac{1}{x_{k}-z}}
$$

and similarly for multiple zeros z_{1}, \ldots, z_{m}.
The above procedure is called implicit deflation. f is not modified.
In this way errors in z are not propagated to f_{1}

Inverse Iteration

We consider again the nonlinear eigenvalue problem

$$
\begin{array}{r}
A(\lambda) \boldsymbol{x}=\mathbf{0}, \\
\boldsymbol{c}^{T} \boldsymbol{x}=1, \tag{4}
\end{array}
$$

where \boldsymbol{c} is some given vector.
For the linear eigenvalue problem we have $A(\lambda)=\lambda I-A$.
Solving (4) is equivalent with finding a zero of the nonlinear function $\boldsymbol{f}(\boldsymbol{x}, \lambda)$,

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{x}, \lambda)=\binom{A(\lambda) \boldsymbol{x}}{\boldsymbol{c}^{\top} \boldsymbol{x}-1}=\binom{\mathbf{0}}{0} . \tag{5}
\end{equation*}
$$

Inverse Iteration (cont.)

To apply Newton's zero finding method we need the Jacobian of \boldsymbol{f},

$$
J(\boldsymbol{x}, \lambda) \equiv \frac{\partial \boldsymbol{f}(\boldsymbol{x}, \lambda)}{\partial(\boldsymbol{x}, \lambda)}=\left(\begin{array}{cc}
A(\lambda) & A^{\prime}(\lambda) \boldsymbol{x} \tag{6}\\
\boldsymbol{c}^{T} & 0
\end{array}\right) .
$$

Then a step of Newton's iteration is given by

$$
\begin{equation*}
\binom{\boldsymbol{x}_{k+1}}{\lambda_{k+1}}=\binom{\boldsymbol{x}_{k}}{\lambda_{k}}-J\left(\boldsymbol{x}_{k}, \lambda_{k}\right)^{-1} \boldsymbol{f}\left(\boldsymbol{x}_{k}, \lambda_{k}\right), \tag{7}
\end{equation*}
$$

or, with the abbreviations $A_{k}:=A\left(\lambda_{k}\right)$ and $A_{k}^{\prime}:=A^{\prime}\left(\lambda_{k}\right)$,

$$
\left(\begin{array}{cc}
A_{k} & A_{k}^{\prime} \boldsymbol{x}_{k} \tag{8}\\
\boldsymbol{c}^{T} & 0
\end{array}\right)\binom{\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}}{\lambda_{k+1}-\lambda_{k}}=\binom{-A_{k} \boldsymbol{x}_{k}}{1-\boldsymbol{c}^{T} \boldsymbol{x}_{k}} .
$$

Inverse Iteration (cont.)

If \boldsymbol{x}_{k} is normalized, $\boldsymbol{c}^{T} \boldsymbol{x}_{k}=1$, then second equation in (8) yields

$$
\begin{equation*}
\boldsymbol{c}^{T}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)=0 \quad \Longleftrightarrow \quad \boldsymbol{c}^{T} \boldsymbol{x}_{k+1}=1 \tag{9}
\end{equation*}
$$

First equation in (8) gives

$$
\begin{gathered}
A_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)+\left(\lambda_{k+1}-\lambda_{k}\right) A_{k}^{\prime} \boldsymbol{x}_{k}=-A_{k} \boldsymbol{x}_{k} \\
\quad \Longleftrightarrow A_{k} \boldsymbol{x}_{k+1}=-\left(\lambda_{k+1}-\lambda_{k}\right) A_{k}^{\prime} \boldsymbol{x}_{k}
\end{gathered}
$$

Introduce auxiliary vector \boldsymbol{u}_{k+1} :

$$
\begin{equation*}
A_{k} \boldsymbol{u}_{k+1}=A_{k}^{\prime} \boldsymbol{x}_{k} \tag{10}
\end{equation*}
$$

\boldsymbol{u}_{k+1} points in the desired direction; it just needs to be normalized.

Inverse Iteration (cont.)

Normalizing \boldsymbol{u}_{k+1} gives

$$
\begin{equation*}
1=\boldsymbol{c}^{T} \boldsymbol{x}_{k+1}=-\left(\lambda_{k+1}-\lambda_{k}\right) \boldsymbol{c}^{T} \boldsymbol{u}_{k+1} \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{k+1}=\lambda_{k}-\frac{1}{\boldsymbol{c}^{\top} \boldsymbol{u}_{k+1}} . \tag{12}
\end{equation*}
$$

Algorithm: Newton iteration for solving (5)

1: Choose a starting vector $\mathbf{x}_{0} \in \mathbb{R}^{n}$ with $\boldsymbol{c}^{\top} \boldsymbol{x}_{0}=1 . k:=0$.
repeat
3: Solve $A\left(\lambda_{k}\right) \boldsymbol{u}_{k+1}:=A^{\prime}\left(\lambda_{k}\right) \boldsymbol{x}_{k}$ for \boldsymbol{u}_{k+1};
4: $\quad \mu_{k}:=\boldsymbol{c}^{\top} \boldsymbol{u}_{k+1}$;
5: $\quad \boldsymbol{x}_{k+1}:=\boldsymbol{u}_{k+1} / \mu_{k} ; \quad$ (Normalize \boldsymbol{u}_{k+1})
6: $\quad \lambda_{k+1}:=\lambda_{k}-1 / \mu_{k}$;
7: $\quad k:=k+1$;
8: until some convergence criterion is satisfied

Note: - For linear eigenvalue problemswe have $A^{\prime}(\lambda) \boldsymbol{x}=\boldsymbol{x}$.

- In above algorithm: In each iteration step a linear system has to be solved.

Successive linear approximations

$$
A(\lambda) \mathbf{x} \approx\left(A\left(\lambda_{k}\right)-\vartheta A^{\prime}\left(\lambda_{k}\right)\right) \mathbf{x}=\mathbf{0}, \quad \lambda=\lambda_{k}-\vartheta
$$

This suggests the method of successive linear problems.

1: Start with approximation λ_{1} of an eigenvalue of $A(\lambda)$.
2: for $k=1,2, \ldots$ do
3: \quad Solve the linear eigenvalue problem $A(\lambda) \mathbf{u}=\vartheta A^{\prime}(\lambda) \mathbf{u}$.
4: \quad Choose an eigenvalue ϑ smallest in modulus.
5: $\quad \lambda_{k+1}:=\lambda_{k}-\vartheta$;

6: end for

Remark: If A is twice continuously differentiable, and λ is an eigenvalue of problem (1) such that $A^{\prime}(\lambda)$ is singular and 0 is an algebraically simple eigenvalue of $A^{\prime}(\lambda)^{-1} A(\lambda)$, then the method in Algorithm 3 converges quadratically towards λ.

Discussion

- Methods of today can be used to compute a few eigenvalues of small and/or dense matrices.
- Methods require a factorization of a matrix in each iteration step.
This may lead to excessive flop counts.
- Hyman's method is designed for Hessenberg matrices. Transformation of large sparse matrices to Hessenberg form leads to dense matrices. So, it not suited for large sparse matrices.

References

[1] H. Voss: Iterative projection methods for large-scale nonlinear eigenvalue problems, TU Hamburg-Harburg, TR 2010. Available from https://www.mat.tu-harburg.de/ins/ forschung/rep/rep147.pdf.
[2] A. Ruhe: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674-689, 1973.
[3] F. Tisseur and K. Meerbergen: The quadratic eigenvalue problem. SIAM Rev. 43, 235-286, 2001.

Exercise 3

http://people.inf.ethz.ch/arbenz/ewp/Exercises/ exercise03.pdf

