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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

The power method (aka. vector iteration) is the simplest method
to compute a single eigenvector of a matrix.

I Simple vector iteration (power method)

I Inverse vector iteration

I Rayleigh quotient iteration (RQI)
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Solving large scale eigenvalue problems

Simple vector iteration

Simple vector iteration

Let A ∈ Rn×n.
Starting with arbitrary initial vector x(0) ∈ Rn we form the vector
sequence

{
x(k)

}∞
k=0

defined by

x(k) := Ax(k−1), k = 1, 2, . . . (∗)

Clearly,
x(k) := Ak x(0).

We will show that the x(k) ‘converge’ to ‘the’ eigenvector
associated with the eigenvalue of largest magnitude.
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Solving large scale eigenvalue problems

Simple vector iteration

Algorithm: Simple vector iteration

1: Choose a starting vector x(0) ∈ Rn with ‖x(0)‖ = 1.
2: k = 0.
3: repeat
4: k := k + 1;
5: y(k) := A x(k−1);
6: µk := ‖y(k)‖;
7: x(k) := y(k)/µk ;
8: until a convergence criterion is satisfied

Vectors x(k) have all norm (length) one.
{
x(k)

}∞
k=0

is a sequence
on the unit sphere of Rn.

Here, the maximum norm is polular as well: ‖y‖∞ = maxi |yi |.
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Solving large scale eigenvalue problems

Simple vector iteration

Important note

I Let A = USU∗ be the Schur decomposition of A. Then,

U∗x(k) := SU∗x(k−1) and U∗x(k) := SkU∗x(0).

I U unitary: ‖x(k)‖ =⇒ ‖U∗x(k)‖ = 1 for all k .

I If sequence
{
x(k)

}∞
k=0

converges to x∗ then sequence{
y(k) = U∗x(k)

}∞
k=0

converges to y∗ = U∗x∗.

I So, for convergence analysis: can assume w.l.o.g. that A is
upper triangular.

I If we assumed that A is symmetric then for a convergence
analysis we could restrict ourselves to diagonal matrices.

I Note that some performance issues are excluded here.

Large scale eigenvalue problems, Lecture 6, March 28, 2018 5/42



Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Intermezzo: Angles between vectors

Let q1 and q2 be unit vectors.
Angle between vectors q1 and q2:

q1

q2
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Intermezzo: Angles between vectors (cont.)
The length of the orthogonal projection of q2 on span{q1} is:

c := ‖q1q1∗q2‖ = |q1∗q2| ≤ 1.

The length of the orthogonal projection of q2 on span{q1}⊥ is

s := ‖(I− q1q1
∗)q2‖. (+)

As q1q∗1 is an orthogonal projection, by Pythagoras’ formula:

1 = ‖q2‖2 = ‖q1q1∗q2‖2 + ‖(I− q1q1
∗)q2‖2 = s2 + c2.

From (+): s2 = ‖(I− q1q1∗)q2‖2
= q2∗(I− q1q1∗)q2
= q2∗q2 − (q2∗q1)(q1∗q2)
= 1− c2
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Intermezzo: Angles between vectors (cont.)
So, there is a number, say, ϑ, 0 ≤ ϑ ≤ π

2 , such that c = cosϑ and
s = sinϑ. This uniquely determined number ϑ is the angle
between the vectors q1 and q2:

ϑ = ∠(q1,q2).

The generalization to arbitrary vectors is straightforward.

Definition

The angle θ between two nonzero vectors x and y is given by

ϑ = ∠(x, y) = arcsin

(∥∥∥∥(I − xx∗

‖x‖2

)
y

‖y‖

∥∥∥∥) = arccos

(
|x∗y|
‖x‖‖y‖

)
.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis

Assume that

S =

[
λ1 s∗1
0 S2

]
, (S2 upper triangular) (1)

has eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

Eigenvector of S corresponding to largest eigenvalue λ1 is e1.

We will show that the iterates x(k) converge to e1.

More precisely, we will show that ∠(x(k), e1) −→ 0 as k →∞.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
Let

x(k) =


x
(k)
1

x
(k)
2
...

x
(k)
n

 =:

(
x
(k)
1

x
(k)
2

)

with ‖x(k)‖ = 1. Then,

sinϑ(k) := sin(∠(x(k), e1)) =

√√√√ n∑
i=2

|x (k)i |2 =

√√√√∑n
i=2|x

(k)
i |2∑n

i=1|x
(k)
i |2

.

The last expression is for non-normalized vectors x(k), cf. (∗).
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
First, we simplify the form of S in (1), by eliminating s∗1,[

1 −t∗
0 I

] [
λ1 s∗1
0 S2

] [
1 −t∗
0 I

]−1
=

[
1 −t∗
0 I

] [
λ1 s∗1
0 S2

] [
1 t∗

0 I

]
=

[
λ1 0∗

0 S2

]
.

The vector t that realizes this transformation has to satisfy

λ1t
∗ + s∗1 − t∗S2 = 0∗ ⇐⇒ s∗1 = t∗(S2 − λ1I ).

This equation has a solution if and only if λ1 6∈ σ(S2) which is the
case by assumption.

Remark: [1,−t∗] is left eigenvector of S associated with λ1.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
So, we have

x(k) =

(
x
(k)
1

x
(k)
2

)
=

[
λ1 s∗1
0 S2

]
x(k−1) = · · · =

[
λ1 s∗1
0 S2

]k
x(0)

=

[
1 t∗

0 I

] [
λ1 0∗

0 S2

]k [
1 −t∗
0 I

](
x
(0)
1

x
(0)
2

)
.

We define

y(k) :=
1

λk1

[
1 −t∗
0 I

]
x(k) (2)
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

y(k) =
1

λk1

[
1 −t∗
0 I

]
S x(k−1)

=

(
1

λ1

[
λ1 0∗

0 S2

])
1

λk−11

[
1 −t∗
0 I

]
x(k−1)

=

[
1 0∗

0 1
λ1
S2

](
y
(k−1)
1

y
(k−1)
2

)
=

[
1 0∗

0 1
λ1
S2

]
y(k−1).

Let us assume that y
(0)
1 = 1. Then, y

(k)
1 = 1 for all k .

Need to show that y
(k)
2 goes to zero as k →∞, and how fast.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

y
(k)
2 =

1

λ1
S2y

(k−1)
2

1

λ1
S2 =


µ2 ∗ . . . ∗

µ3 . . . ∗
. . .

...
µn

 , |µk | =
|λk |
|λ1|

< 1.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

Theorem

Let ||| · ||| be any matrix norm. Then

lim
k→∞

|||Mk |||1/k = ρ(M) = max
i
|λi (M)|. (3)

Proof.

See Horn-Johnson, Matrix Analysis, 1985, pp.297-299.

So, for any ε > 0 there is an integer K (ε) such that

|||Mk |||1/k ≤ ρ(M) + ε, for all k > K (ε). (4)
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
So, for any ε > 0 there is an integer K (ε) such that

|||Mk |||1/k ≤ ρ(M) + ε, for all k > K (ε). (4)

In our case:

ρ

(
1

λ1
S2

)
= |µ2| < 1.

Can choose ε such that |µ2|+ ε < 1. For any such ε we have

sin(∠(y(k), e1)) =
‖y(k)2 ‖
‖y(k)‖

=
‖y(k)2 ‖√

1 + ‖y(k)2 ‖

≤ ‖y(k)2 ‖ ≤ ‖
1

λ1
S‖k‖y(0)2 ‖ ≤ (|µ2|+ ε)k‖y(0)2 ‖.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
Analogous result for x(k):(

x
(k)
1

x
(k)
2

)
= λk1

[
1 t∗

0 I

](
y
(k)
1

y
(k)
2

)
,

So,
|x (k)1 | = λk1 |y

(k)
1 + t∗y

(k)
2 | = λk1 |1 + t∗y

(k)
2 |.

Since ‖y(k)2 ‖ ≤ (|µ2|+ ε)k‖y(0)2 ‖, there is a K̃ ≥ K (ε) such that

|t∗y(k)2 | <
1

2
, ∀ k > K̃

and

|1 + t∗y
(k)
2 | >

1

2
, ∀ k > K̃ .
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

sin(∠(x(k), e1)) =
‖x(k)2 ‖
‖x(k)‖

=
‖y(k)2 ‖√

|y (k)1 + t∗y
(k)
2 |2 + ‖y(k)2 ‖2

<
‖y(k)2 ‖√

1
4 |y

(k)
1 |2 + 1

4‖y
(k)
2 ‖2

≤ 2‖y(k)2 ‖

≤ 2(|µ2|+ ε)k‖y(0)2 ‖.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)

We assumed y
(0)
1 = 1 or, more generally, y

(0)
1 6= 0.

From (2) we have

y(0) :=

[
1 −t∗
0 I

]
x(0).

Thus,
y
(0)
1 = [1,−t∗]x(0).

Therefore,
y
(0)
1 6= 0 ⇐⇒ [1,−t∗]x(0) 6= 0.

Remember: [1,−t∗] is the left eigenvector of S associated with λ1.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Convergence analysis (cont.)
Since we can choose ε arbitrarily small, we have proved

Theorem

Let the eigenvalues of A ∈ Rn×n be arranged such that
|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Let u1 and v1 be right and left
eigenvectors of A corresponding to λ1, respectively. Then, the
vector sequence generated by simple vector iteration converges to
u1 in the sense that

sinϑ(k) = sin(∠(x(k),u1)) ≤ c ·
∣∣∣∣λ2λ1
∣∣∣∣k (5)

provided that v∗1x
(0) 6= 0.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Remarks

I µk in the algorithm converges to |λ1|. The sign of λ1 can be
found by comparing single components of y(k) and x(k−1).

I If v∗1x
(0) = 0 then the vector iteration converges to an

eigenvector corresponding to the second largest eigenvalue.
Rounding errors usually prevent this: after a long initial phase
the x(k) turn to u1.

I Convergence of vector iteration is faster the smaller |λ2|/|λ1|.
Convergence may be very slow (cf. QR algorithm).

I In case that λ1 6= λ2 but |λ1| = |λ2| there may be no
convergence at all. An example is

A =

[
1 0
0 −1

]
, x(0) =

[
α
β

]
.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Symmetric case

The symmetric case is treated very similarly to the non-symmetric
case. However, we can approximate the eigenvalue by the Rayleigh
quotient.

λ(k) := x(k)
∗
Ax(k), ‖x(k)‖ = 1.

Note that we form Ax(k) during the iteration anyway.
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Simple vector iteration for Hermitian matrices

1: Choose a starting vector x(0) ∈ Rn with ‖x(0)‖ = 1.
2: y(0) := Ax(0).
3: λ(0) := y(0)

∗
x(0).

4: k := 0.
5: while ‖y(k) − λ(k)x(k)‖ > tol do
6: k := k + 1;
7: x(k) := yk−1/‖yk−1‖;
8: y(k) := Ax(k);
9: λ(k) := y(k)

∗
x(k);

10: end while
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Solving large scale eigenvalue problems

Simple vector iteration

Angles between vectors

Simple symmetric vector iteration: theory

Theorem

Let A = A∗ with spectral decomposition

A = UΛU∗, U = [u1, . . . ,un], Λ = diag(λ1, . . . , λn).

Then, the simple vector iteration computes sequences
{
λ(k)

}∞
k=0

and
{
x(k)

}∞
k=0

that converge linearly towards the largest
eigenvalue λ1 of A and the corresponding eigenvector u1 provided
that u∗1x

(0) 6= 0. The convergence rates are given by

sinϑ(k) ≤
∣∣∣∣λ2λ1
∣∣∣∣k sinϑ(0), |λ1−λ(k)| ≤ (λ1−λn)

∣∣∣∣λ2λ1
∣∣∣∣2k sin2 ϑ(0).

where ϑ(k) = ∠(x(k),u1) and λ(k) = ρ(x(k)).
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Solving large scale eigenvalue problems

Inverse vector iteration

Inverse vector iteration

I Convergence of simple vector iteration is potentially very slow

I Polynomial in A has the same eigenvectors as A.

I May try to find a polynomial that enhances the eigenvalue
that we are looking for. Not successful in the most critical
case when the wanted eigenvalue is very close to unwanted.

I Shift-and-invert spectral transformation is the way to go.

I Transform the matrix by the rational function

f (λ) = 1/(λ− σ)

where σ is so-called shift close to the desired eigenvalue.

I Inverse vector iteration: Simple vector iteration with matrix
(A− σI )−1
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Solving large scale eigenvalue problems

Inverse vector iteration

Inverse vector iteration

1: Choose starting vector x0 ∈ Rn and a shift σ.
2: Compute the LU factorization of A− σI : LU = P(A− σI )
3: y(0) := U−1L−1Px(0).
µ(0) = y(0)

∗
x(0), λ(0) := σ + 1/µ(0). k := 0.

4: while ‖x(k) − y(k)/µ(k)‖ > tol‖y(k)‖ do
5: k := k + 1.
6: x(k) := yk−1/‖yk−1‖.
7: y(k) := U−1L−1Px(k).
8: µ(k) := y(k)

∗
x(k), λ(k) := σ + 1/µ(k).

9: end while
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Solving large scale eigenvalue problems

Inverse vector iteration

Theorem

A SPD with spectral decomposition A = UΛU∗. Let λ′1, . . . , λ
′
n be

a renumeration of the eigenvalues of A such that

1

|λ′1 − σ|
>

1

|λ′2 − σ|
≥ · · · ≥ 1

|λ′n − σ|

If u′1
∗x(0) 6= 0, then inverse vector iteration constructs sequences{

λ(k)
}∞
k=0

and
{
x(k)

}∞
k=0

that converge linearly towards that
eigenvalue λ′1 closest to the shift σ and to the corresponding
eigenvector u′1. The bounds

sinϑ(k) ≤
∣∣∣∣λ′1 − σλ′2 − σ

∣∣∣∣k sinϑ(0), λ(k)−λ1 ≤ δ
∣∣∣∣λ′1 − σλ′2 − σ

∣∣∣∣2k sin2 ϑ(0).

hold with ϑ(k) = ∠(x(k),u1) and δ = spread(σ((A− σI )−1)).
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Solving large scale eigenvalue problems

Inverse vector iteration

Discussion of inverse iteration

I Can compute eigenvectors corresponding to any (simple and
well separated) eigenvalue if we choose the shift properly

I Very good convergence rates, if shift is close to an eigenvalue.

I However, one may feel uncomfortable solving an ‘almost
singular’ system of equations.

I An analysis using the SVD of A− σI shows that the tiny
smallest singular value σn blows up the component in
direction of vn. So, the vector z points in the desired ‘most
singular’ direction.
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Solving large scale eigenvalue problems

Inverse vector iteration

The generalized eigenvalue problem

Generalized eigenvalue problem Ax = λBx.

Simple vector iteration

x(k) := B−1Ax(k−1), k = 1, 2, . . .

Shift-and-invert iteration

(A− σB)−1Bx := µx, µ =
1

λ− σ
.
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Solving large scale eigenvalue problems

Inverse vector iteration

Computing higher eigenvalues

In order to compute higher eigenvalues λ2, λ3, . . . , we make use of
the mutual orthogonality of the eigenvectors of symmetric
matrices, or of Schur vectors of nonsymmetric matrices.

We can compute the j-th eigenpair (λj ,uj) by inverse iteration,
keeping the iterated vectors x(k) orthogonal to the already known
or computed eigenvectors u1, . . . ,uj−1.
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Solving large scale eigenvalue problems

Inverse vector iteration

Rayleigh quotient iteration

I Assume that matrix A is Hermitian (or symmetric).
I Inverse iteration is effective way to compute eigenpairs, if

good approximation of desired eigenvalue is known.
I Approximation is used as shift.
I Rayleigh quotient of eigenvector gives a very good

approximation of its eigenvalue.

Lemma

Let q be any nonzero vector. The number ρ that minimizes
‖Aq− ρq‖ is the Rayleigh quotient

ρ =
q∗Aq

q∗q
.
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Solving large scale eigenvalue problems

Inverse vector iteration

Rayleigh quotient iteration (RQI)

1: Choose a starting vector y0 ∈ Rn, ‖y0‖ = 1, and tolerance ε.
2: for k = 1, 2, . . . do
3: ρk := yk−1

∗Ayk−1.
4: Solve (A− ρk I ) zk = yk−1 for zk .
5: σk = ‖zk‖.
6: yk := zk/σk .
7: if σk > 10/ε then
8: return yk
9: end if

10: end for
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Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration

I Rayleigh quotient iteration usually converges, however not
always towards the desired solution.

I Let’s assume that yk −−−→
k→∞

x with Ax = λx.

I Let ‖x‖ = ‖yk‖ = 1 for all k and ϕk = ∠(x, yk).

Assumption implies {ϕk} −−−→
k→∞

0.

Can write

yk = x cosϕk + uk sinϕk , ‖x‖ = ‖yk‖ = ‖uk‖ = 1.

Rayleigh quotient

ρk = ρ(yk) =
yk
∗Ayk

yk∗yk
= yk

∗Ayk
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Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration (cont.)

λ− ρk = λ− cos2 ϕk x∗Ax︸ ︷︷ ︸
λ

− cosϕk sinϕk x∗Auk︸ ︷︷ ︸
0

− sin2 ϕku
∗
kAuk

= λ(1− cos2 ϕk)− sin2 ϕkρ(uk)

= (λ− ρ(uk)) sin2 ϕk .

We now have

Theorem (Cubic convergence of Rayleigh quotient iteration)

With the above assumption we have lim
k→∞

∣∣∣∣ϕk+1

ϕ3
k

∣∣∣∣ ≤ 1.

Large scale eigenvalue problems, Lecture 6, March 28, 2018 34/42



Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration (cont.)
Proof:

zk+1 = (A− ρk I )−1yk = x cosϕk/(λ− ρk) + (A− ρk I )−1uk sinϕk

= x
cosϕk

λ− ρk︸ ︷︷ ︸
‖zk+1‖ cosϕk+1

+ uk+1 sinϕk‖(A− ρk I )−1uk‖︸ ︷︷ ︸
‖zk+1‖ sinϕk+1

,

where
uk+1 := (A− ρk I )−1uk/‖(A− ρk I )−1uk‖
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Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration (cont.)
Thus,

tanϕk+1 =
sinϕk+1

cosϕk+1

= sinϕk ‖(A− ρk I )−1uk‖
λ− ρk
cosϕk

= (λ− ρk) ‖(A− ρk I )−1uk‖ tanϕk

= (λ− ρ(uk)) ‖(A− ρk I )−1uk‖ sin2 ϕk tanϕk .

So,

(A− ρk I )−1uk = (A− ρk I )−1
∑
λi 6=λ

βixi

 =
∑
λi 6=λ

βi
λi − ρk

xi
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Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration (cont.)
Taking norms,

‖(A− ρk I )−1uk‖2 =
∑
λi 6=λ

β2i
|λi − ρk |2

≥ 1

minλi 6=λ |λi − ρk |2
∑
λi 6=λ

β2i︸ ︷︷ ︸
‖uk‖2=1

Gap between λ and rest of A’s spectrum: γ := minλi 6=λ|λi − λ|.
Assumption =⇒ ∃k0 ∈ N s.t. |λ− ρk | < γ

2 , ∀k > k0. Thus,

|λi − ρk | >
γ

2
for all λi 6= λ,

and

‖(A− ρk I )−1uk‖ ≤
1

minλi 6=λ |λi − ρk |
≤ 2

γ
, k > k0.
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Solving large scale eigenvalue problems

Inverse vector iteration

Convergence of Rayleigh quotient iteration (cont.)

|tanϕk+1| =

∣∣∣∣ sinϕk+1

cosϕk+1

∣∣∣∣
= |λ− ρ(uk)| ‖(A− ρk I )−1uk‖ |sin2 ϕk ||tanϕk |

≤ 2

γ
|λ− ρ(uk)| |sin2 ϕk ||tanϕk |

tanϕk ≈ sinϕk ≈ ϕk if ϕk � 1 =⇒ cubic convergence rate.

Note: The sequence {uk} may converge to an eigenvector of A, or,
if A has two different eigenvalues that are in equal distance to λ,
jump back and forth between the corresponding two eigenvectors.
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Solving large scale eigenvalue problems

Inverse vector iteration

Remarks on RQI

1. We did not prove global convergence.
RQI converges ‘almost always’. But it is not clear a priori,
towards which eigenpair.

2. Alternative: first apply inverse vector iteration and switch to
Rayleigh quotient iteration as soon as the iterate is close
enough to the solution.

3. Rayleigh quotient iteration is expensive. In every iteration step
another system of equations has to be solved, i.e., in every
iteration step a matrix has to be factorized.

RQI is usually applied only to tridiagonal matrices.
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Solving large scale eigenvalue problems

Inverse vector iteration

A numerical example

The following Matlab script demonstrates the power of Rayleigh
quotient iteration. It expects as input a matrix A, an initial vector
x of length one.

% Initializations

k = 0; rho = 0; ynorm = 0;

while abs(rho)*ynorm < 1e+15,

k = k + 1; if k>20, break, end

rho = x’*A*x;

y = (A - rho*eye(size(A)))\x;

ynorm = norm(y);

x = y/ynorm;

end
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Inverse vector iteration

A numerical example (cont.)
We invoke this routine with the 1D Poisson matrix

e=ones(9,1); T=spdiags([-e,2*e,-e],[-1:1],9,9);

and the initial vector x = [−4,−3, . . . , 3, 4]T .

k rho ynorm

1 0.6666666666666666 3.1717e+00

2 0.4155307724080958 2.9314e+01

3 0.3820048793104663 2.5728e+04

4 0.3819660112501632 1.7207e+13

5 0.3819660112501051 2.6854e+16

The cubic convergence is evident.
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