

Solving large scale eigenvalue problems

Lecture 7, April 11, 2018: Subspace iterations http://people.inf.ethz.ch/arbenz/ewp/

Peter Arbenz
Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

Instead of iterating with a single vector one may proceed with a bunch of vectors simultaneously. Done right, this leads to classic stable subspace iterations.

- Subspace iteration
- Inverse iteration
- Computing eigenvalues
- Relation to the QR algorithm

Subspace iteration

Let $A \in \mathbb{R}^{n \times n}$.
Starting with arbitrary initial matrix $X_{0}=\left[\mathrm{x}_{1}^{(0)}, \ldots, \mathrm{x}_{p}^{(0)}\right] \in \mathbb{R}^{n \times p}$ we form the matrix sequence $\left\{X_{k}\right\}_{k=0}^{\infty}$ defined by

$$
\begin{equation*}
X_{k}:=A X_{k-1}, \quad k=1,2, \ldots \tag{*}
\end{equation*}
$$

Clearly,

$$
X_{k}:=A^{k} X_{0}
$$

Does this work!!??
We have to keep columns of X_{k} linearly independant. Common approach: keep them orthogonal.

Algorithm: Simple subspace iteration

1: Choose $Z_{0} \in \mathbb{R}^{n \times p}$ arbitrary, but with maximal rank p. Determine $X^{(0)}$ by QR factorization $X^{(0)} R^{(0)}:=Z^{(0)}$.
2: $k:=0$.
3: repeat
4: $\quad k:=k+1$;
5: $\quad Z^{(k)}:=A X^{(k-1)}$
6: $\quad X^{(k)} R^{(k)}:=Z^{(k)} \quad\left\{\right.$ QR factorization of $\left.Z^{(k)}\right\}$
7: until convergence criterion is satisfied

Observation: In QR factorization column j affects only columns j, \ldots, p of $X^{(k)}$.
Therefore, columns $1, \ldots, j, 1 \leq j \leq p$, execute individual subspace iteration. In particular, vectors $X^{(k)} \mathbf{e}_{1}$ execute power method.

Important note

- Let $A=U S U^{*}$ be the Schur decomposition of A. Then,

$$
U^{*} X_{k}:=S U^{*} X_{k-1} \quad \text { and } \quad U^{*} X_{k}:=S^{k} U^{*} X_{0}
$$

- U unitary: $\left\|X_{k}\right\| \quad \Longrightarrow \quad\left\|U^{*} X_{k}\right\|=1$ for all k.
- If the sequence $\left\{X_{k}\right\}_{k=0}^{\infty}$ converges to X_{*} then the sequence $\left\{Y_{k}=U^{*} X_{k}\right\}_{k=0}^{\infty}$ converges to $Y_{*}=U^{*} X_{*}$.
- So, for convergence analysis: can assume w.l.o.g. that A is upper triangular.
- If we assumed that A is symmetric then for a convergence analysis we could restrict ourselves to diagonal matrices.
- Note that some performance issues are excluded here.

Convergence of basic subspace iteration

Here, we assume that A is symmetric, or, for simplicity, diagonal,

$$
A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

and p largest eigenvalues are separated from rest of spectrum,

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

We are going to show that

$$
\vartheta^{(k)}:=\angle\left(\mathcal{R}\left(E_{p}\right), \mathcal{R}\left(X^{(k)}\right)\right)=\angle\left(\mathcal{R}\left(E_{p}\right), \mathcal{R}\left(A^{k} X^{(0)}\right)\right) \underset{k \rightarrow \infty}{ } 0
$$

Here, $\mathcal{R}\left(E_{p}\right)=\mathcal{R}\left(\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{p}\right]\right)$ are the eigenvectors corresponding to the largest eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.

Angles between subspaces

Let $Q_{1} \in \mathbb{R}^{n \times p}, Q_{2} \in \mathbb{R}^{n \times q}$ be orthogonal matrices, $Q_{1}^{*} Q_{1}=I_{p}$, $Q_{2}^{*} Q_{2}=I_{q}$. Let $S_{i}=\mathcal{R}\left(Q_{i}\right) \subset \mathbb{R}^{n}, i=1,2$, have dimension p, q.
How we can define a distance or an angle between S_{1} and S_{2} ?

Two intersecting planes in \mathbb{R}^{3}

Angles between subspaces (cont.)

Define the angle between the subspaces S_{1} and S_{2} to be the angle between two vectors $\mathbf{x}_{1} \in S_{1}$ and $\mathbf{x}_{2} \in S_{2}$.

How shall we choose these vectors?
Let's proceed as follows:

1. Take any vector $\mathbf{x}_{1} \in S_{1}$ and determine the angle between \mathbf{x}_{1} and its orthogonal projection $\left(I-Q_{2} Q_{2}^{*}\right) \mathbf{x}_{1}$ on S_{2}.
2. Now maximize the angle by varying \mathbf{x}_{1} among all non-zero vectors in S_{1}.

Does this lead anywhere?
Doesn't it depend on how we number the two subspaces?

Angles between subspaces (cont.)

$$
\begin{aligned}
\sin \vartheta & :=\max _{\mathbf{r} \in S_{1},\|\mathbf{r}\|=1}\left\|\left(I_{n}-Q_{2} Q_{2}^{*}\right) \mathbf{r}\right\|=\max _{\mathbf{a} \in \mathbb{R}^{P}\|\mathbf{a}\|=1}\left\|\left(I_{n}-Q_{2} Q_{2}^{*}\right) Q_{1} \mathbf{a}\right\| \\
& =\left\|\left(I_{n}-Q_{2} Q_{2}^{*}\right) Q_{1}\right\| .
\end{aligned}
$$

Because $I_{n}-Q_{2} Q_{2}^{*}$ is an orthogonal projection, we get

$$
\begin{aligned}
\left\|\left(I_{n}-Q_{2} Q_{2}^{*}\right) Q_{1} \mathbf{a}\right\|^{2} & =\mathbf{a}^{*} Q_{1}^{*}\left(I_{n}-Q_{2} Q_{2}^{*}\right)\left(I_{n}-Q_{2} Q_{2}^{*}\right) Q_{1} \mathbf{a} \\
& =\mathbf{a}^{*} Q_{1}^{*}\left(I_{n}-Q_{2} Q_{2}^{*}\right) Q_{1} \mathbf{a} \\
& =\mathbf{a}^{*}\left(Q_{1}^{*} Q_{1}-Q_{1}^{*} Q_{2} Q_{2}^{*} Q_{1}\right) \mathbf{a} \\
& =\mathbf{a}^{*}\left(I_{p}-\left(Q_{1}^{*} Q_{2}\right)\left(Q_{2}^{*} Q_{1}\right)\right) \mathbf{a} \\
& =\mathbf{a}^{*}\left(I_{p}-W^{*} W\right) \mathbf{a}, \quad W:=Q_{2}^{*} Q_{1} \in \mathbb{R}^{q \times p}
\end{aligned}
$$

Angles between subspaces (cont.)

Since $I_{p}-W^{*} W$ is symmetric we have

$$
\begin{aligned}
\sin ^{2} \vartheta & =\max _{\|\mathbf{a}\|=1} \mathbf{a}^{*}\left(I_{p}-W^{*} W\right) \mathbf{a} \\
& =\text { largest eigenvalue of } I_{p}-W^{*} W \\
& =1-\text { smallest eigenvalue of } W^{*} W .
\end{aligned}
$$

Changing roles of Q_{1} and Q_{2} we get

$$
\sin ^{2} \varphi=\left\|\left(I_{n}-Q_{1} Q_{1}^{*}\right) Q_{2}\right\|=1-\text { smallest eigenvalue of } W W^{*}
$$

$W^{*} W \in \mathbb{R}^{p \times p}$ and $W W^{*} \in \mathbb{R}^{q \times q}$, both with equal rank.

Angles between subspaces (cont.)

- If W has full rank and $p<q$ then $\vartheta<\varphi=\pi / 2$.
- If $p=q$ then $W^{*} W$ and $W W^{*}$ have equal eigenvalues, and, thus, $\vartheta=\varphi$.
- If $p=q$ then

$$
\begin{gathered}
\sin ^{2} \vartheta=1-\lambda_{\min }\left(W^{*} W\right)=1-\sigma_{\min }^{2}(W)=1-\cos ^{2} \vartheta, \\
|\cos \vartheta|=\sigma_{\min }(W),
\end{gathered}
$$

where $\sigma_{\min }(W)$ is smallest singular value of W.

For more on angles between subspaces see $[2,3]$.

Convergence analysis

Want to show that

$$
\vartheta^{(k)}=\angle\left(\mathcal{R}\left(E_{p}\right), \mathcal{R}\left(A^{k} X^{(0)}\right)\right) \underset{k \rightarrow \infty}{ } 0
$$

Straightforward to partition matrices A and $X^{(k)}$,

$$
A=\operatorname{diag}\left(A_{1}, A_{2}\right), \quad X^{(k)}=\left[\begin{array}{c}
X_{1}^{(k)} \\
X_{2}^{(k)}
\end{array}\right], \quad A_{1}, X_{1}^{(k)} \in \mathbb{R}^{p \times p} .
$$

We know that A_{1} is nonsingular.
Let us also assume that $X_{1}^{(k)}=E_{p}^{*} X^{(k)}$ is invertible. This means, that $X^{(k)}$ has components in direction of all eigenvecs of interest.

Convergence analysis (cont.)

$$
A^{k} X^{(0)}=\left[\begin{array}{c}
A_{1}^{k} X_{1}^{(0)} \\
A_{2}^{k} X_{2}^{(0)}
\end{array}\right]=\left[\begin{array}{c}
I_{p} \\
S^{(k)}
\end{array}\right] A_{1}^{k} X_{1}^{(0)}, \quad S^{(k)}:=A_{2}^{k} X_{2}^{(0)} X_{1}^{(0)^{-1}} A_{1}^{-k} .
$$

Then,

$$
\begin{aligned}
\sin \vartheta^{(k)} & =\left\|\left(I-E_{p} E_{p}^{*}\right) X^{(k)}\right\| \\
& =\left\|\left(I-E_{p} E_{p}^{*}\right)\left[\begin{array}{c}
I_{p} \\
S^{(k)}
\end{array}\right]\right\| /\left\|\left[\begin{array}{c}
I_{p} \\
S^{(k)}
\end{array}\right]\right\|=\frac{\left\|S^{(k)}\right\|}{\sqrt{1+\left\|S^{(k)}\right\|^{2}}} .
\end{aligned}
$$

Likewise,
such that

$$
\cos \vartheta^{(k)}=\left\|E_{p}^{*} X^{(k)}\right\|=\frac{1}{\sqrt{1+\left\|S^{(k)}\right\|^{2}}},
$$

$$
\tan \vartheta^{(k)}=\left\|S^{(k)}\right\| \leq\left\|A_{2}^{k}\right\|\left\|S^{(0)}\right\|\left\|A_{1}^{-k}\right\| \leq\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k} \tan \vartheta^{(0)} .
$$

Convergence analysis (cont.)

Theorem

Let $U_{p}:=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right]$ be the matrix formed by the eigenvectors corresponding to the p eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ of A largest in modulus. Let $X \in \mathbb{R}^{n \times p}$ be such that $X^{*} U_{p}$ is nonsingular. Then, if $\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right|$, the iterates $X^{(k)}$ of the basic subspace iteration with initial subpace $X^{(0)}=X$ converges to U_{p}, and

$$
\tan \vartheta^{(k)} \leq\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k} \tan \vartheta^{(0)}, \quad \vartheta^{(k)}=\angle\left(\mathcal{R}\left(U_{p}\right), \mathcal{R}\left(X^{(k)}\right)\right)
$$

Generalization

Let us elaborate on this result. Let's assume that not only $W_{p}:=W=X^{*} U_{p}$ is nonsingular but that each principal submatrix

$$
W_{j}:=\left(\begin{array}{ccc}
w_{11} & \cdots & w_{1 j} \\
\vdots & & \vdots \\
w_{j 1} & \cdots & w_{j j}
\end{array}\right), \quad 1 \leq j \leq p
$$

of W_{p} is nonsingular. Apply Theorem to each set of columns $\left[\mathbf{x}_{1}^{(k)}, \ldots, \mathbf{x}_{j}^{(k)}\right]$, provided that $\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right|$. Then

$$
\begin{equation*}
\tan \vartheta_{j}^{(k)} \leq\left|\frac{\lambda_{j+1}}{\lambda_{j}}\right|^{k} \tan \vartheta_{j}^{(0)} \tag{1}
\end{equation*}
$$

where $\vartheta_{j}^{(k)}=\angle\left(\mathcal{R}\left(\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{j}\right]\right), \mathcal{R}\left(\left[\mathbf{x}_{1}^{(k)}, \ldots, \mathbf{x}_{j}^{(k)}\right]\right)\right)$.

Generalization (cont.)

We can even say a little more. We can combine the statements in (1) as follows.

Theorem

Let $X \in \mathbb{R}^{n \times p}$. Let $\left|\lambda_{q-1}\right|>\left|\lambda_{q}\right| \geq \ldots \geq\left|\lambda_{p}\right|>\left|\lambda_{p+1}\right|$. Let W_{q} and W_{p} be nonsingular. Then

$$
\begin{align*}
\sin \angle\left(\mathcal{R}\left(\left[\mathbf{x}_{q}^{(k)}, \ldots, \mathbf{x}_{p}^{(k)}\right]\right), \mathcal{R}\left(\left[\mathbf{u}_{q}, \ldots, \mathbf{u}_{p}\right]\right)\right) \tag{2}\\
\leq c \cdot \max \left\{\left|\frac{\lambda_{q}}{\lambda_{q-1}}\right|^{k},\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k}\right\} .
\end{align*}
$$

Generalization (cont.)

Proof: We investigate the sine of the angle between

$$
S_{1}=\mathcal{R}\left(\left[\mathbf{x}_{q}^{(k)}, \ldots, \mathbf{x}_{p}^{(k)}\right]\right) \text { and } S_{2}=\mathcal{R}\left(\left[\mathbf{u}_{q}, \ldots, \mathbf{u}_{p}\right]\right)
$$

The orthogonal projector on S_{2} is

$$
U_{p} U_{p}^{*}-U_{q-1} U_{q-1}^{*}
$$

So, how long can the projection of $\mathbf{x} \in S_{1},\|\mathbf{x}\|=1$, onto S_{2}^{\perp} be?

$$
\begin{aligned}
\|(I- & \left.\left(U_{p} U_{p}^{*}-U_{q-1} U_{q-1}^{*}\right)\right) \mathbf{x}\|=\| U_{q-1} U_{q-1}^{*} \mathbf{x}+\left(I-U_{p} U_{p}^{*}\right) \mathbf{x} \| \\
& =\underbrace{\left\|U_{q-1} U_{q-1}^{*} \mathbf{x}\right\|^{2}}_{\sin ^{2} \vartheta_{q-1}^{(k)}}+\underbrace{\left\|\left(I-U_{p} U_{p}^{*}\right) \mathbf{x}\right\|^{2}}_{\sin ^{2} \vartheta_{p}^{(k)}} \\
& \leq 2 \max \left\{\sin ^{2} \vartheta_{q-1}^{(k)}, \sin ^{2} \vartheta_{p}^{(k)}\right\} \leq 2 \max \left\{\tan ^{2} \vartheta_{q-1}^{(k)}, \tan ^{2} \vartheta_{p}^{(k)}\right\} .
\end{aligned}
$$

Generalization (cont.)

Since

$$
\tan ^{2} \vartheta_{p}^{(k)} \leq\left|\frac{\lambda_{p+1}}{\lambda_{p}}\right|^{k} \tan ^{2} \vartheta_{p}^{(0)}, \quad \tan ^{2} \vartheta_{q-1}^{(k)} \leq\left|\frac{\lambda_{q}}{\lambda_{q-1}}\right|^{k} \tan ^{2} \vartheta_{q-1}^{(0)}
$$

the claimed result holds true.

Corollary

Let $X \in \mathbb{R}^{n \times p}$. Let $\left|\lambda_{j-1}\right|>\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right|$ and let W_{j-1} and W_{j} be nonsingular. Then

$$
\sin \angle\left(\mathbf{x}_{j}^{(k)}, \mathbf{u}_{j}\right) \leq c \cdot \max \left\{\left|\frac{\lambda_{j}}{\lambda_{j-1}}\right|^{k},\left|\frac{\lambda_{j+1}}{\lambda_{j}}\right|^{k}\right\} .
$$

Numerical example

Subspace iteration with 5 vectors and the diagonal matrix

$$
A=\operatorname{diag}(1,3,4,6,10,15,20, \ldots, 185)^{-1} \in \mathbb{R}^{40 \times 40}
$$

Critical quotients appearing in Corollary

j	1	2	3	4	5
$\left\|\lambda_{j+1}\right\| /\left\|\lambda_{j}\right\|$	$1 / 3$	$3 / 4$	$2 / 3$	$3 / 5$	$2 / 3$

The first column $\mathbf{x}_{1}^{(k)}$ of $X^{(k)}$ should converge to the first eigenvector at a rate $1 / 3, \mathbf{x}_{2}^{(k)}$ and $\mathbf{x}_{3}^{(k)}$ should converge at a rate $3 / 4$ and the last two columns should converge at the rate $2 / 3$.

Solving large scale eigenvalue problems

$\left\llcorner_{\text {Subspace iteration }}\right.$

Numerical example (cont.)

Accelerating subspace iteration

Subspace iteration potentially converges very slowly.

It can be slow even if one starts with a subspace that contains all desired solutions!
If, e.g., $\mathbf{x}_{1}^{(0)}$ and $\mathbf{x}_{2}^{(0)}$ are both elements in $\mathcal{R}\left(\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]\right)$, the vectors $\mathbf{x}_{i}^{(k)}, i=1,2$, still converge linearly towards $\mathbf{u}_{1}, \mathbf{u}_{2}$ although they could be readily obtained from the 2×2 eigenvalue problem

$$
\left[\begin{array}{l}
\mathbf{x}_{1}^{(0)^{*}} \\
\mathbf{x}_{2}^{(0)^{*}}
\end{array}\right] A\left[\mathbf{x}_{1}^{(0)}, \mathbf{x}_{2}^{(0)}\right] \mathbf{y}=\lambda\left[\begin{array}{l}
\mathbf{x}_{1}^{(0)^{*}} \\
\mathbf{x}_{2}^{(0)^{*}}
\end{array}\right]\left[\mathbf{x}_{1}^{(0)}, \mathbf{x}_{2}^{(0)}\right] \mathbf{y}
$$

Accelerating subspace iteration (cont.)

Theorem

Let $X \in \mathbb{R}^{n \times p}$ be as earlier. Let $\mathbf{u}_{i}, 1 \leq i \leq p$, be the eigenvectors corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ of A. Then we have

$$
\min _{\mathbf{x} \in \mathcal{R}\left(X^{(k)}\right)} \sin \angle\left(\mathbf{u}_{i}, \mathbf{x}\right) \leq c\left(\frac{\lambda_{i}}{\lambda_{p+1}}\right)^{k}
$$

Accelerating subspace iteration (cont.)

Proof: Had earlier (with diagonal A)

$$
\begin{aligned}
A^{k} X^{(0)} & =\left[\begin{array}{l}
A_{1}^{k} X_{1}^{(0)} \\
A_{2}^{k} X_{2}^{(0)}
\end{array}\right]=\left[\begin{array}{c}
I_{p} \\
S^{(k)}
\end{array}\right] A_{1}^{k} X_{1}^{(0)} \\
S^{(k)} & =A_{2}^{k} \underbrace{X_{2}^{(0)} X_{1}^{(0)^{-1}}}_{S^{(0)}} A_{1}^{-k}, \quad s_{j i}^{(k)}=\frac{\lambda_{i}}{\lambda_{p+j}} s_{j i}^{(0)}
\end{aligned}
$$

We have $\mathcal{R}\left(X^{(k)}\right)=\mathcal{R}\left(A^{k} X^{(0)}\right)=\mathcal{R}\left(\left[\begin{array}{c}I_{p} \\ S^{(k)}\end{array}\right]\right)$.
\mathbf{e}_{i} plays the role of \mathbf{u}_{i}.
We check the angle between \mathbf{e}_{i} and $\left[\begin{array}{c}I_{p} \\ S^{(k)}\end{array}\right] \mathbf{e}_{i}$.

Accelerating subspace iteration (cont.)

But we have

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathcal{R}\left(X^{(k)}\right)} \sin \angle\left(\mathbf{e}_{i}, \mathbf{x}\right) & \leq \sin \angle\left(\mathbf{e}_{i},\left[\begin{array}{c}
I_{p} \\
\mathbf{S}^{(k)}
\end{array}\right] \mathbf{e}_{i}\right) \\
& =\left\|\left(I-\mathbf{e}_{i} \mathbf{e}_{i}^{*}\right)\left[\begin{array}{c}
I_{p} \\
\mathbf{S}^{(k)}
\end{array}\right] \mathbf{e}_{i}\right\| /\left\|\left[\begin{array}{c}
I_{p} \\
\mathbf{S}^{(k)}
\end{array}\right] \mathbf{e}_{i}\right\| \\
& \leq\left\|\mathbf{S}^{(k)} \mathbf{e}_{i}\right\| \\
& =\sqrt{\sum_{j=1}^{n-p} s_{j i}^{2} \frac{\lambda_{i}^{2 k}}{\lambda_{p+j}^{2 k}} \leq\left(\frac{\lambda_{i}}{\lambda_{p+1}}\right)^{k} \sqrt{\sum_{j=1}^{n-p} s_{j i}^{2}}}
\end{aligned}
$$

Consequence: Complement subspace iteration by a so-called Rayleigh-Ritz step.

Subspace iteration combined with Rayleigh-Ritz step

1: Let $X \in \mathbb{R}^{n \times p}$ with $X^{*} X=I_{p}$:
2: Set $X^{(0)}:=X$.
3: for $k=1,2, \ldots$ do
4: $\quad Z^{(k)}:=A X^{(k-1)}$
5: $\quad Q^{(k)} R^{(k)}:=Z^{(k)} \quad\left\{Q R\right.$ factorization of $Z^{(k)}$ (or modified Gram-Schmidt) $\}$
6: $\quad \hat{H}^{(k)}:=Q^{(k)^{*}} A Q^{(k)}$,
7: $\quad \hat{H}^{(k)}=: F^{(k)} \Theta^{(k)} F^{(k)^{*}}$
\{Spectral decomposition of $\hat{H}^{(k)}$ \}
8: $\quad X^{(k)}=Q^{(k)} F^{(k)}$
9: end for
$\left\{\right.$ Ritz vectors in $\left.\mathcal{R}\left(X^{(k)}\right)\right\}$

Convergence

One can show (lecture notes) that the Ritz vectors converge to the eigenvectors:

$$
\angle\left(\mathbf{x}_{i}^{(k)}, \mathbf{u}_{i}\right) \leq c\left(\frac{\lambda_{i}}{\lambda_{p+1}}\right)^{k}
$$

with a constant c independent of k.
In the case of Hermitian matrices we can show for the eigenvalues that

$$
\left|\lambda_{i}-\lambda_{i}^{(k)}\right| \leq c_{1}\left(\frac{\lambda_{i}}{\lambda_{p+1}}\right)^{2 k}
$$

Remarks on subspace iteration

1. Subspace iteration is 'almost always' applied with a shift-and-invert approach.
This gives good convergence to a few eigenvectors with eigenvalues close to the shift.
2. The potentially bad convergence rate $\lambda_{p} / \lambda_{p+1}$ can be improved by iterating with more vectors than necessary, $q>p$. Then the crucial ratio is $\lambda_{p} / \lambda_{q+1}$.
3. The (Schur-)Rayleigh-Ritz step may be expensive. It needs not to be executed in every iteration step. Then, convergence is checked only in this step.
4. Convergence can be checked vector-wise. Converged vectors are frozen.

A numerical example

Problem of determining accustic vibration in the interior of a car.
We want to compute the p smallest eigenvalues of

$$
\begin{equation*}
A \mathbf{x}=\lambda B \mathbf{x}, \quad A, B \in \mathbb{R}^{n \times n} \tag{3}
\end{equation*}
$$

We know that $\lambda_{1}=0<\lambda_{2} \leq \lambda_{3} \cdots$
In preparation of the shift-and-invert iteration we rewrite (3) as a special eigenvalue problem

$$
\begin{equation*}
L^{-1}(A-\sigma B) L^{-T} \mathbf{y}=\lambda^{\prime} \mathbf{y}, \quad \mathbf{y}=L^{T} \mathbf{x}, \quad B=L L^{T} \tag{4}
\end{equation*}
$$

where $B=L L^{T}$ is the Cholesky factorization of B and $\lambda^{\prime}=\lambda-\sigma$.

A numerical example (cont.)

In the shift-and-invert iteration we will also need the inverse of the matrix in (4). Here, we chose to use a Cholesky factorization of $A-\sigma B$. Therefore, $\sigma<0$ is required.

Subspace iteration is used to compute $p=5$ eigenpairs. $X^{(0)}$ is chosen to be a random matrix with $q=7>p$ columns.

The convergence criterion is

$$
\left\|\left(I-X^{(k)} X^{(k)^{*}}\right) X^{(k-1)}\right\| \leq t o l=10^{-6}
$$

The shift was chosen $\sigma=-0.01$.

A numerical example (cont.)

$$
\begin{aligned}
& \text { >> runsivit } \\
& ||\operatorname{Res}(0)||=0.999932 \\
& ||\operatorname{Res}(5)||=0.273559 \\
& ||\operatorname{Res}(10)||=0.0320599 \\
& ||\operatorname{Res}(15)||=0.000508543 \\
& ||\operatorname{Res}(20)||=1.01009 \mathrm{e}-05 \\
& ||\operatorname{Res}(25)||=5.93181 \mathrm{e}-07 \\
& \mathrm{~L}= \\
& 0.000000000000000 \\
& 0.012690076288466 \\
& 0.044384575968237 \\
& 0.056635010555654 \\
& 0.116631165221511
\end{aligned}
$$

Relation of subspace iteration and QR algorithm

Let $X_{0}=I_{n}$, the $n \times n$ identity matrix. Then we have

$$
\begin{align*}
A I & =A_{0}=A X_{0}=Y_{1}=X_{1} R_{1} \tag{SVI}\\
A_{1} & =X_{1}^{*} A X_{1}=X_{1}^{*} X_{1} R_{1} X_{1}=R_{1} X_{1} \tag{QR}\\
A X_{1} & =Y_{2}=X_{2} R_{2} \tag{SVI}\\
A_{1} & =X_{1}^{*} Y_{2}=X_{1}^{*} X_{2} R_{2} \tag{QR}\\
A_{2} & =R_{2} X_{1}^{*} X_{2} \tag{QR}\\
& =X_{2}^{*} \underbrace{X_{1}}_{A} \underbrace{X_{1}^{*} X_{2} R_{2}}_{A_{1}} X_{1}^{*} X_{2}=X_{2}^{*} A X_{2} \tag{QR}
\end{align*}
$$

Relation of subspace iteration and QR algorithm (cont.)

More generally, by induction, we have

$$
\begin{align*}
A X_{k} & =Y_{k+1}=X_{k+1} R_{k+1} \\
A_{k} & =X_{k}^{*} A X_{k}=X_{k}^{*} Y_{k+1}=X_{k}^{*} X_{k+1} R_{k+1} \\
A_{k+1} & =R_{k+1} X_{k}^{*} X_{k+1} \\
& =X_{k+1}^{*} \underbrace{\underbrace{X_{k}^{*} X_{k+1} R_{k+1}}_{A_{k}}}_{A_{k}} X_{k}^{*} X_{k+1}=X_{k+1}^{*} A X_{k+1}
\end{align*}
$$

Relation to QR: $Q_{1}=X_{1}, Q_{k}=X_{k}^{*} X_{k+1}$.

Relation of subspace iteration and QR algorithm (cont.)

$$
\begin{align*}
A^{k} & =A^{k} X_{0}=A^{k-1} A X_{0}=A^{k-1} X_{1} R_{1} \\
& =A^{k-2} A X_{1} R_{1}=A^{k-2} X_{2} R_{2} R_{1} \\
& \vdots \tag{QR}\\
& =X_{k} \underbrace{R_{k} R_{k-1} \cdots R_{1}}_{U_{k}}=X_{k} U_{k}
\end{align*}
$$

Because U_{k} is upper triangular we can write

$$
\begin{aligned}
A^{k}\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{p}\right] & =X_{k} U_{k}\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{p}\right] \\
& =X_{k} U_{k}(:, 1: p)=X_{k}(:, 1: p)\left[\begin{array}{ccc}
u_{11} & \cdots & u_{1 p} \\
& \ddots & \vdots \\
& & u_{p p}
\end{array}\right]
\end{aligned}
$$

Relation of subspace iteration and QR algorithm (cont.)

This holds for all p. We therefore can interpret the QR algorithm as a nested subspace iteration.
There is also a relation to simultaneous inverse vector iteration! Let us assume that A is invertible. Then we have,

$$
\begin{gathered}
A X_{k-1}=X_{k-1} A_{k-1}=X_{k} R_{k} \\
X_{k} R_{k}^{-*}=A^{-*} X_{k-1}, \quad R_{k}^{-*} \text { is lower triangular } \\
X_{k} \underbrace{R_{k}^{-*} R_{k-1}^{-*} \cdots R_{1}^{-*}}_{U_{k}^{-*}}=\left(A^{-*}\right)^{k} X_{0}
\end{gathered}
$$

Notice that $A^{-*}=\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$.

Relation of subspace iteration and QR algorithm (cont.)

Thus,

$$
X_{k}\left[\mathbf{e}_{\ell}, \ldots, \mathbf{e}_{n}\right]\left[\begin{array}{ccc}
\bar{u}_{\ell, \ell} & & \\
\vdots & \ddots & \\
\bar{u}_{n, \ell} & & \bar{u}_{n, n}
\end{array}\right]=\left(A^{-*}\right)^{k} X_{0}\left[\mathbf{e}_{\ell}, \ldots, \mathbf{e}_{n}\right]
$$

By consequence, the last $n-\ell+1$ columns of X_{k} execute a simultaneous inverse vector iteration. This holds for all ℓ. Therefore, the QR algorithm also performs a nested inverse subspace iteration.

References

[1] Z. Bai and G. W. Stewart, Algorithm 776. SRRIT - A Fortran subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix, ACM Trans. Math. Softw., 23 (1997), pp. 494-513.
[2] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.
[3] I. C. F. Ipsen and C. D. Meyer, The Angle Between Complementary Subspaces. Amer. Math. Monthly 102 (1995), pp. 904-911.
[4] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980. (Republished 1998 by SIAM.).
[5] B. N. Parlett and W. G. Poole, A geometric theory for the QR, LU, and power iterations, SIAM J. Numer. Anal., 8 (1973), pp. 389-412.

