

Solving large scale eigenvalue problems

 Lecture 5, March 23, 2016: The QR algorithm II http://people.inf.ethz.ch/arbenz/ewp/Peter Arbenz
Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

The QR algorithm is the most important algorithm to compute the Schur form of a dense matrix.

- Basic QR algorithm
- Hessenberg QR algorithm
- QR algorithm with shifts
- Double step QR algorithm for real matrices
- The symmetric QR algorithm
- The QZ algorithm for solving $A \mathbf{x}=\lambda B \mathbf{x}$.

Spectral decomposition

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be hermitian, $A^{*}=A$. Then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
U^{*} A U=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \tag{1}
\end{equation*}
$$

is diagonal. The diagonal elements λ_{i} of Λ are the eigenvalues of A.

$$
\text { Let } U=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right] \text {. Then }
$$

$$
A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}, \quad 1 \leq i \leq n .
$$

\mathbf{u}_{i} is the eigenvector associated with the eigenvalue λ_{i}.

The symmetric $Q R$ algorithm

- The QR algorithm can be applied straight to Hermitian or symmetric matrices.
- The QR algorithm generates a sequence $\left\{A_{k}\right\}$ of symmetric matrices.
- Taking into account the symmetry, the performance of the algorithm can be improved considerably.
- Hermitian matrices have a real spectrum. Therefore, we can restrict ourselves to single shifts.

Reduction to tridiagonal form

Apply a sequence of Householder transformations to arrive at tridiagonal ($=$ symmetric Hessenberg) form.
First step: Let

$$
P_{1}=\left[\begin{array}{cc}
1 & \mathbf{0}^{T} \\
\mathbf{0} & I_{n-1}-2 \mathbf{u}_{1} \mathbf{u}_{1}^{*}
\end{array}\right], \quad \mathbf{u}_{1} \in \mathbb{C}^{n}, \quad\left\|\mathbf{u}_{1}\right\|=1
$$

Then,

$$
\begin{aligned}
A_{1}:=P_{1}^{*} A P_{1} & =\left(I-2 \mathbf{u}_{1} \mathbf{u}_{1}^{*}\right) A\left(I-2 \mathbf{u}_{1} \mathbf{u}_{1}^{*}\right) \\
& =A-\mathbf{u}_{1}(\underbrace{2 \mathbf{u}_{1}^{*} A-2\left(\mathbf{u}_{1}^{*} A \mathbf{u}_{1}\right) \mathbf{u}_{1}^{*}}_{\mathbf{v}_{1}^{*}})-\underbrace{\left(2 A \mathbf{u}_{1}-2 \mathbf{u}_{1}\left(\mathbf{u}_{1}^{*} A \mathbf{u}_{1}\right)\right)}_{\mathbf{v}_{1}} \mathbf{u}_{1}^{*} \\
& =A-\mathbf{u}_{1} \mathbf{v}_{1}^{*}-\mathbf{v}_{1} \mathbf{u}_{1}^{*} .
\end{aligned}
$$

Reduction to tridiagonal form (cont.)

In the k-th step of the reduction we similarly have

$$
A_{k}=P_{k}^{*} A_{k-1} P_{k}=A_{k-1}-\mathbf{u}_{k-1} \mathbf{v}_{k-1}^{*}-\mathbf{v}_{k-1} \mathbf{u}_{k-1}^{*}
$$

where the last $n-k$ elements of \mathbf{u}_{k-1} and \mathbf{v}_{k-1} are nonzero.
Essential computation in the k th step:

$$
\mathbf{v}_{k-1}=2 A_{k-1} \mathbf{u}_{k-1}-2 \mathbf{u}_{k-1}\left(\mathbf{u}_{k-1}^{*} A_{k-1} \mathbf{u}_{k-1}\right)
$$

which costs $2(n-k)^{2}+\mathcal{O}(n-k)$ flops.
Altogether, the reduction to tridiagonal form costs

$$
\sum_{k=1}^{n-1}\left(4(n-k)^{2}+\mathcal{O}(n-k)\right)=\frac{4}{3} n^{3}+\mathcal{O}\left(n^{2}\right) \text { flops. }
$$

The explicit tridiagonal QR algorithm

In the explicit form, a QR step is essentially

1: Choose a shift μ
2: Compute the $Q R$ factorization $A-\mu I=Q R$
3: Update A by $A=R Q+\mu I$.
Of course, this is done by means of plane rotations and by respecting the symmetric tridiagonal structure of A.

Shifting strategies: Rayleigh quotient shifts, Wilkinson shifts

The implicit tridiagonal QR algorithm

In the more elegant implicit form of the algorithm we first compute the first Givens rotation $G_{0}=G(1,2, \vartheta)$ of the QR factorization that zeros the $(2,1)$ element of $A-\mu I$,

$$
\left[\begin{array}{rr}
c & s \tag{2}\\
-s & c
\end{array}\right]\left[\begin{array}{c}
a_{11}-\mu \\
a_{21}
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right], \quad c=\cos \left(\vartheta_{0}\right), \quad s=\sin \left(\vartheta_{0}\right)
$$

Performing a similarity transformation with G_{0} we have $(n=5)$

$$
G_{0}^{*} A G_{0}=A^{\prime}=\left[\begin{array}{ccccc}
\times & \times & + & & \\
\times & \times & \times & & \\
+ & \times & \times & \times & \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right]
$$

The implicit tridiagonal QR algorithm (cont.)

Similarly as with the double step Hessenberg QR algorithm we chase the bulge down the diagonal.

$$
\begin{aligned}
& A \xrightarrow[=G\left(1,2, \vartheta_{0}\right)]{G_{0}}\left[\begin{array}{ccccc}
\times & \times & + & & \\
\times & \times & \times & & \\
+ & \times & \times & \times & \\
& & \times & \times & \times \\
& & \times & \times
\end{array}\right] \xrightarrow[=G\left(2,3, \vartheta_{1}\right)]{G_{1}}\left[\begin{array}{cccc}
\times & \times & 0 & \\
\times & \times & \times & + \\
0 & \times & \times & \times \\
& + & \times & \times \\
& & & \times \\
& & \times
\end{array}\right] \\
& \xrightarrow[=G\left(3,4, \vartheta_{2}\right)]{G_{2}}\left[\begin{array}{ccccc}
\times & \times & 0 & & \\
\times & \times & \times & & \\
& \times & \times & \times & + \\
& 0 & \times & \times & \times \\
& & + & \times & \times
\end{array}\right] \xrightarrow[=G\left(4,5, \vartheta_{3}\right)]{G_{3}}\left[\begin{array}{ccccc}
\times & \times & & & \\
\times & \times & \times & & \\
& \times & \times & \times & 0 \\
& & \times & \times & \times \\
& & 0 & \times & \times
\end{array}\right]
\end{aligned}
$$

The implicit tridiagonal QR algorithm (cont.)

The full step is given by

$$
\bar{A}=Q^{*} A Q, \quad Q=G_{0} G_{1} \cdots G_{n-2}
$$

Because $G_{k} \mathbf{e}_{1}=\mathbf{e}_{1}$ for $k>0$ we have

$$
Q \mathbf{e}_{1}=G_{0} G_{1} \cdots G_{n-2} \mathbf{e}_{1}=G_{0} \mathbf{e}_{1} .
$$

Both explicit and implicit QR step form the same first plane rotation G_{0}. By referring to the Implicit Q Theorem we see that explicit and implicit $Q R$ step compute essentially the same \bar{A}.

Symm. tridiag. QR algo with Wilkinson shifts

1: Let $T \in \mathbb{R}^{n \times n}$ be a symmetric tridiagonal matrix with diagonal entries a_{1}, \ldots, a_{n} and off-diagonal entries b_{2}, \ldots, b_{n}. This algorithm computes the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of T and corresponding eigenvectors $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$. The eigenvalues are stored in a_{1}, \ldots, a_{n}. The eigenvectors are stored in the matrix Q, such that $T Q=Q \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

2: $m=n\{$ Actual problem dimension. m is reduced in the convergence check.\}
3: while $m>1$ do
4: $\quad d:=\left(a_{m-1}-a_{m}\right) / 2 ;$ Compute Wilkinson's shift $\}$
5: if $d=0$ then
6: $\quad s:=a_{m}-\left|b_{m}\right| ;$

Symm. tridiag. QR algo with Wilkinson shifts (cont.)

7: else
8: $\quad s:=a_{m}-b_{m}^{2} /\left(d+\operatorname{sign}(d) \sqrt{d^{2}+b_{m}^{2}}\right)$;
9: end if
10: $\quad x:=a(1)-s ;\{$ Implicit QR step begins here $\}$
11: $y:=b(2)$;
12: for $k=1$ to $m-1$ do
13: \quad if $m>2$ then
$[c, s]:=$ givens (x, y);
15: else
16: \quad Determine $[c, s]$ such that $\left[\begin{array}{rr}c & -s \\ s & c\end{array}\right]\left[\begin{array}{ll}a_{1} & b_{2} \\ b_{2} & a_{2}\end{array}\right]\left[\begin{array}{rr}c & s \\ -s & c\end{array}\right]$
17: end if
18: $\quad w:=c x-s y$;

Symm. tridiag. QR algo with Wilkinson shifts (cont.)

19:

$$
\text { 20: } \quad a_{k}:=a_{k}-z ; \quad a_{k+1}:=a_{k+1}+z
$$

$$
\text { 21: } \quad b_{k+1}:=d c s+\left(c^{2}-s^{2}\right) b_{k+1}
$$

$$
22: \quad x:=b_{k+1}
$$

$$
\text { 23: } \quad \text { if } k>1 \text { then }
$$

$$
\text { 24: } \quad b_{k}:=w
$$

25: end if

$$
\text { 26: } \quad \text { if } k<m-1 \text { then }
$$

$$
\text { 27: } \quad y:=-s b_{k+2} ; \quad b_{k+2}:=c b_{k+2}
$$

28: end if

$$
\text { 29: } \quad Q_{1: n ; k: k+1}:=Q_{1: n ; k: k+1}\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right] \text {; }
$$

30: end for\{Implicit QR step ends here\}
31: if $\left|b_{m}\right|<\varepsilon\left(\left|a_{m-1}\right|+\left|a_{m}\right|\right)$ then \{Check for convergence\}

Symm. tridiag. QR algo with Wilkinson shifts (cont.)

32: $\quad m:=m-1$;
33: end if
34: end while

Remark on deflation

$$
T=\left[\begin{array}{cccccc}
a_{1} & b_{2} & & & & \\
b_{2} & a_{2} & b_{3} & & & \\
& b_{3} & a_{3} & 0 & & \\
& & 0 & a_{4} & b_{5} & \\
& & & b_{5} & a_{5} & b_{6} \\
& & & & b_{6} & a_{6}
\end{array}\right]
$$

- Shift for next step is determined from second block.
- First plane rotation is determined from shift and first block!
- The implicit shift algorithm then chases the bulge down the diagonal. Procedure finishes already in row 4 because $b_{4}=0$.
- This shift does not improve convergence.
- Explicit QR algorithm converges rapidly, but first block is not treated properly

Complexity of QR algorithm

	nonsymmetric case without with Schurvectors		symmetric case without eigenvectors	
transformation to Hessenberg/tridiagonal form	$\frac{10}{3} n^{3}$	$\frac{14}{3} n^{3}$	$\frac{4}{3} n^{3}$	$\frac{8}{3} n^{3}$
real double step Hessenberg/ tridiagonal QR algorithm (2 steps per eigenvalues)	$\frac{20}{3} n^{3}$	$\frac{50}{3} n^{3}$	$24 n^{2}$	$6 n^{3}$
total	$10 n^{3}$	$25 n^{3}$	$\frac{4}{3} n^{3}$	$9 n^{3}$

The $\mathbf{Q Z}$ algorithm for $A \mathbf{x}=\lambda B \mathbf{x}$

Theorem (Generalized Schur decomposition)

Let $A, B \in \mathbb{C}^{n \times n}$. Then there are unitary matrices Q and Z such that $Q^{*} A Z=T$ and $Q^{*} B Z=S$ are both upper triangular matrices. If for some $k, t_{k k}=s_{k k}=0$ then $\sigma(A ; B)=\mathbb{C}$. Otherwise,

$$
\sigma(A ; B)=\left\{\left.\frac{t_{i i}}{s_{i i}} \right\rvert\, s_{i i} \neq 0\right\} .
$$

Remark: (1) It is possible that $\infty \in \sigma(A ; B)$. This is equivalent with $0 \in \sigma(B ; A)$.
(2) There is a real version of this theorem. There T is quasi-upper triangular and S is upper triangular.

Proof.

Let B_{k} a sequence of nonsingular matrices converging to B. Let $Q_{k}^{*}\left(A B_{k}^{-1}\right) Q_{k}=R_{k}, k \geq 0$, the Schur decomposition of $A B_{k}^{-1}$. Let Z_{k} be unitary and $Z_{k}^{*}\left(B_{k}^{-1} Q_{k}\right)=S_{k}^{-1}$ upper triangular. Then

$$
Q_{k}^{*} A Z_{k} Z_{k}^{*} B_{k}^{-1} Q_{k}=R_{k} \Longrightarrow Q_{k}^{*} A Z_{k}=R_{k} S_{k}
$$

is upper triangular.
Bolzano-Weierstrass: the sequence $\left\{\left(Q_{k}, Z_{k}\right)\right\}$ has convergent subsequence, $\lim \left(Q_{k_{i}}, Z_{k_{i}}\right)=(Q, Z)$.
Q, Z are unitary and $Q^{*} A Z, Q^{*} B Z$ are upper triangular.
Statement on eigenvalues follows from

$$
\operatorname{det}(A-\lambda B)=\operatorname{det}\left(Q Z^{*}\right) \prod_{i=1}^{n}\left(t_{i i}-\lambda s_{i i}\right)
$$

The QZ algorithm: step 1

Step 1: Reduction to Hessenberg-triangular form. Transform B into upper triangular form (QR factorization of B)

$$
A \leftarrow U^{*} A=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right), \quad B \leftarrow U^{*} B=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
$$

The QZ algorithm: step 1 (cont.)

Transform A into Hessenberg form by a sequence of Givens rotations w/o destroying the zero pattern of B

$$
\left.\begin{array}{rl}
A \leftarrow Q_{45}^{*} A & =\left(\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right),
\end{array}\right] \quad B \leftarrow Q_{45}^{*} B=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & + & \times
\end{array}\right)
$$

The QZ algorithm: step 1 (cont.)

$$
\left.\begin{array}{rl}
A \leftarrow Q_{34}^{*} A & =\left(\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right),
\end{array}\right] \quad B \leftarrow Q_{34}^{*} B=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
$$

The QZ algorithm: step 1 (cont.)

$$
\begin{aligned}
A \leftarrow Q_{23}^{*} A=\left(\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right), & B \leftarrow Q_{23}^{*} B=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
A \leftarrow A Z_{23}=\left(\begin{array}{lllll}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right), & B \leftarrow B Z_{23}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
\end{aligned}
$$

Now the first column of A has the desired structure.
Proceed similarly with columns 2 to $n-2$.

The QZ algorithm: step 2

Step 2: Deflation.

Let us assume

1. that A is an irreducible Hessenberg matrix and
2. that B is a nonsingular upper triangular matrix.

If 1 . is not satisfied, e.g. $a_{k+1, k}=0$, then

$$
A-\lambda B=\left(\begin{array}{cc}
A_{11}-\lambda B_{11} & A_{12}-\lambda B_{12} \\
0 & A_{22}-\lambda B_{22}
\end{array}\right)
$$

and we can treat the smaller problems $A_{11}-\lambda B_{11}$ and $A_{22}-\lambda B_{22}$ individually.

The QZ algorithm: step 2 (cont.)

If 2 . is not satisfied, then $b_{k, k}=0$ for some k.

We chase the zero down the diagonal of B :

$$
A \leftarrow Q_{34}^{*} A=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right), \quad B \leftarrow Q_{34}^{*} B=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
$$

The QZ algorithm: step 2 (cont.)

$$
\begin{aligned}
A \leftarrow A Z_{23}^{*} & =\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right),
\end{aligned}, \quad B \leftarrow B Z_{23}^{*}=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
$$

Solving large scale eigenvalue problems
$L_{\text {The }} \mathbf{Q Z}$ algorithm for $A \mathbf{x}=\lambda B \mathbf{x}$

The QZ algorithm: step 2 (cont.)

$$
\begin{array}{cc}
A \leftarrow A Z_{34}^{*}=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right), \quad B \leftarrow B Z_{34}^{*}=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & + & \times & \times \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
A \leftarrow A Z_{45}=\left[\begin{array}{cccc|c}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right], \quad B \leftarrow B=B Z_{45}\left[\begin{array}{cccc|c}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & + & \times & \times \\
0 & 0 & 0 & + & \times \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

The QZ algorithm: step 2

Step 3: QZ step.
We now consider the pair (A, B) satisfing assumptions 1 and 2 .
We execute an iteration that corresponds to a QR algorithm applied to $A B^{-1}$.
We look at a single step of the QR algorithm. We want to modify A and B,

$$
\bar{A}-\lambda \bar{B}=\bar{Q}^{*}(A-\lambda B) \bar{Z}, \quad \bar{Q}, \bar{Z} \text { unitary }
$$

with \bar{A} Hessenberg and \bar{B} upper triangular. $\bar{A} \bar{B}^{-1}$ is the matrix that is obtained by one step of the QR algorithm applied to $A B^{-1}$.

The QZ algorithm: step 2 (cont.)

Set $M:=A B^{-1} . M$ is Hessenberg. Let

$$
\mathbf{v}=(M-a l)(M-b l) \mathbf{e}_{1}
$$

where a and b are the eigenvalues of the trailing 2×2 block of M. (\mathbf{v} can be computed in $\mathcal{O}(1)$ flops.)
Let P_{0} be the Householder reflector with

$$
P_{0} \mathbf{v}= \pm\|\mathbf{v}\| \mathbf{e}_{1}
$$

Then,

$$
A=P_{0} A=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right), \quad B=P_{0} B\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times \\
+ & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right)
$$

The QZ algorithm: step 2 (cont.)

Now we restore the Hessenberg-triangular form:

$$
\begin{array}{cl}
A \leftarrow A Z_{1} Z_{2}=\left[\begin{array}{ccc|ccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
+ & \times & \times & \times & \times \\
+ & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right], & B \leftarrow B Z_{1} Z_{2}=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right] \\
A \leftarrow P_{2} P_{1} A=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right], & B \leftarrow P_{2} P_{1} B=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\hline 0 & \times & \times & \times & \times \\
0 & + & \times & \times \\
0 & + & \times & \times & \times \\
\hline 0 & 0 & 0 & 0 & \times
\end{array}\right]
\end{array}
$$

and so on, until the bulge drops out at the end of the matrix.

References

[1] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 4th ed., 2012.

