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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

The QR algorithm is the most important algorithm to compute the
Schur form of a dense matrix.

It is one of the 10 most important algorithms in CSE of the 20th
century [1].

I Basic QR algorithm

I Hessenberg QR algorithm

I QR algorithm with shifts

I Double step QR algorithm for real matrices

The QZ algorithm is somewhat similar for solving Ax = λBx.

Large scale eigenvalue problems, Lecture 4, March 14, 2018 2/41



Solving large scale eigenvalue problems

Survey

Schur decomposition

Schur decomposition [reminder]

Theorem

If A ∈ Cn×n then there is a unitary matrix U ∈ Cn×n such that

U∗AU = T (1)

is upper triangular. The diagonal elements of T are the eigenvalues
of A.

U = [u1,u2, . . . ,un] are called Schur vectors. They are in general
not eigenvectors.
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Solving large scale eigenvalue problems

Survey

Schur decomposition

Schur vectors

The k-th column of this equation is

Auk = λuk +
k−1∑
i=1

tikui , λk = tkk ,

=⇒ Auk ∈ span{u1, . . . ,uk}, ∀k .

I The first Schur vector is an eigenvector of A.

I The first k Schur vectors u1, . . . ,uk form an invariant
subspace for A.

I The Schur decomposition is not unique.
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Solving large scale eigenvalue problems

Basic QR algorithm

Basic QR algorithm

1: Let A ∈ Cn×n. This algorithm computes an upper triangular
matrix T and a unitary matrix U such that A = UTU∗ is the
Schur decomposition of A.

2: Set A0 := A and U0 = I .
3: for k = 1, 2, . . . do
4: Ak−1 =: QkRk ; {QR factorization}
5: Ak := RkQk ;
6: Uk := Uk−1Qk ; {Update transformation matrix}
7: end for
8: Set T := A∞ and U := U∞.
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Solving large scale eigenvalue problems

Basic QR algorithm

Basic QR algorithm (cont.)
Notice first that

Ak = RkQk = Q∗kAk−1Qk , (2)

and hence Ak and Ak−1 are unitarily similar.

From (2) we see that

Ak = Q∗kAk−1Qk

= Q∗kQ
∗
k−1Ak−2Qk−1Qk

= · · ·
= Q∗k · · ·Q∗1A0Q1 · · ·Qk︸ ︷︷ ︸

Uk

,

Uk = Uk−1Qk .
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Solving large scale eigenvalue problems

Basic QR algorithm

Basic QR algorithm (cont.)
Let us assume that the eigenvalues are mutually different in
magnitude and we can therefore number the eigenvalues such that
|λ1| > |λ2| > · · · > |λn|. Then – as we will show later – the
elements of Ak below the diagonal converge to zero like

|a(k)ij | = O(|λi/λj |k), i > j .
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Solving large scale eigenvalue problems

Basic QR algorithm

Numerical experiment

D = diag([4 3 2 1]);

rand(’seed’,0);

format short e

S=rand(4); S = (S - .5)*2;

A = S*D/S % A_0 = A = S*D*S^{-1}

for i=1:20,

[Q,R] = qr(A); A = R*Q

end

Same with

D = diag([5 2 2 1]);
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Solving large scale eigenvalue problems

Hessenberg QR algorithm

Hessenberg QR algorithm

Critique of QR algorithm

1. Slow convergence if eigenvalues close.

2. Expensive: O(n3) flops per iteration step.

Solution for point 2

I Hessenberg form (we have seen this earlier in Hyman’s algo)

I Is the Hessenberg form preserved by the QR algorithm?

I Complexity: only 3n2 flops/iteration step

I Still slow convergence.
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Solving large scale eigenvalue problems

Transformation to Hessenberg form

Transformation to Hessenberg form

I Givens rotations are designed to zero a single element in a
vector.

I Householder reflectors are more efficient if multiple elements
of a vector are to be zeroed at once.

Definition

A matrix of the form

P = I − 2uu∗, ‖u‖ = 1,

is called a Householder reflector.

Easy to verify:
P is Hermitian, P2 = I , P is unitary.
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Solving large scale eigenvalue problems

Transformation to Hessenberg form

Transformation to Hessenberg form (cont.)
Frequent task: find unitary transformation that maps a vector x
into a multiple of e1,

Px = x− u(2u∗x) = αe1.

P unitary =⇒ α = ρ‖x‖, where ρ ∈ C with |ρ| = 1

u =
x− ρ‖x‖e1
‖x− ρ‖x‖e1‖

=
1

‖x− ρ‖x‖e1‖


x1 − ρ‖x‖

x2
...
xn


To avoid numerical cancellation we set ρ = −e iφ.
If ρ ∈ R we set ρ = −sign(x1). (If x1 = 0 we can set ρ in any way.)
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Solving large scale eigenvalue problems

Transformation to Hessenberg form

Reduction to Hessenberg form

1: This algorithm reduces a matrix A ∈ Cn×n to Hessenberg form
H by a sequence of Householder reflections. H overwrites A.

2: for k = 1 to n−2 do
3: Generate the Householder reflector Pk ;
4: Ak+1:n,k:n := Ak+1:n,k:n − 2uk(uk

∗Ak+1:n,k:n);
5: A1:n,k+1:n := A1:n,k+1:n − 2(A1:n,k+1:nuk)uk

∗;
6: end for
7: if eigenvectors are desired form U = P1 · · ·Pn−2 then
8: U := In;
9: for k = n−2 downto 1 do

10: Uk+1:n,k+1:n := Uk+1:n,k+1:n − 2uk(uk
∗Uk+1:n,k+1:n);

11: end for
12: end if
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Solving large scale eigenvalue problems

Transformation to Hessenberg form

Reduction to Hessenberg form (cont.)
The Householder vectors are stored at the locations of the zeros.
The matrix U = P1 · · ·Pn−2 is computed after all Householder
vectors have been generated, thus saving (2/3)n3 flops.
Overall complexity of the reduction:

I Application of Pk from the left:
n−2∑
k=1

4(n− k − 1)(n− k) ≈ 4
3n

3

I Application of Pk from the right:
n−2∑
k=1

4(n)(n − k) ≈ 2n3

I Form U = P1 · · ·Pn−2:
n−2∑
k=1

4(n − k)(n − k) ≈ 4
3n

3

I In total 10
3 n

3 flops without U, 14
3 n

3 including U.
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Solving large scale eigenvalue problems

Perfect shift QR algorithm

Perfect shift QR algorithm

Lemma

H Hessenberg matrix with QR factorization H = QR.

|rkk | ≥ hk+1,k , 1 ≤ k < n. (3)

By consequence:

1. H irreducible =⇒ |rkk | > 0 for 1 ≤ k < n

2. H irreducible and singular =⇒ rnn = 0
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Solving large scale eigenvalue problems

Perfect shift QR algorithm

Perfect shift QR algorithm (cont.)
Let λ be an eigenvalue of the irreducible Hessenberg matrix H.
What happens if we perform

1: H − λI = QR {QR factorization}
2: H = RQ + λI

First we notice that H ∼ H. In fact,

H = Q∗(H − λI )Q + λI = Q∗HQ.

Second, by the above Lemma we have

H − λI = QR, with R =

[ ]
.
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Solving large scale eigenvalue problems

Perfect shift QR algorithm

Perfect shift QR algorithm (cont.)
Thus,

RQ =

[ ]
and

H = RQ + λI =

[ ]
=

[
H1 h1

0T λ

]
.

1. If we apply a QR step with a perfect shift to a Hessenberg
matrix, the eigenvalue drops out.

2. Then we can deflate, i.e., proceed the algorithm with the
smaller matrix H1.

3. However, we do not know the eigenvalues of H.
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Solving large scale eigenvalue problems

Perfect shift QR algorithm

Numerical example

D = diag([4 3 2 1]); rand(’seed’,0);

S=rand(4); S = (S - .5)*2;

A = S*D/S;

format short e

H = hess(A)

[Q,R] = qr(H - 2*eye(4))

H1 = R*Q + 2*eye(4)

format long

lam = eig(H1(1:3,1:3))
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Solving large scale eigenvalue problems

QR algorithm with shifts

QR algorithm with shifts

I It may be useful to introduce shifts into the QR algorithm.

I However, we cannot choose perfect shifts as we do not know
the eigenvalues!

I Need heuristics to estimate eigenvalues.

I One such heuristic is the Rayleigh quotient shift:
Set the shift σk in the k-th step of the QR algorithm equal to
the last diagonal element:

σk := h
(k−1)
n,n = e∗nH

(k−1)en. (4)
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Solving large scale eigenvalue problems

QR algorithm with shifts

Hessenberg QR algorithm with Rayleigh quotient shift

1: Let H0 = H ∈ Cn×n be an upper Hessenberg matrix. This
algorithm computes its Schur normal form H = UTU∗.

2: k := 0;
3: for m=n,n-1,. . . ,2 do
4: repeat
5: k := k + 1;
6: σk := h

(k−1)
m,m ;

7: Hk−1 − σk I =: QkRk ;
8: Hk := RkQk + σk I ;
9: Uk := Uk−1Qk ;

10: until |h(k)m,m−1| is sufficiently small
11: end for
12: T := Hk ;
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Solving large scale eigenvalue problems

QR algorithm with shifts

Convergence

What happens, if hn,n is a good approximation to an eigenvalue of
H? Let us assume that we have an irreducible Hessenberg matrix

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 ε hn,n

 ,
where ε is a small quantity.
If we perform a Hessenberg QR step with a Rayleigh quotient shift
hn,n, we first have to factor H − hn,nI , QR = H − hn,nI .
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Solving large scale eigenvalue problems

QR algorithm with shifts

Convergence (cont.)
After n − 2 steps the R-factor is almost upper triangular,

+ + + + +
0 + + + +
0 0 + + +
0 0 0 α β
0 0 0 ε 0

 .
The last Givens rotation has the nontrivial elements

cn−1 =
α√

|α|2 + |ε|2
, sn−1 =

−ε√
|α|2 + |ε|2

.
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Solving large scale eigenvalue problems

QR algorithm with shifts

Convergence (cont.)
Applying the Givens rotations from the right one sees that the last
lower off-diagonal element of H = RQ + hn,nI becomes

h̄n,n−1 =
ε2β

α2 + ε2
. (5)

So, we have quadratic convergence unless α is also tiny.
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Solving large scale eigenvalue problems

QR algorithm with shifts

Convergence (cont.)
A second even more often used shift strategy is the Wilkinson
shift:

σk :=eigenvalue of

[
h
(k−1)
n−1,n−1 h

(k−1)
n−1,n

h
(k−1)
n,n−1 h

(k−1)
n,n

]

that is closer to h
(k−1)
n,n .

Quadratic convergence can be proved.
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Solving large scale eigenvalue problems

QR algorithm with shifts

Numerical example

D = diag([4 3 2 1]);

rand(’seed’,0);

S=rand(4); S = (S - .5)*2;

A = S*D/S;

H = hess(A)

for i=1:8,

[Q,R] = qr(H-H(4,4)*eye(4));

H = R*Q+H(4,4)*eye(4);

end
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Solving large scale eigenvalue problems

The double-shift QR algorithm

The double-shift QR algorithm

Now we address the case when real Hessenberg matrices have
complex eigenvalues.

I For reasonable convergence rates the shifts must be complex.

I If an eigenvalue λ has been found we can execute a single
perfect shift with λ̄.

I It is (for rounding errors) unprobable however that we will get
back to a real matrix.

I Since the eigenvalues come in complex conjugate pairs it is
straightforward to search for a pair of eigenvalues right-away.

I This is done by collapsing two shifted QR steps in one double
step with the two shifts being complex conjugates of each
other.
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Solving large scale eigenvalue problems

The double-shift QR algorithm

Two single steps

Let σ1 and σ2 be two eigenvalues of the real matrix

G =

[
h
(k−1)
n−1,n−1 h

(k−1)
n−1,n

h
(k−1)
n,n−1 h

(k−1)
n,n

]
∈ R2×2.

If σ1 ∈ C \ R then σ2 = σ̄1.
Let us perform two QR steps using σ1 and σ2 as shifts. Setting
k = 1 for convenience we get

H0 − σ1I = Q1R1,

H1 = R1Q1 + σ1I ,

H1 − σ2I = Q2R2,

H2 = R2Q2 + σ2I .

(6)

Large scale eigenvalue problems, Lecture 4, March 14, 2018 26/41



Solving large scale eigenvalue problems

The double-shift QR algorithm

Two single steps (cont.)
From the second and third equation in (6) we obtain

R1Q1 + (σ1 − σ2)I = Q2R2.

Multiplying with Q1 from the left and R1 from the right we get

Q1R1Q1R1 + (σ1 − σ2)Q1R1 = Q1R1(Q1R1 + (σ1 − σ2)I )

= (H0 − σ1I )(H0 − σ2I ) = Q1Q2R2R1.

Because σ2 = σ̄1 we have

M := (H0−σ1I )(H0−σ̄1I ) = H2
0−2Re(σ1)H0+|σ1|2I = Q1Q2R2R1.

So, (Q1Q2)(R2R1) is QR factorization of a real matrix.
We can choose Q1, Q2 s.t. Z := Q1Q2 is real orthogonal. Thus,

H2 = (Q1Q2)∗H0(Q1Q2) = ZTH0Z ∈ Rn×n.
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Solving large scale eigenvalue problems

The double-shift QR algorithm

Two single steps (cont.)
A procedure to compute H2 by avoiding complex arithmetic could
consist of three steps:

(1) Form the real matrix M = H2
0 − sH0 + tI with

s = 2Re(σ) = trace(G ) = h
(k−1)
n−1,n−1 + h

(k−1)
n,n and

t = |σ|2 = det(G ) = h
(k−1)
n−1,n−1h

(k−1)
n,n − h

(k−1)
n−1,nh

(k−1)
n,n−1.

Notice that M has two lower off-diagonals,

M =

[ ]
.

(2) Compute the QR factorization M = ZR,

(3) Set H2 = ZTH0Z .

This procedure is however too expensive since item (1),
i.e. forming H2, requires O(n3) flops.
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Solving large scale eigenvalue problems

The double-shift QR algorithm

The implicit Q theorem

Theorem

Let A ∈ Rn×n. Let Q = [q1, . . . ,qn] and V = [v1, . . . , vn] be
orthogonal matrices that both similarly transform A to Hessenberg
form, H = QTAQ and G = V TAV . Let k denote the smallest
positive integer for which hk+1,k = 0, with k = n if H is irreducible.
If q1 = v1 then qi = ±vi and |hi ,i−1| = |gi ,i−1| for i = 2, . . . , k. If
k < n, then gk+1,k = 0.

Golub & van Loan [2, p.347] write “The gist of the implicit Q
theorem is that if QTAQ = H and ZTAZ = G are both irreducible
Hessenberg matrices and Q and Z have the same first column,
then G and H are “essentially equal” in the sense that G = DHD
with D = diag(±1, . . . ,±1).”
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Solving large scale eigenvalue problems

The double-shift QR algorithm

Application of the implicit Q Theorem

I We want to compute Hessenberg matrix Hk+1 = ZTHk−1Z
where ZR is QR factorization of M = H2

k−1 − sHk−1 + tI .

I The Implicit Q Theorem tells us that we essentially get Hk+1

by any orthogonal similarity transformation
Hk−1 → Z ∗1Hk−1Z1 provided that Z ∗1HZ1 is Hessenberg and
Z1e1 = Ze1.

I Let P0 be the Householder reflector with

PT
0 Me1 = PT

0 (H2
k−1 − 2Re(σ)Hk−1 + |σ|2I ) e1 = α e1.
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The double-shift QR algorithm

Application of the implicit Q Theorem (cont.)
I Since only the first three elements of the first column Me1 of

M are nonzero, P0 has the structure

P0 =



× × ×
× × ×
× × ×

1
. . .

1


.
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The double-shift QR algorithm

Application of the implicit Q Theorem (cont.)
I So,

H ′k−1 := PT
0 Hk−1P0 =



× × × × × × ×
× × × × × × ×
+ × × × × × ×
+ + × × × × ×

× × × ×
× × ×
× ×


.

I Recover the Hessenberg form by applying a sequence of
similarity transformations with Householder reflectors.
(Chase the bulge down the diagonal until it drops out of the
matrix.)
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The double-shift QR algorithm

Application of the implicit Q Theorem (cont.)
I We need n − 1 additional Householder reflectors

Pi = I − 2pip
∗
i , i = 1, . . . , n − 1,

to achieve this. Notice that

(1) the pi have just 3 nonzero elements, and that
(2) the first entry of pi is zero.

Therefore,

P0P1 · · ·Pn−1e1 = P0e1 =
1

α
(H2

k−1 + sHk−1 + tI )e1 = Ze1.
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The double-shift QR algorithm

The Francis double step QR algorithm

1: Let H0 = H ∈ Rn×n be an upper Hessenberg matrix. This
algorithm computes its real Schur form H = UTUT using the
Francis double step QR algorithm. T is a quasi upper
triangular matrix.

2: p := n; {p indicates the ‘active’ matrix size.}
3: while p > 2 do
4: q := p − 1;
5: s := Hq,q + Hp,p; t := Hq,qHp,p − Hq,pHp,q;
6: {Compute first 3 elements of first column of M}
7: x := H2

1,1 + H1,2H2,1 − sH1,1 + t;
8: y := H2,1(H1,1 + H2,2 − s);
9: z := H2,1H3,2;
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The double-shift QR algorithm

The Francis double step QR algorithm (cont.)
10: for k = 0 to p − 3 do
11: Determine the Householder reflector P with

PT [x ; y ; z ]T = αe1;
12: r := max{1, k};
13: Hk+1:k+3,r :n := PTHk+1:k+3,r :n;
14: r := min{k + 4, p};
15: H1:r ,k+1:k+3 := H1:r ,k+1:k+3P;
16: x := Hk+2,k+1; y := Hk+3,k+1;
17: if k < p − 3 then
18: z := Hk+4,k+1;
19: end if
20: end for
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The double-shift QR algorithm

The Francis double step QR algorithm (cont.)
21: Determine the Givens rotation P with PT [x ; y ]T = αe1;
22: Hq:p,p−2:n := PTHq:p,p−2:n;
23: H1:p,p−1:p := H1:p,p−1:pP;
24: {check for convergence}
25: if |Hp,q| < ε (|Hq,q|+ |Hp,p|) then
26: Hp,q := 0; p := p − 1; q := p − 1;
27: else if |Hp−1,q−1| < ε (|Hq−1,q−1|+ |Hq,q|) then
28: Hp−1,q−1 := 0; p := p − 2; q := p − 1;
29: end if
30: end while
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The double-shift QR algorithm

Numerical example

A =



7 3 4 −11 −9 −2
−6 4 −5 7 1 12
−1 −9 2 2 9 1
−8 0 −1 5 0 8
−4 3 −5 7 2 10

6 1 4 −11 −7 −1


has the spectrum

σ(A) = {1± 2i , 3, 4, 5± 6i}.
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The double-shift QR algorithm

Complexity

Most expensive operations: applications of 3× 3 Householder
reflectors,

x := (I − 2uuT )x = x− u(2uTx),

which costs 12 flops.
In k-th step of the loop: n − k reflections from the left and k + 4
from the right. Thus about 12n +O(1) flops.

k runs from 1 to p − 3: 12pn flops/step.

p runs from n down to 2: 6n3 flops.

Assuming two steps per eigenvalue: the flop count for Francis’
double step QR algorithm to compute all eigenvalues of a real
Hessenberg matrix is 12n3.

Large scale eigenvalue problems, Lecture 4, March 14, 2018 38/41



Solving large scale eigenvalue problems

The double-shift QR algorithm

Complexity (cont.)
If also the eigenvector matrix is accumulated two additional
statements have to be inserted into the algorithm. After steps 15
and 23 we have

1: Q1:n,k+1:k+3 := Q1:n,k+1:k+3P;

1: Q1:n,p−1:p := Q1:n,p−1:pP;

which costs another 12n3 flops.
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The double-shift QR algorithm

Complexity (cont.)
The single step Hessenberg QR algorithm costs 6n3 flops. If the
latter has to be spent in complex arithmetic then the single shift
Hessenberg QR algorithm is more expensive than the double shift
Hessenberg QR algorithm that is executed in real arithmetic.

Remember that the reduction to Hessenberg form costs 10
3 n

3 flops
without forming the transformation matrix and 14

3 n
3 if this matrix

is formed.
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