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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

The QR algorithm is the most important algorithm to compute the
Schur form of a dense matrix.

I Basic QR algorithm

I Hessenberg QR algorithm

I QR algorithm with shifts

I Double step QR algorithm for real matrices

I The symmetric QR algorithm

I The QZ algorithm for solving Ax = λBx.
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Solving large scale eigenvalue problems

Spectral decomposition

Spectral decomposition

Theorem

Let A ∈ Cn×n be hermitian, A∗ = A. Then there is a unitary
matrix U ∈ Cn×n such that

U∗AU = Λ = diag(λ1, . . . , λn) (1)

is diagonal. The diagonal elements λi of Λ are the eigenvalues of A.

Let U = [u1,u2, . . . ,un]. Then

Aui = λiui , 1 ≤ i ≤ n.

ui is the eigenvector associated with the eigenvalue λi .
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Solving large scale eigenvalue problems

The symmetric QR algorithm

The symmetric QR algorithm

I The QR algorithm can be applied straight to Hermitian or
symmetric matrices.

I The QR algorithm generates a sequence {Ak} of symmetric
matrices.

I Taking into account the symmetry, the performance of the
algorithm can be improved considerably.

I Hermitian matrices have a real spectrum. Therefore, we can
restrict ourselves to single shifts.
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Reduction to tridiagonal form

Apply a sequence of Householder transformations to arrive at
tridiagonal (= symmetric Hessenberg) form.
First step: Let

P1 =

[
1 0T

0 In−1 − 2u1u∗1

]
, u1 ∈ Cn, ‖u1‖ = 1.

Then,

A1 := P∗1AP1 = (I − 2u1u
∗
1)A(I − 2u1u

∗
1)

= A− u1(2u∗1A− 2(u∗1Au1)u∗1︸ ︷︷ ︸
v∗1

)− (2Au1 − 2u1(u∗1Au1))︸ ︷︷ ︸
v1

u∗1

= A− u1v
∗
1 − v1u

∗
1.
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Reduction to tridiagonal form (cont.)
In the k-th step of the reduction we similarly have

Ak = P∗kAk−1Pk = Ak−1 − uk−1v
∗
k−1 − vk−1u

∗
k−1,

where the last n − k elements of uk−1 and vk−1 are nonzero.

Essential computation in the kth step:

vk−1 = 2Ak−1uk−1 − 2uk−1(u∗k−1Ak−1uk−1)

which costs 2(n − k)2 +O(n − k) flops.

Altogether, the reduction to tridiagonal form costs

n−1∑
k=1

(
4(n − k)2 +O(n − k)

)
=

4

3
n3 +O(n2) flops.
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Solving large scale eigenvalue problems

The symmetric QR algorithm

The explicit tridiagonal QR algorithm

In the explicit form, a QR step is essentially

1: Choose a shift µ
2: Compute the QR factorization A− µI = QR
3: Update A by A = RQ + µI .

Of course, this is done by means of plane rotations and by
respecting the symmetric tridiagonal structure of A.

Shifting strategies: Rayleigh quotient shifts, Wilkinson shifts
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Solving large scale eigenvalue problems

The symmetric QR algorithm

The implicit tridiagonal QR algorithm

In the more elegant implicit form of the algorithm we first compute
the first Givens rotation G0 = G (1, 2, ϑ) of the QR factorization
that zeros the (2, 1) element of A− µI ,[

c s
−s c

] [
a11 − µ
a21

]
=

[
∗
0

]
, c = cos(ϑ0), s = sin(ϑ0).

(2)
Performing a similarity transformation with G0 we have (n = 5)

G ∗0AG0 = A′ =


× × +
× × ×
+ × × ×

× × ×
× ×
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Solving large scale eigenvalue problems

The symmetric QR algorithm

The implicit tridiagonal QR algorithm (cont.)
Similarly as with the double step Hessenberg QR algorithm we
chase the bulge down the diagonal.

A
G0−−−−−−−−−−→

= G (1, 2, ϑ0)


× × +
× × ×
+ × × ×

× × ×
× ×

 G1−−−−−−−−−−→
= G (2, 3, ϑ1)


× × 0
× × × +
0 × × ×

+ × × ×
× ×



G2−−−−−−−−−−→
= G (3, 4, ϑ2)


× × 0
× × ×
× × × +
0 × × ×

+ × ×

 G3−−−−−−−−−−→
= G (4, 5, ϑ3)


× ×
× × ×
× × × 0
× × ×
0 × ×

 = A.
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Solving large scale eigenvalue problems

The symmetric QR algorithm

The implicit tridiagonal QR algorithm (cont.)
The full step is given by

A = Q∗AQ, Q = G0 G1 · · · Gn−2.

Because Gke1 = e1 for k > 0 we have

Q e1 = G0 G1 · · ·Gn−2 e1 = G0 e1.

Both explicit and implicit QR step form the same first plane
rotation G0. By referring to the Implicit Q Theorem we see that
explicit and implicit QR step compute essentially the same A.

Large scale eigenvalue problems, Lecture 5, March 23, 2016 10/30



Solving large scale eigenvalue problems

The symmetric QR algorithm

Symm. tridiag. QR algo with Wilkinson shifts

1: Let T ∈ Rn×n be a symmetric tridiagonal matrix with diagonal
entries a1, . . . , an and off-diagonal entries b2, . . . , bn.
This algorithm computes the eigenvalues λ1, . . . , λn of T and
corresponding eigenvectors q1, . . . ,qn. The eigenvalues are
stored in a1, . . . , an. The eigenvectors are stored in the matrix
Q, such that TQ = Q diag(a1, . . . , an).

2: m = n {Actual problem dimension. m is reduced in the
convergence check.}

3: while m > 1 do
4: d := (am−1 − am)/2; {Compute Wilkinson’s shift}
5: if d = 0 then
6: s := am − |bm|;
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Symm. tridiag. QR algo with Wilkinson shifts (cont.)
7: else
8: s := am − b2m/(d + sign(d)

√
d2 + b2m);

9: end if
10: x := a(1)− s; {Implicit QR step begins here}
11: y := b(2);
12: for k = 1 to m − 1 do
13: if m > 2 then
14: [c, s] := givens(x , y);
15: else

16: Determine [c , s] such that

[
c −s
s c

] [
a1 b2
b2 a2

] [
c s
−s c

]
is diagonal

17: end if
18: w := cx − sy ;
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Symm. tridiag. QR algo with Wilkinson shifts (cont.)
19: d := ak − ak+1; z := (2cbk+1 + ds)s;
20: ak := ak − z ; ak+1 := ak+1 + z ;
21: bk+1 := dcs + (c2 − s2)bk+1;
22: x := bk+1;
23: if k > 1 then
24: bk := w ;
25: end if
26: if k < m − 1 then
27: y := −sbk+2; bk+2 := cbk+2;
28: end if

29: Q1:n;k:k+1 := Q1:n;k:k+1

[
c s
−s c

]
;

30: end for{Implicit QR step ends here}
31: if |bm| < ε(|am−1|+ |am|) then {Check for convergence}
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Symm. tridiag. QR algo with Wilkinson shifts (cont.)
32: m := m − 1;
33: end if
34: end while
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Remark on deflation

T =


a1 b2
b2 a2 b3

b3 a3 0
0 a4 b5

b5 a5 b6
b6 a6


I Shift for next step is determined from second block.

I First plane rotation is determined from shift and first block!

I The implicit shift algorithm then chases the bulge down the
diagonal. Procedure finishes already in row 4 because b4 = 0.

I This shift does not improve convergence.

I Explicit QR algorithm converges rapidly, but first block is not
treated properly
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Solving large scale eigenvalue problems

The symmetric QR algorithm

Complexity of QR algorithm

nonsymmetric case symmetric case

without with without with

Schurvectors eigenvectors

transformation to 10
3 n3 14

3 n3 4
3 n

3 8
3 n

3

Hessenberg/tridiagonal form

real double step Hessenberg/ 20
3 n3 50

3 n3 24 n2 6 n3

tridiagonal QR algorithm
(2 steps per eigenvalues)

total 10 n3 25 n3 4
3 n

3 9 n3
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm for Ax = λBx

Theorem (Generalized Schur decomposition)

Let A,B ∈ Cn×n. Then there are unitary matrices Q and Z such
that Q∗AZ = T and Q∗BZ = S are both upper triangular
matrices. If for some k , tkk = skk = 0 then σ(A;B) = C.
Otherwise,

σ(A;B) =

{
tii
sii
| sii 6= 0

}
.

Remark: (1) It is possible that ∞ ∈ σ(A;B). This is equivalent
with 0 ∈ σ(B;A).
(2) There is a real version of this theorem. There T is quasi-upper
triangular and S is upper triangular.
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

Proof.

Let Bk a sequence of nonsingular matrices converging to B. Let
Q∗k (AB−1k )Qk = Rk , k ≥ 0, the Schur decomposition of AB−1k .
Let Zk be unitary and Z ∗k (B−1k Qk) = S−1k upper triangular. Then

Q∗kAZkZ
∗
kB
−1
k Qk = Rk =⇒ Q∗kAZk = RkSk

is upper triangular.
Bolzano–Weierstrass: the sequence {(Qk ,Zk)} has convergent
subsequence, lim(Qki ,Zki ) = (Q,Z ).
Q, Z are unitary and Q∗AZ , Q∗BZ are upper triangular.
Statement on eigenvalues follows from

det(A− λB) = det(QZ ∗)
n∏

i=1

(tii − λsii ).
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 1

Step 1: Reduction to Hessenberg-triangular form.
Transform B into upper triangular form (QR factorization of B)

A← U∗A =


×××××
×××××
×××××
×××××
×××××

, B ← U∗B =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 1 (cont.)
Transform A into Hessenberg form by a sequence of Givens
rotations w/o destroying the zero pattern of B

A← Q∗45A =


×××××
×××××
×××××
×××××
0 ××××

, B ← Q∗45B =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 +×



A← AZ45 =


×××××
×××××
×××××
×××××
0 ××××

, B ← BZ45 =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 1 (cont.)

A← Q∗34A =


×××××
×××××
×××××
0 ××××
0 ××××

, B ← Q∗34B =


×××××
0 ××××
0 0 ×××
0 0 +××
0 0 0 0 ×



A← AZ34 =


×××××
×××××
×××××
0 ××××
0 ××××

, B ← BZ34 =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 1 (cont.)

A← Q∗23A =


×××××
×××××
0 ××××
0 ××××
0 ××××

, B ← Q∗23B =


×××××
0 ××××
0 +×××
0 0 0 ××
0 0 0 0 ×



A← AZ23 =


×××××
×××××
0 ××××
0 ××××
0 ××××

, B ← BZ23 =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×


Now the first column of A has the desired structure.

Proceed similarly with columns 2 to n − 2.
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2

Step 2: Deflation.
Let us assume

1. that A is an irreducible Hessenberg matrix and

2. that B is a nonsingular upper triangular matrix.

If 1. is not satisfied, e.g. ak+1,k = 0, then

A− λB =

(
A11 − λB11 A12 − λB12

0 A22 − λB22

)
and we can treat the smaller problems A11 − λB11 and A22 − λB22

individually.
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2 (cont.)
If 2. is not satisfied, then bk,k = 0 for some k .

A =


×××××
×××××
0 ××××
0 0 ×××
0 0 0 ××

, B =


×××××
0 ××××
0 0 0 ××
0 0 0 ××
0 0 0 0 ×


We chase the zero down the diagonal of B:

A← Q∗34A =


×××××
×××××
0 ××××
0 +×××
0 0 0 ××

, B ← Q∗34B =


×××××
0 ××××
0 0 0 ××
0 0 0 0 ×
0 0 0 0 ×
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2 (cont.)

A← AZ ∗23 =


×××××
×××××
0 ××××
0 0 ×××
0 0 0 ××

, B ← BZ ∗23 =


×××××
0 ××××
0 0 0 ××
0 0 0 0 ×
0 0 0 0 ×



A← Q∗45A =


×××××
×××××
0 ××××
0 0 ×××
0 0 +××

, B ← Q∗45B =


×××××
0 ××××
0 0 0 ××
0 0 0 0 ×
0 0 0 0 0
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2 (cont.)

A← AZ ∗34 =


×××××
×××××
0 ××××
0 0 ×××
0 0 0 ××

, B ← BZ ∗34 =


×××××
0 ××××
0 0 +××
0 0 0 0 ×
0 0 0 0 0



A← AZ45 =


×××××
×××××
0 ××××
0 0 ×××
0 0 0 0 ×

, B ← B = BZ45


×××××
0 ××××
0 0 +××
0 0 0 +×
0 0 0 0 0
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2

Step 3: QZ step.
We now consider the pair (A,B) satisfing assumptions 1 and 2.
We execute an iteration that corresponds to a QR algorithm
applied to AB−1.
We look at a single step of the QR algorithm. We want to modify
A and B,

Ā− λB̄ = Q̄∗(A− λB)Z̄ , Q̄, Z̄ unitary.

with Ā Hessenberg and B̄ upper triangular. ĀB̄−1 is the matrix
that is obtained by one step of the QR algorithm applied to AB−1.
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2 (cont.)
Set M := AB−1. M is Hessenberg. Let

v = (M − aI )(M − bI )e1

where a and b are the eigenvalues of the trailing 2× 2 block of M.
(v can be computed in O(1) flops.)
Let P0 be the Householder reflector with

P0v = ±‖v‖e1.

Then,

A = P0A =


×××××
×××××
+××××
0 0 ×××
0 0 0 ××

, B = P0B


×××××
+××××
+ +×××
0 0 0 ××
0 0 0 0 ×
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Solving large scale eigenvalue problems

The QZ algorithm for Ax = λBx

The QZ algorithm: step 2 (cont.)
Now we restore the Hessenberg-triangular form:

A← AZ1Z2 =


×××××
×××××
+××××
+ +×××
0 0 0 ××

, B ← BZ1Z2 =


×××××
0 ××××
0 0 ×××
0 0 0 ××
0 0 0 0 ×



A← P2P1A =


×××××
×××××
0 ××××
0 0 ×××
0 0 0 ××

, B ← P2P1B =


×××××
0 ××××
0 +×××
0 + +××
0 0 0 0 ×


and so on, until the bulge drops out at the end of the matrix.
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