

Solving large scale eigenvalue problems Lecture 6, March 28, 2018: Simple vector iterations http://people.inf.ethz.ch/arbenz/ewp/

> Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

The power method (aka. vector iteration) is the simplest method to compute a single eigenvector of a matrix.

- Simple vector iteration (power method)
- Inverse vector iteration
- Rayleigh quotient iteration (RQI)

Simple vector iteration

Let $A \in \mathbb{R}^{n \times n}$. Starting with arbitrary initial vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$ we form the vector sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} := A \mathbf{x}^{(k-1)}, \qquad k = 1, 2, \dots$$
 (*)

Clearly,

$$\mathbf{x}^{(k)} := A^k \, \mathbf{x}^{(0)}.$$

We will show that the $\mathbf{x}^{(k)}$ 'converge' to 'the' eigenvector associated with the eigenvalue of largest magnitude.

Algorithm: Simple vector iteration

- 1: Choose a starting vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$ with $\|\mathbf{x}^{(0)}\| = 1$.
- 2: k = 0.
- 3: repeat
- 4: k := k + 1;
- 5: $\mathbf{y}^{(k)} := A \, \mathbf{x}^{(k-1)};$
- 6: $\mu_k := \|\mathbf{y}^{(k)}\|;$
- 7: $\mathbf{x}^{(k)} := \mathbf{y}^{(k)} / \mu_k;$
- 8: until a convergence criterion is satisfied

Vectors $\mathbf{x}^{(k)}$ have all norm (length) one. $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ is a sequence on the unit sphere of \mathbb{R}^n .

Here, the maximum norm is polular as well: $\|\mathbf{y}\|_{\infty} = \max_{i} |\mathbf{y}_{i}|$.

Important note

• Let $A = USU^*$ be the Schur decomposition of A. Then,

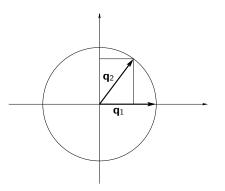
$$U^* \mathbf{x}^{(k)} := SU^* \mathbf{x}^{(k-1)}$$
 and $U^* \mathbf{x}^{(k)} := S^k U^* \mathbf{x}^{(0)}$.

- U unitary: $\|\mathbf{x}^{(k)}\| \implies \|U^*\mathbf{x}^{(k)}\| = 1$ for all k.
- ► If sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ converges to \mathbf{x}_* then sequence $\{\mathbf{y}^{(k)} = U^* \mathbf{x}^{(k)}\}_{k=0}^{\infty}$ converges to $\mathbf{y}_* = U^* \mathbf{x}_*$.
- So, for convergence analysis: can assume w.l.o.g. that A is upper triangular.
- If we assumed that A is symmetric then for a convergence analysis we could restrict ourselves to *diagonal* matrices.
- ► Note that some performance issues are excluded here.

Angles between vectors

Intermezzo: Angles between vectors

Let \mathbf{q}_1 and \mathbf{q}_2 be *unit* vectors. Angle between vectors \mathbf{q}_1 and \mathbf{q}_2 :



Intermezzo: Angles between vectors (cont.)

The length of the orthogonal projection of \mathbf{q}_2 on span $\{\mathbf{q}_1\}$ is:

$$c := \|\mathbf{q}_1 \mathbf{q}_1^* \mathbf{q}_2\| = |\mathbf{q}_1^* \mathbf{q}_2| \le 1.$$

The length of the orthogonal projection of \mathbf{q}_2 on span $\{\mathbf{q}_1\}^{\perp}$ is

$$s := \| (\mathbf{I} - \mathbf{q}_1 \mathbf{q}_1^*) \mathbf{q}_2 \|. \tag{+}$$

As $\mathbf{q}_1 \mathbf{q}_1^*$ is an orthogonal projection, by Pythagoras' formula:

$$1 = \|\mathbf{q}_2\|^2 = \|\mathbf{q}_1\mathbf{q}_1^*\mathbf{q}_2\|^2 + \|(\mathbf{I} - \mathbf{q}_1\mathbf{q}_1^*)\mathbf{q}_2\|^2 = s^2 + c^2.$$

From (+):
$$s^2 = \|(\mathbf{I} - \mathbf{q}_1\mathbf{q}_1^*)\mathbf{q}_2\|^2$$
$$= \mathbf{q}_2^*(\mathbf{I} - \mathbf{q}_1\mathbf{q}_1^*)\mathbf{q}_2$$
$$= \mathbf{q}_2^*\mathbf{q}_2 - (\mathbf{q}_2^*\mathbf{q}_1)(\mathbf{q}_1^*\mathbf{q}_2)$$
$$= 1 - c^2$$

Simple vector iteration

Angles between vectors

Intermezzo: Angles between vectors (cont.)

So, there is a number, say, ϑ , $0 \le \vartheta \le \frac{\pi}{2}$, such that $c = \cos \vartheta$ and $s = \sin \vartheta$. This uniquely determined number ϑ is the angle between the vectors \mathbf{q}_1 and \mathbf{q}_2 :

$$\vartheta = \angle (\mathbf{q}_1, \mathbf{q}_2).$$

The generalization to arbitrary vectors is straightforward.

Definition

The **angle** θ between two nonzero vectors **x** and **y** is given by

$$\vartheta = \angle(\mathbf{x}, \mathbf{y}) = \arcsin\left(\left\| \left(I - \frac{\mathbf{x}\mathbf{x}^*}{\|\mathbf{x}\|^2}\right) \frac{\mathbf{y}}{\|\mathbf{y}\|} \right\| \right) = \arccos\left(\frac{|\mathbf{x}^*\mathbf{y}|}{\|\mathbf{x}\|\|\mathbf{y}\|}\right).$$

-Simple vector iteration

Angles between vectors

Convergence analysis

Assume that

$$S = \begin{bmatrix} \lambda_1 & \mathbf{s}_1^* \\ \mathbf{0} & S_2 \end{bmatrix}, \qquad (S_2 \text{ upper triangular}) \tag{1}$$

has eigenvalues

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Eigenvector of S corresponding to largest eigenvalue λ_1 is \mathbf{e}_1 . We will show that the iterates $\mathbf{x}^{(k)}$ converge to \mathbf{e}_1 . More precisely, we will show that $\angle(\mathbf{x}^{(k)}, \mathbf{e}_1) \longrightarrow 0$ as $k \to \infty$.

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

Let

$$\mathbf{x}^{(k)} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{pmatrix} =: \begin{pmatrix} x_1^{(k)} \\ \mathbf{x}_2^{(k)} \\ \mathbf{x}_2^{(k)} \end{pmatrix}$$

with $\|\mathbf{x}^{(k)}\| = 1$. Then,

$$\sin \vartheta^{(k)} := \sin(\angle(\mathbf{x}^{(k)}, \mathbf{e}_1)) = \sqrt{\sum_{i=2}^n |x_i^{(k)}|^2} = \sqrt{\frac{\sum_{i=2}^n |x_i^{(k)}|^2}{\sum_{i=1}^n |x_i^{(k)}|^2}}.$$

The last expression is for non-normalized vectors $\mathbf{x}^{(k)}$, cf. (*).

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

First, we simplify the form of S in (1), by eliminating \mathbf{s}_1^* ,

$$\begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} \lambda_1 & \mathbf{s}_1^* \\ \mathbf{0} & S_2 \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} \lambda_1 & \mathbf{s}_1^* \\ \mathbf{0} & S_2 \end{bmatrix} \begin{bmatrix} 1 & \mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} = \begin{bmatrix} \lambda_1 & \mathbf{0}^* \\ \mathbf{0} & S_2 \end{bmatrix}.$$

The vector t that realizes this transformation has to satisfy

$$\lambda_1 \mathbf{t}^* + \mathbf{s}_1^* - \mathbf{t}^* S_2 = \mathbf{0}^* \quad \Longleftrightarrow \quad \mathbf{s}_1^* = \mathbf{t}^* (S_2 - \lambda_1 I).$$

This equation has a solution if and only if $\lambda_1 \notin \sigma(S_2)$ which is the case by assumption.

Remark: $[1, -t^*]$ is left eigenvector of S associated with λ_1 .

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

So, we have

$$\mathbf{x}^{(k)} = \begin{pmatrix} x_1^{(k)} \\ \mathbf{x}_2^{(k)} \end{pmatrix} = \begin{bmatrix} \lambda_1 & \mathbf{s}_1^* \\ \mathbf{0} & S_2 \end{bmatrix} \mathbf{x}^{(k-1)} = \dots = \begin{bmatrix} \lambda_1 & \mathbf{s}_1^* \\ \mathbf{0} & S_2 \end{bmatrix}^k \mathbf{x}^{(0)}$$
$$= \begin{bmatrix} 1 & \mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} \lambda_1 & \mathbf{0}^* \\ \mathbf{0} & S_2 \end{bmatrix}^k \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \begin{pmatrix} x_1^{(0)} \\ \mathbf{x}_2^{(0)} \end{pmatrix}.$$

We define

$$\mathbf{y}^{(k)} := \frac{1}{\lambda_1^k} \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \mathbf{x}^{(k)}$$
(2)

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

$$\mathbf{y}^{(k)} = \frac{1}{\lambda_1^k} \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} S \mathbf{x}^{(k-1)}$$
$$= \begin{pmatrix} \frac{1}{\lambda_1} \begin{bmatrix} \lambda_1 & \mathbf{0}^* \\ \mathbf{0} & S_2 \end{bmatrix} \end{pmatrix} \frac{1}{\lambda_1^{k-1}} \begin{bmatrix} 1 & -\mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \mathbf{x}^{(k-1)}$$
$$= \begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \frac{1}{\lambda_1} S_2 \end{bmatrix} \begin{pmatrix} y_1^{(k-1)} \\ \mathbf{y}_2^{(k-1)} \end{pmatrix} = \begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \frac{1}{\lambda_1} S_2 \end{bmatrix} \mathbf{y}^{(k-1)}.$$

Let us assume that $y_1^{(0)} = 1$. Then, $y_1^{(k)} = 1$ for all k. Need to show that $\mathbf{y}_2^{(k)}$ goes to zero as $k \to \infty$, and how fast.

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

1

$$\mathbf{y}_{2}^{(k)} = \frac{1}{\lambda_{1}} S_{2} \mathbf{y}_{2}^{(k-1)}$$

$$\frac{1}{\lambda_{1}} S_{2} = \begin{bmatrix} \mu_{2} & * & \cdots & * \\ & \mu_{3} & \cdots & * \\ & & \ddots & \vdots \\ & & & & \mu_{n} \end{bmatrix}, \qquad |\mu_{k}| = \frac{|\lambda_{k}|}{|\lambda_{1}|} < 1.$$

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

Theorem

Let $||| \cdot |||$ be any matrix norm. Then

$$\lim_{k \to \infty} |||M^k|||^{1/k} = \rho(M) = \max_i |\lambda_i(M)|.$$
(3)

Proof.

See Horn-Johnson, Matrix Analysis, 1985, pp.297-299.

So, for any $\varepsilon > 0$ there is an integer $K(\varepsilon)$ such that

$$||M^k|||^{1/k} \le \rho(M) + \varepsilon,$$
 for all $k > K(\varepsilon)$. (4)

Simple vector iteration

-Angles between vectors

Convergence analysis (cont.)

So, for any $\varepsilon > 0$ there is an integer $K(\varepsilon)$ such that

$$|||M^k|||^{1/k} \le \rho(M) + \varepsilon,$$
 for all $k > K(\varepsilon).$ (4)

In our case:

$$\rho\left(\frac{1}{\lambda_1}S_2\right) = |\mu_2| < 1.$$

Can choose ε such that $|\mu_2|+\varepsilon<1.$ For any such ε we have

$$\begin{aligned} \sin(\angle(\mathbf{y}^{(k)}, \mathbf{e}_1)) &= \frac{\|\mathbf{y}_2^{(k)}\|}{\|\mathbf{y}^{(k)}\|} = \frac{\|\mathbf{y}_2^{(k)}\|}{\sqrt{1 + \|\mathbf{y}_2^{(k)}\|}} \\ &\leq \|\mathbf{y}_2^{(k)}\| \leq \|\frac{1}{\lambda_1} S\|^k \|\mathbf{y}_2^{(0)}\| \leq (|\mu_2| + \varepsilon)^k \|\mathbf{y}_2^{(0)}\| \end{aligned}$$

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

Analogous result for $\mathbf{x}^{(k)}$:

$$\begin{pmatrix} x_1^{(k)} \\ \mathbf{x}_2^{(k)} \end{pmatrix} = \lambda_1^k \begin{bmatrix} 1 & \mathbf{t}^* \\ \mathbf{0} & I \end{bmatrix} \begin{pmatrix} y_1^{(k)} \\ \mathbf{y}_2^{(k)} \end{pmatrix},$$

$$|x_1^{(k)}| = \lambda_1^k |y_1^{(k)} + \mathbf{t}^* \mathbf{y}_2^{(k)}| = \lambda_1^k |1 + \mathbf{t}^* \mathbf{y}_2^{(k)}|.$$

Since $\|\mathbf{y}_2^{(k)}\| \leq (|\mu_2| + \varepsilon)^k \|\mathbf{y}_2^{(0)}\|$, there is a $\tilde{K} \geq K(\varepsilon)$ such that

$$|\mathbf{t}^*\mathbf{y}_2^{(k)}| < rac{1}{2}, \qquad orall k > ilde{\mathcal{K}}$$

and

$$|1+\mathbf{t}^*\mathbf{y}_2^{(k)}|>\frac{1}{2}, \qquad \forall \, k> ilde{\mathcal{K}}.$$

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

$$\begin{aligned} \sin(\angle(\mathbf{x}^{(k)}, \mathbf{e}_1)) &= \frac{\|\mathbf{x}_2^{(k)}\|}{\|\mathbf{x}^{(k)}\|} = \frac{\|\mathbf{y}_2^{(k)}\|}{\sqrt{|y_1^{(k)} + \mathbf{t}^* \mathbf{y}_2^{(k)}|^2 + \|\mathbf{y}_2^{(k)}\|^2}} \\ &< \frac{\|\mathbf{y}_2^{(k)}\|}{\sqrt{\frac{1}{4}|y_1^{(k)}|^2 + \frac{1}{4}\|\mathbf{y}_2^{(k)}\|^2}} \\ &\leq 2\|\mathbf{y}_2^{(k)}\| \\ &\leq 2(|\mu_2| + \varepsilon)^k\|\mathbf{y}_2^{(0)}\|. \end{aligned}$$

-Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

We assumed $y_1^{(0)} = 1$ or, more generally, $y_1^{(0)} \neq 0$.

From (2) we have

$$\mathbf{y}^{(0)} := \left[egin{array}{cc} 1 & -\mathbf{t}^* \ \mathbf{0} & I \end{array}
ight] \mathbf{x}^{(0)}.$$

Thus,

$$y_1^{(0)} = [1, -\mathbf{t}^*]\mathbf{x}^{(0)}.$$

Therefore,

$$y_1^{(0)}
eq 0 \quad \Longleftrightarrow \quad [1, -\mathbf{t}^*]\mathbf{x}^{(0)}
eq 0.$$

Remember: $[1, -t^*]$ is the left eigenvector of S associated with λ_1 .

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

Since we can choose ε arbitrarily small, we have proved

Theorem

Let the eigenvalues of $A \in \mathbb{R}^{n \times n}$ be arranged such that $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. Let \mathbf{u}_1 and \mathbf{v}_1 be right and left eigenvectors of A corresponding to λ_1 , respectively. Then, the vector sequence generated by simple vector iteration converges to \mathbf{u}_1 in the sense that

$$\sin \vartheta^{(k)} = \sin(\angle(\mathbf{x}^{(k)}, \mathbf{u}_1)) \le c \cdot \left|\frac{\lambda_2}{\lambda_1}\right|^k$$
(5)

provided that $\mathbf{v}_1^* \mathbf{x}^{(0)} \neq 0$.

-Simple vector iteration

Angles between vectors

Remarks

- μ_k in the algorithm converges to |λ₁|. The sign of λ₁ can be found by comparing single components of y^(k) and x^(k-1).
- If v₁^{*}x⁽⁰⁾ = 0 then the vector iteration converges to an eigenvector corresponding to the second largest eigenvalue. Rounding errors usually prevent this: after a long initial phase the x^(k) turn to u₁.
- Convergence of vector iteration is faster the smaller |λ₂|/|λ₁|.
 Convergence may be very slow (cf. QR algorithm).
- ▶ In case that $\lambda_1 \neq \lambda_2$ but $|\lambda_1| = |\lambda_2|$ there may be no convergence at all. An example is

$$A = \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight], \qquad \mathbf{x^{(0)}} = \left[egin{array}{cc} lpha \ eta \end{array}
ight].$$

Solving large scale eigenvalue problems
Simple vector iteration
Angles between vectors

Symmetric case

The symmetric case is treated very similarly to the non-symmetric case. However, we can approximate the eigenvalue by the Rayleigh quotient.

$$\lambda^{(k)} := \mathbf{x}^{(k)^*} A \mathbf{x}^{(k)}, \qquad \|\mathbf{x}^{(k)}\| = 1.$$

Note that we form $A\mathbf{x}^{(k)}$ during the iteration anyway.

-Simple vector iteration

Angles between vectors

Simple vector iteration for Hermitian matrices

1: Choose a starting vector
$$\mathbf{x}^{(0)} \in \mathbb{R}^n$$
 with $\|\mathbf{x}^{(0)}\| = 1$
2: $\mathbf{y}^{(0)} := A\mathbf{x}^{(0)}$.
3: $\lambda^{(0)} := \mathbf{y}^{(0)*}\mathbf{x}^{(0)}$.
4: $k := 0$.
5: while $\|\mathbf{y}^{(k)} - \lambda^{(k)}\mathbf{x}^{(k)}\| > \text{tol } \mathbf{do}$
6: $k := k + 1$;
7: $\mathbf{x}^{(k)} := \mathbf{y}_{k-1} / \|\mathbf{y}_{k-1}\|$;
8: $\mathbf{y}^{(k)} := A\mathbf{x}^{(k)}$;
9: $\lambda^{(k)} := \mathbf{y}^{(k)*}\mathbf{x}^{(k)}$;

10: end while

Simple vector iteration

Angles between vectors

Simple symmetric vector iteration: theory

Theorem

Let $A = A^*$ with spectral decomposition

$$A = U \wedge U^*, \qquad U = [\mathbf{u}_1, \dots, \mathbf{u}_n], \quad \Lambda = diag(\lambda_1, \dots, \lambda_n).$$

Then, the simple vector iteration computes sequences $\{\lambda^{(k)}\}_{k=0}^{\infty}$ and $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge linearly towards the largest eigenvalue λ_1 of A and the corresponding eigenvector \mathbf{u}_1 provided that $\mathbf{u}_1^* \mathbf{x}^{(0)} \neq 0$. The convergence rates are given by

$$\sin \vartheta^{(k)} \leq \left| \frac{\lambda_2}{\lambda_1} \right|^k \sin \vartheta^{(0)}, \qquad |\lambda_1 - \lambda^{(k)}| \leq (\lambda_1 - \lambda_n) \left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \sin^2 \vartheta^{(0)}.$$

where
$$\vartheta^{(k)} = \angle (\mathbf{x}^{(k)}, \mathbf{u}_1)$$
 and $\lambda^{(k)} = \rho(\mathbf{x}^{(k)})$.

Inverse vector iteration

- Convergence of simple vector iteration is potentially very slow
- ▶ Polynomial in *A* has the same eigenvectors as *A*.
- May try to find a polynomial that enhances the eigenvalue that we are looking for. Not successful in the most critical case when the wanted eigenvalue is very close to unwanted.
- Shift-and-invert spectral transformation is the way to go.
- Transform the matrix by the rational function

$$f(\lambda) = 1/(\lambda - \sigma)$$

where σ is so-called ${\rm shift}$ close to the desired eigenvalue.

• Inverse vector iteration: Simple vector iteration with matrix $(A - \sigma I)^{-1}$

-Inverse vector iteration

Inverse vector iteration

- 1: Choose starting vector $\mathbf{x}_0 \in \mathbb{R}^n$ and a shift σ .
- 2: Compute the LU factorization of $A \sigma I$: $LU = P(A \sigma I)$
- 3: $\mathbf{y}^{(0)} := U^{-1}L^{-1}P\mathbf{x}^{(0)}$. $\mu^{(0)} = \mathbf{y}^{(0)*}\mathbf{x}^{(0)}, \quad \lambda^{(0)} := \sigma + 1/\mu^{(0)}. \quad k := 0.$ 4: while $\|\mathbf{x}^{(k)} - \mathbf{y}^{(k)}/\mu^{(k)}\| > \operatorname{tol} \|\mathbf{y}^{(k)}\|$ do 5: k := k + 1.6: $\mathbf{x}^{(k)} := \mathbf{y}_{k-1}/\|\mathbf{y}_{k-1}\|.$ 7: $\mathbf{y}^{(k)} := U^{-1}L^{-1}P\mathbf{x}^{(k)}.$ 8: $\mu^{(k)} := \mathbf{y}^{(k)*}\mathbf{x}^{(k)}, \quad \lambda^{(k)} := \sigma + 1/\mu^{(k)}.$
- 9: end while

-Inverse vector iteration

Theorem

A SPD with spectral decomposition $A = U\Lambda U^*$. Let $\lambda'_1, \ldots, \lambda'_n$ be a renumeration of the eigenvalues of A such that

$$\frac{1}{|\lambda_1' - \sigma|} > \frac{1}{|\lambda_2' - \sigma|} \ge \dots \ge \frac{1}{|\lambda_n' - \sigma|}$$

If $\mathbf{u}_1'^* \mathbf{x}^{(0)} \neq 0$, then inverse vector iteration constructs sequences $\{\lambda^{(k)}\}_{k=0}^{\infty}$ and $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge linearly towards that eigenvalue λ_1' closest to the shift σ and to the corresponding eigenvector \mathbf{u}_1' . The bounds

$$\sin \vartheta^{(k)} \leq \left| \frac{\lambda_1' - \sigma}{\lambda_2' - \sigma} \right|^k \sin \vartheta^{(0)}, \qquad \lambda^{(k)} - \lambda_1 \leq \delta \left| \frac{\lambda_1' - \sigma}{\lambda_2' - \sigma} \right|^{2k} \sin^2 \vartheta^{(0)}.$$

hold with
$$\vartheta^{(k)} = \angle (\mathbf{x}^{(k)}, \mathbf{u}_1)$$
 and $\delta = \operatorname{spread}(\sigma((A - \sigma I)^{-1}))$

Discussion of inverse iteration

- Can compute eigenvectors corresponding to any (simple and well separated) eigenvalue if we choose the shift properly
- ► Very good convergence rates, if shift is close to an eigenvalue.
- However, one may feel uncomfortable solving an 'almost singular' system of equations.
- An analysis using the SVD of A σI shows that the tiny smallest singular value σ_n blows up the component in direction of v_n. So, the vector z points in the desired 'most singular' direction.

The generalized eigenvalue problem

Generalized eigenvalue problem $A\mathbf{x} = \lambda B\mathbf{x}$.

Simple vector iteration

$$\mathbf{x}^{(k)} := B^{-1} A \mathbf{x}^{(k-1)}, \qquad k = 1, 2, \dots$$

Shift-and-invert iteration

$$(A - \sigma B)^{-1}B\mathbf{x} := \mu \mathbf{x}, \qquad \mu = \frac{1}{\lambda - \sigma}.$$

Computing higher eigenvalues

In order to compute higher eigenvalues $\lambda_2, \lambda_3, \ldots$, we make use of the mutual orthogonality of the eigenvectors of symmetric matrices, or of Schur vectors of nonsymmetric matrices.

We can compute the *j*-th eigenpair $(\lambda_j, \mathbf{u}_j)$ by inverse iteration, keeping the iterated vectors $\mathbf{x}^{(k)}$ orthogonal to the already known or computed eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_{j-1}$.

Rayleigh quotient iteration

- Assume that matrix *A* is Hermitian (or symmetric).
- Inverse iteration is effective way to compute eigenpairs, if good approximation of desired eigenvalue is known.
- Approximation is used as shift.
- Rayleigh quotient of eigenvector gives a very good approximation of its eigenvalue.

Lemma

Let **q** be any nonzero vector. The number ρ that minimizes $\|A\mathbf{q} - \rho\mathbf{q}\|$ is the Rayleigh quotient

$$\rho = \frac{\mathbf{q}^* A \mathbf{q}}{\mathbf{q}^* \mathbf{q}}$$

-Inverse vector iteration

Rayleigh quotient iteration (RQI)

- 1: Choose a starting vector $\mathbf{y}_0 \in \mathbb{R}^n$, $\|\mathbf{y}_0\| = 1$, and tolerance ε .
- 2: for k = 1, 2, ... do 3: $\rho_k := \mathbf{y}_{k-1} * A \mathbf{y}_{k-1}$. 4: Solve $(A - \rho_k I) \mathbf{z}_k = \mathbf{y}_{k-1}$ for \mathbf{z}_k . 5: $\sigma_k = \|\mathbf{z}_k\|$. 6: $\mathbf{y}_k := \mathbf{z}_k / \sigma_k$. 7: if $\sigma_k > 10/\varepsilon$ then 8: return \mathbf{y}_k 9: end if
- 10: end for

Convergence of Rayleigh quotient iteration

- Rayleigh quotient iteration usually converges, however not always towards the desired solution.
- Let's assume that $\mathbf{y}_k \xrightarrow{k \to \infty} \mathbf{x}$ with $A\mathbf{x} = \lambda \mathbf{x}$.
- ▶ Let $\|\mathbf{x}\| = \|\mathbf{y}_k\| = 1$ for all k and $\varphi_k = \angle(\mathbf{x}, \mathbf{y}_k)$. Assumption implies $\{\varphi_k\} \xrightarrow[k \to \infty]{} 0$.

Can write

$$\mathbf{y}_k = \mathbf{x} \cos \varphi_k + \mathbf{u}_k \sin \varphi_k, \qquad \|\mathbf{x}\| = \|\mathbf{y}_k\| = \|\mathbf{u}_k\| = 1.$$

Rayleigh quotient

$$\rho_k = \rho(\mathbf{y}_k) = \frac{\mathbf{y}_k^* A \mathbf{y}_k}{\mathbf{y}_k^* \mathbf{y}_k} = \mathbf{y}_k^* A \mathbf{y}_k$$

Convergence of Rayleigh quotient iteration (cont.)

$$\begin{aligned} \lambda - \rho_k &= \lambda - \cos^2 \varphi_k \underbrace{\mathbf{x}^* \mathcal{A} \mathbf{x}}_{\lambda} - \cos \varphi_k \sin \varphi_k \underbrace{\mathbf{x}^* \mathcal{A} \mathbf{u}_k}_{0} - \sin^2 \varphi_k \mathbf{u}_k^* \mathcal{A} \mathbf{u}_k \end{aligned}$$
$$= \lambda (1 - \cos^2 \varphi_k) - \sin^2 \varphi_k \rho(\mathbf{u}_k)$$
$$= (\lambda - \rho(\mathbf{u}_k)) \sin^2 \varphi_k. \end{aligned}$$

We now have

Theorem (Cubic convergence of Rayleigh quotient iteration) With the above assumption we have $\lim_{k\to\infty} \left| \frac{\varphi_{k+1}}{\varphi_k^3} \right| \le 1.$

Convergence of Rayleigh quotient iteration (cont.) **Proof**:

$$\mathbf{z}_{k+1} = (A - \rho_k I)^{-1} \mathbf{y}_k = \mathbf{x} \cos \varphi_k / (\lambda - \rho_k) + (A - \rho_k I)^{-1} \mathbf{u}_k \sin \varphi_k$$
$$= \mathbf{x} \underbrace{\frac{\cos \varphi_k}{\lambda - \rho_k}}_{\|\mathbf{z}_{k+1}\| \cos \varphi_{k+1}} + \mathbf{u}_{k+1} \underbrace{\frac{\sin \varphi_k \| (A - \rho_k I)^{-1} \mathbf{u}_k \|}_{\|\mathbf{z}_{k+1}\| \sin \varphi_{k+1}},$$

where

$$\mathbf{u}_{k+1} := (A - \rho_k I)^{-1} \mathbf{u}_k / \| (A - \rho_k I)^{-1} \mathbf{u}_k \|$$

Convergence of Rayleigh quotient iteration (cont.) Thus,

$$\tan \varphi_{k+1} = \frac{\sin \varphi_{k+1}}{\cos \varphi_{k+1}}$$

= $\sin \varphi_k \| (A - \rho_k I)^{-1} \mathbf{u}_k \| \frac{\lambda - \rho_k}{\cos \varphi_k}$
= $(\lambda - \rho_k) \| (A - \rho_k I)^{-1} \mathbf{u}_k \| \tan \varphi_k$
= $(\lambda - \rho(\mathbf{u}_k)) \| (A - \rho_k I)^{-1} \mathbf{u}_k \| \sin^2 \varphi_k \tan \varphi_k.$

So,

$$(A - \rho_k I)^{-1} \mathbf{u}_k = (A - \rho_k I)^{-1} \left(\sum_{\lambda_i \neq \lambda} \beta_i \mathbf{x}_i \right) = \sum_{\lambda_i \neq \lambda} \frac{\beta_i}{\lambda_i - \rho_k} \mathbf{x}_i$$

Convergence of Rayleigh quotient iteration (cont.) Taking norms,

$$\|(A - \rho_k I)^{-1} \mathbf{u}_k\|^2 = \sum_{\lambda_i \neq \lambda} \frac{\beta_i^2}{|\lambda_i - \rho_k|^2} \ge \frac{1}{\min_{\lambda_i \neq \lambda} |\lambda_i - \rho_k|^2} \underbrace{\sum_{\lambda_i \neq \lambda} \beta_i^2}_{\|\mathbf{u}_k\|^2 = 1}$$

Gap between λ and rest of *A*'s spectrum: $\gamma := \min_{\lambda_i \neq \lambda} |\lambda_i - \lambda|$. Assumption $\Longrightarrow \exists k_0 \in \mathbb{N} \text{ s.t. } |\lambda - \rho_k| < \frac{\gamma}{2}, \forall k > k_0$. Thus,

$$|\lambda_i - \rho_k| > \frac{\gamma}{2}$$
 for all $\lambda_i \neq \lambda$,

and

$$\|(A - \rho_k I)^{-1} \mathbf{u}_k\| \leq \frac{1}{\min_{\lambda_i \neq \lambda} |\lambda_i - \rho_k|} \leq \frac{2}{\gamma}, \qquad k > k_0.$$

Convergence of Rayleigh quotient iteration (cont.)

$$\begin{aligned} |\tan \varphi_{k+1}| &= \left| \frac{\sin \varphi_{k+1}}{\cos \varphi_{k+1}} \right| \\ &= |\lambda - \rho(\mathbf{u}_k)| \, \| (A - \rho_k I)^{-1} \mathbf{u}_k \| \, |\sin^2 \varphi_k| |\tan \varphi_k| \\ &\leq \frac{2}{\gamma} |\lambda - \rho(\mathbf{u}_k)| \, |\sin^2 \varphi_k| |\tan \varphi_k| \end{aligned}$$

 $\tan \varphi_k \approx \sin \varphi_k \approx \varphi_k$ if $\varphi_k \ll 1 \implies$ cubic convergence rate.

Note: The sequence $\{\mathbf{u}_k\}$ may converge to an eigenvector of A, or, if A has two different eigenvalues that are in equal distance to λ , jump back and forth between the corresponding two eigenvectors.

Remarks on RQI

- We did not prove global convergence. RQI converges 'almost always'. But it is not clear a priori, towards which eigenpair.
- 2. Alternative: first apply inverse vector iteration and switch to Rayleigh quotient iteration as soon as the iterate is close enough to the solution.
- 3. Rayleigh quotient iteration is expensive. In every iteration step another system of equations has to be solved, i.e., *in every iteration step a matrix has to be factorized*.

RQI is usually applied only to tridiagonal matrices.

A numerical example

The following MATLAB script demonstrates the power of Rayleigh quotient iteration. It expects as input a matrix A, an initial vector x of length one.

```
% Initializations
k = 0; rho = 0; ynorm = 0;
while abs(rho)*ynorm < 1e+15,
    k = k + 1; if k>20, break, end
    rho = x'*A*x;
    y = (A - rho*eye(size(A)))\x;
    ynorm = norm(y);
    x = y/ynorm;
end
```

A numerical example (cont.)

We invoke this routine with the 1D Poisson matrix

e=ones(9,1); T=spdiags([-e,2*e,-e],[-1:1],9,9);

and the initial vector $\mathbf{x} = [-4, -3, \dots, 3, 4]^T$.

k	rho	ynorm
1	0.66666666666666666	3.1717e+00
2	0.4155307724080958	2.9314e+01
3	0.3820048793104663	2.5728e+04
4	0.3819660112501632	1.7207e+13
5	0.3819660112501051	2.6854e+16

The cubic convergence is evident.

References

- B. N. Parlett, *The Symmetric Eigenvalue Problem*, Prentice Hall, Englewood Cliffs, NJ, 1980. (Republished by SIAM, Philadelphia, 1998.).
- D. B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM J. Numer. Anal., 25 (1988), pp. 1369–1375.