

Solving large scale eigenvalue problems Lecture 7, April 11, 2018: Subspace iterations http://people.inf.ethz.ch/arbenz/ewp/

Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey of today's lecture

Instead of iterating with a single vector one may proceed with a bunch of vectors simultaneously. Done right, this leads to classic stable subspace iterations.

- Subspace iteration
- Inverse iteration
- Computing eigenvalues
- Relation to the QR algorithm

Subspace iteration

Let $A \in \mathbb{R}^{n \times n}$. Starting with arbitrary initial matrix $X_0 = [\mathbf{x}_1^{(0)}, \dots, \mathbf{x}_p^{(0)}] \in \mathbb{R}^{n \times p}$ we form the matrix sequence $\{X_k\}_{k=0}^{\infty}$ defined by

$$X_k := A X_{k-1}, \qquad k = 1, 2, \dots$$
 (*)

Clearly,

$$X_k := A^k X_0.$$

Does this work!!??

We have to keep columns of X_k linearly independant. Common approach: keep them orthogonal.

Algorithm: Simple subspace iteration

- 1: Choose $Z_0 \in \mathbb{R}^{n \times p}$ arbitrary, but with maximal rank p. Determine $X^{(0)}$ by QR factorization $X^{(0)}R^{(0)} := Z^{(0)}$.
- 2: k := 0.
- 3: repeat
- 4: k := k + 1;
- 5: $Z^{(k)} := AX^{(k-1)}$
- 6: $X^{(k)}R^{(k)} := Z^{(k)}$ {QR factorization of $Z^{(k)}$ }
- 7: until convergence criterion is satisfied

Observation: In QR factorization column j affects only columns j, \ldots, p of $X^{(k)}$. Therefore, columns $1, \ldots, j, 1 \le j \le p$, execute individual subspace iteration. In particular, vectors $X^{(k)}\mathbf{e}_1$ execute power method.

Important note

• Let $A = USU^*$ be the Schur decomposition of A. Then,

$$U^*X_k := SU^*X_{k-1}$$
 and $U^*X_k := S^kU^*X_0$.

- U unitary: $||X_k|| \implies ||U^*X_k|| = 1$ for all k.
- ▶ If the sequence $\{X_k\}_{k=0}^{\infty}$ converges to X_* then the sequence $\{Y_k = U^*X_k\}_{k=0}^{\infty}$ converges to $Y_* = U^*X_*$.
- So, for convergence analysis: can assume w.l.o.g. that A is upper triangular.
- ► If we assumed that A is symmetric then for a convergence analysis we could restrict ourselves to diagonal matrices.
- Note that some performance issues are excluded here.

Convergence of basic subspace iteration

Here, we assume that A is symmetric, or, for simplicity, diagonal,

$$A = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n),$$

and p largest eigenvalues are separated from rest of spectrum,

$$|\lambda_1| \geq \cdots \geq |\lambda_p| > |\lambda_{p+1}| \geq \cdots \geq |\lambda_n|.$$

We are going to show that

$$\vartheta^{(k)} := \angle (\mathcal{R}(E_p), \mathcal{R}(X^{(k)})) = \angle (\mathcal{R}(E_p), \mathcal{R}(A^k X^{(0)})) \xrightarrow[k \to \infty]{} 0$$

Here, $\mathcal{R}(E_p) = \mathcal{R}([\mathbf{e}_1, \dots, \mathbf{e}_p])$ are the eigenvectors corresponding to the largest eigenvalues $\lambda_1, \dots, \lambda_p$.

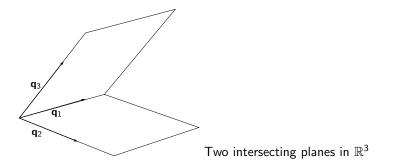
Large scale eigenvalue problems, Lecture 7, April 11, 2018

(日)

Angles between subspaces

Let $Q_1 \in \mathbb{R}^{n \times p}$, $Q_2 \in \mathbb{R}^{n \times q}$ be orthogonal matrices, $Q_1^*Q_1 = I_p$, $Q_2^*Q_2 = I_q$. Let $S_i = \mathcal{R}(Q_i) \subset \mathbb{R}^n$, i = 1, 2, have dimension p, q.

How we can define a distance or an angle between S_1 and S_2 ?



7/36

-Subspace iteration

Angles between subspaces (cont.)

Define the angle between the subspaces S_1 and S_2 to be the angle between two vectors $\mathbf{x}_1 \in S_1$ and $\mathbf{x}_2 \in S_2$.

How shall we choose these vectors?

Let's proceed as follows:

- 1. Take any vector $\mathbf{x}_1 \in S_1$ and determine the angle between \mathbf{x}_1 and its orthogonal projection $(I - Q_2 Q_2^*)\mathbf{x}_1$ on S_2 .
- 2. Now maximize the angle by varying \mathbf{x}_1 among all non-zero vectors in S_1 .

Does this lead anywhere?

Doesn't it depend on how we number the two subspaces?

Angles between subspaces (cont.)

$$\sin \vartheta := \max_{\mathbf{r} \in S_1, \|\mathbf{r}\| = 1} \| (I_n - Q_2 Q_2^*) \mathbf{r} \| = \max_{\mathbf{a} \in \mathbb{R}^p \|\mathbf{a}\| = 1} \| (I_n - Q_2 Q_2^*) Q_1 \mathbf{a} \|$$
$$= \| (I_n - Q_2 Q_2^*) Q_1 \|.$$

Because $I_n - Q_2 Q_2^*$ is an orthogonal projection, we get

$$\|(I_n - Q_2 Q_2^*)Q_1 \mathbf{a}\|^2 = \mathbf{a}^* Q_1^* (I_n - Q_2 Q_2^*) (I_n - Q_2 Q_2^*)Q_1 \mathbf{a}$$

= $\mathbf{a}^* Q_1^* (I_n - Q_2 Q_2^*)Q_1 \mathbf{a}$
= $\mathbf{a}^* (Q_1^* Q_1 - Q_1^* Q_2 Q_2^* Q_1) \mathbf{a}$
= $\mathbf{a}^* (I_p - (Q_1^* Q_2) (Q_2^* Q_1)) \mathbf{a}$
= $\mathbf{a}^* (I_p - W^* W) \mathbf{a}$, $W := Q_2^* Q_1 \in \mathbb{R}^{q \times p}$

-Subspace iteration

Angles between subspaces (cont.) Since $I_p - W^*W$ is symmetric we have $\sin^2 \vartheta = \max_{W \in W} \mathbf{a}^* (I_p - W^*W) \mathbf{a}$

$$\begin{array}{l} & \text{in } v = \max_{\|\mathbf{a}\|=1} \mathbf{a} (I_p - vv \ vv) \mathbf{a} \\ & = \text{largest eigenvalue of } I_p - W^*W \\ & = 1 - \text{smallest eigenvalue of } W^*W \end{array}$$

Changing roles of Q_1 and Q_2 we get

 $\sin^2 \varphi = \|(I_n - Q_1 Q_1^*)Q_2\| = 1 - \text{smallest eigenvalue of } WW^*.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

10/36

 $W^*W \in \mathbb{R}^{p \times p}$ and $WW^* \in \mathbb{R}^{q \times q}$, both with equal rank.

Angles between subspaces (cont.)

- If W has full rank and p < q then $\vartheta < \varphi = \pi/2$.
- If p = q then W^{*}W and WW^{*} have equal eigenvalues, and, thus, θ = φ.
- If p = q then

$$\begin{split} \sin^2\vartheta &= 1 - \lambda_{\min}(W^*W) = 1 - \sigma_{\min}^2(W) = 1 - \cos^2\vartheta, \\ &|\cos\vartheta| = \sigma_{\min}(W), \end{split}$$

where $\sigma_{\min}(W)$ is smallest singular value of W.

For more on angles between subspaces see [2, 3].

Large scale eigenvalue problems, Lecture 7, April 11, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の

Convergence analysis

Want to show that

$$\vartheta^{(k)} = \angle (\mathcal{R}(E_p), \mathcal{R}(A^k X^{(0)})) \xrightarrow[k \to \infty]{} 0$$

Straightforward to partition matrices A and $X^{(k)}$,

$$A = \operatorname{diag}(A_1, A_2), \quad X^{(k)} = \begin{bmatrix} X_1^{(k)} \\ X_2^{(k)} \end{bmatrix}, \qquad A_1, X_1^{(k)} \in \mathbb{R}^{p \times p}.$$

We know that A_1 is nonsingular.

Let us also assume that $X_1^{(k)} = E_p^* X^{(k)}$ is invertible. This means, that $X^{(k)}$ has components in direction of all eigenvecs of interest.

-Subspace iteration

Convergence analysis (cont.) $A^{k}X^{(0)} = \begin{bmatrix} A_{1}^{k}X_{1}^{(0)} \\ A_{2}^{k}X_{2}^{(0)} \end{bmatrix} = \begin{bmatrix} I_{p} \\ S^{(k)} \end{bmatrix} A_{1}^{k}X_{1}^{(0)}, \qquad S^{(k)} := A_{2}^{k}X_{2}^{(0)}X_{1}^{(0)^{-1}}A_{1}^{-k}.$

Then,

$$\sin \vartheta^{(k)} = \| (I - E_p E_p^*) X^{(k)} \|$$

= $\| (I - E_p E_p^*) \begin{bmatrix} I_p \\ S^{(k)} \end{bmatrix} \| / \| \begin{bmatrix} I_p \\ S^{(k)} \end{bmatrix} \| = \frac{\| S^{(k)} \|}{\sqrt{1 + \| S^{(k)} \|^2}}.$

-

Likewise,

$$\cos artheta^{(k)} = \|E_{
ho}^* X^{(k)}\| = rac{1}{\sqrt{1 + \|S^{(k)}\|^2}},$$

such that

$$\tan \vartheta^{(k)} = \|S^{(k)}\| \le \|A_2^k\| \|S^{(0)}\| \|A_1^{-k}\| \le \left|\frac{\lambda_{p+1}}{\lambda_p}\right|^k \tan \vartheta^{(0)}.$$

Convergence analysis (cont.)

Theorem

Let $U_p := [\mathbf{u}_1, \dots, \mathbf{u}_p]$ be the matrix formed by the eigenvectors corresponding to the p eigenvalues $\lambda_1, \dots, \lambda_p$ of A largest in modulus. Let $X \in \mathbb{R}^{n \times p}$ be such that $X^* U_p$ is nonsingular. Then, if $|\lambda_p| > |\lambda_{p+1}|$, the iterates $X^{(k)}$ of the basic subspace iteration with initial subpace $X^{(0)} = X$ converges to U_p , and

$$an artheta^{(k)} \leq \left|rac{\lambda_{p+1}}{\lambda_p}
ight|^k an artheta^{(0)}, \qquad artheta^{(k)} = igla (\mathcal{R}(U_p), \mathcal{R}(X^{(k)})).$$

14/36

Generalization

Let us elaborate on this result. Let's assume that not only $W_p := W = X^* U_p$ is nonsingular but that each principal submatrix

$$W_j := egin{pmatrix} w_{11} & \cdots & w_{1j} \ dots & & dots \ w_{j1} & \cdots & w_{jj} \end{pmatrix}, \quad 1 \leq j \leq p,$$

of W_p is nonsingular. Apply Theorem to each set of columns $[\mathbf{x}_1^{(k)}, \ldots, \mathbf{x}_j^{(k)}]$, provided that $|\lambda_j| > |\lambda_{j+1}|$. Then

$$\tan \vartheta_j^{(k)} \le \left| \frac{\lambda_{j+1}}{\lambda_j} \right|^k \tan \vartheta_j^{(0)}, \tag{1}$$

where
$$\vartheta_j^{(k)} = \angle (\mathcal{R}([\mathbf{u}_1, \dots, \mathbf{u}_j]), \mathcal{R}([\mathbf{x}_1^{(k)}, \dots, \mathbf{x}_j^{(k)}])).$$

Large scale eigenvalue problems, Lecture 7, April 11, 2018

15/36

Generalization (cont.)

We can even say a little more. We can combine the statements in (1) as follows.

Theorem

Let $X \in \mathbb{R}^{n \times p}$. Let $|\lambda_{q-1}| > |\lambda_q| \ge \ldots \ge |\lambda_p| > |\lambda_{p+1}|$. Let W_q and W_p be nonsingular. Then

$$\sin \angle (\mathcal{R}([\mathbf{x}_{q}^{(k)}, \dots, \mathbf{x}_{p}^{(k)}]), \mathcal{R}([\mathbf{u}_{q}, \dots, \mathbf{u}_{p}]))$$

$$\leq c \cdot \max \left\{ \left| \frac{\lambda_{q}}{\lambda_{q-1}} \right|^{k}, \left| \frac{\lambda_{p+1}}{\lambda_{p}} \right|^{k} \right\}.$$
(2)

16/36

Generalization (cont.)

Proof: We investigate the sine of the angle between $S_1 = \mathcal{R}([\mathbf{x}_q^{(k)}, \dots, \mathbf{x}_p^{(k)}])$ and $S_2 = \mathcal{R}([\mathbf{u}_q, \dots, \mathbf{u}_p])$.

The orthogonal projector on S_2 is

$$U_p U_p^* - U_{q-1} U_{q-1}^*.$$

So, how long can the projection of $\mathbf{x} \in S_1$, $\|\mathbf{x}\| = 1$, onto S_2^{\perp} be?

$$\|(I - (U_{p}U_{p}^{*} - U_{q-1}U_{q-1}^{*}))\mathbf{x}\| = \|U_{q-1}U_{q-1}^{*}\mathbf{x} + (I - U_{p}U_{p}^{*})\mathbf{x}\|$$

$$= \underbrace{\|U_{q-1}U_{q-1}^{*}\mathbf{x}\|^{2}}_{\sin^{2}} + \underbrace{\|(I - U_{p}U_{p}^{*})\mathbf{x}\|^{2}}_{\sin^{2}} \underbrace{\sin^{2}\vartheta_{p}^{(k)}}_{q-1}$$

$$\leq 2 \max\{\sin^{2}\vartheta_{q-1}^{(k)}, \sin^{2}\vartheta_{p}^{(k)}\} \leq 2 \max\{\tan^{2}\vartheta_{q-1}^{(k)}, \tan^{2}\vartheta_{p}^{(k)}\}.$$

Generalization (cont.)

Since

$$\tan^2 \vartheta_p^{(k)} \le \left| \frac{\lambda_{p+1}}{\lambda_p} \right|^k \tan^2 \vartheta_p^{(0)}, \qquad \tan^2 \vartheta_{q-1}^{(k)} \le \left| \frac{\lambda_q}{\lambda_{q-1}} \right|^k \tan^2 \vartheta_{q-1}^{(0)},$$

the claimed result holds true.

Corollary

Let $X \in \mathbb{R}^{n \times p}$. Let $|\lambda_{j-1}| > |\lambda_j| > |\lambda_{j+1}|$ and let W_{j-1} and W_j be nonsingular. Then

$$\sin \angle (\mathbf{x}_j^{(k)}, \mathbf{u}_j) \leq c \cdot \max \left\{ \left| \frac{\lambda_j}{\lambda_{j-1}} \right|^k, \left| \frac{\lambda_{j+1}}{\lambda_j} \right|^k \right\}$$

Large scale eigenvalue problems, Lecture 7, April 11, 2018

Numerical example

Subspace iteration with 5 vectors and the diagonal matrix

$$A = \text{diag}(1, 3, 4, 6, 10, 15, 20, \dots, 185)^{-1} \in \mathbb{R}^{40 \times 40}$$

Critical quotients appearing in Corollary

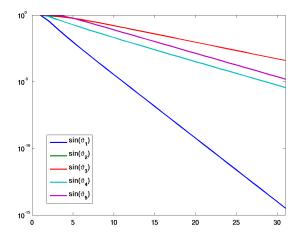
The first column $\mathbf{x}_1^{(k)}$ of $X^{(k)}$ should converge to the first eigenvector at a rate 1/3, $\mathbf{x}_2^{(k)}$ and $\mathbf{x}_3^{(k)}$ should converge at a rate 3/4 and the last two columns should converge at the rate 2/3.

Large scale eigenvalue problems, Lecture 7, April 11, 2018

(日) (個) (E) (E) (E)

-Subspace iteration

Numerical example (cont.)



Large scale eigenvalue problems, Lecture 7, April 11, 2018

Accelerating subspace iteration

Subspace iteration potentially converges very slowly.

It can be slow even if one starts with a subspace that contains all desired solutions!

If, e.g., $\mathbf{x}_1^{(0)}$ and $\mathbf{x}_2^{(0)}$ are both elements in $\mathcal{R}([\mathbf{u}_1, \mathbf{u}_2])$, the vectors $\mathbf{x}_i^{(k)}$, i = 1, 2, still converge linearly towards \mathbf{u}_1 , \mathbf{u}_2 although they could be readily obtained from the 2 × 2 eigenvalue problem

$$\begin{bmatrix} \mathbf{x}_{1}^{(0)*} \\ \mathbf{x}_{2}^{(0)*} \end{bmatrix} A \begin{bmatrix} \mathbf{x}_{1}^{(0)}, \mathbf{x}_{2}^{(0)} \end{bmatrix} \mathbf{y} = \lambda \begin{bmatrix} \mathbf{x}_{1}^{(0)*} \\ \mathbf{x}_{2}^{(0)*} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1}^{(0)}, \mathbf{x}_{2}^{(0)} \end{bmatrix} \mathbf{y}$$

Large scale eigenvalue problems, Lecture 7, April 11, 2018

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ 約

Accelerating subspace iteration (cont.)

Theorem

Let $X \in \mathbb{R}^{n \times p}$ be as earlier. Let \mathbf{u}_i , $1 \le i \le p$, be the eigenvectors corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_p$ of A. Then we have

$$\min_{\mathbf{x}\in\mathcal{R}(X^{(k)})} \, \sin \, \angle(\mathbf{u}_i,\mathbf{x}) \leq c \bigg(\frac{\lambda_i}{\lambda_{p+1}}\bigg)^k$$

Accelerating subspace iteration (cont.) **Proof:** Had earlier (with diagonal *A*)

$$A^{k}X^{(0)} = \begin{bmatrix} A_{1}^{k}X_{1}^{(0)} \\ A_{2}^{k}X_{2}^{(0)} \end{bmatrix} = \begin{bmatrix} I_{p} \\ S^{(k)} \end{bmatrix} A_{1}^{k}X_{1}^{(0)},$$
$$S^{(k)} = A_{2}^{k}\underbrace{X_{2}^{(0)}X_{1}^{(0)-1}}_{S^{(0)}} A_{1}^{-k}, \qquad s_{ji}^{(k)} = \frac{\lambda_{i}}{\lambda_{p+j}}s_{ji}^{(0)}$$

- 1 \

◆□ > ◆圖 > ◆臣 > ◆臣 > 三臣

We have
$$\mathcal{R}(X^{(k)}) = \mathcal{R}(A^k X^{(0)}) = \mathcal{R}\left(\begin{bmatrix} I_p \\ S^{(k)} \end{bmatrix} \right)$$
.
 \mathbf{e}_i plays the role of \mathbf{u}_i .

We check the angle between \mathbf{e}_i and $\begin{vmatrix} I_p \\ S^{(k)} \end{vmatrix} \mathbf{e}_i$.

But we have

Accelerating subspace iteration (cont.)

$$\begin{split} \min_{\mathbf{x}\in\mathcal{R}(X^{(k)})} \sin \, \angle(\mathbf{e}_i, \mathbf{x}) &\leq \sin \, \angle\left(\mathbf{e}_i, \begin{bmatrix} I_p \\ \mathbf{S}^{(k)} \end{bmatrix} \mathbf{e}_i \right) \\ &= \left\| (I - \mathbf{e}_i \mathbf{e}_i^*) \begin{bmatrix} I_p \\ \mathbf{S}^{(k)} \end{bmatrix} \mathbf{e}_i \right\| / \left\| \begin{bmatrix} I_p \\ \mathbf{S}^{(k)} \end{bmatrix} \mathbf{e}_i \right\| \\ &\leq \left\| \mathbf{S}^{(k)} \mathbf{e}_i \right\| \\ &= \sqrt{\sum_{i=1}^{n-p} s_{ji}^2 \frac{\lambda_i^{2k}}{\lambda_{p+j}^{2k}}} \leq \left(\frac{\lambda_i}{\lambda_{p+1}}\right)^k \sqrt{\sum_{i=1}^{n-p} s_{ji}^2}. \quad \Box \end{split}$$

Consequence: Complement subspace iteration by a so-called Rayleigh-Ritz step.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣…

24/36

Subspace iteration combined with Rayleigh-Ritz step

1: Let
$$X \in \mathbb{R}^{n \times p}$$
 with $X^*X = I_p$:
2: Set $X^{(0)} := X$.
3: for $k = 1, 2, ...$ do
4: $Z^{(k)} := AX^{(k-1)}$
5: $Q^{(k)}R^{(k)} := Z^{(k)}$ {QR factorization of $Z^{(k)}$ (or modified
Gram-Schmidt)}
6: $\hat{H}^{(k)} := Q^{(k)*}AQ^{(k)}$,
7: $\hat{H}^{(k)} =: F^{(k)}\Theta^{(k)}F^{(k)*}$ {Spectral decomposition of $\hat{H}^{(k)}$ }
8: $X^{(k)} = Q^{(k)}F^{(k)}$ {Ritz vectors in $\mathcal{R}(X^{(k)})$ }
9: end for

25/36

Convergence

One can show (lecture notes) that the Ritz vectors converge to the eigenvectors:

$$\angle(\mathbf{x}_i^{(k)},\mathbf{u}_i) \leq c \left(rac{\lambda_i}{\lambda_{p+1}}
ight)^k$$

with a constant c independent of k.

In the case of Hermitian matrices we can show for the eigenvalues that

$$|\lambda_i - \lambda_i^{(k)}| \leq c_1 \left(\frac{\lambda_i}{\lambda_{p+1}}\right)^{2k}.$$

<ロ> (四) (四) (三) (三) (三)

26/36

Remarks on subspace iteration

 Subspace iteration is 'almost always' applied with a shift-and-invert approach.

This gives good convergence to a few eigenvectors with eigenvalues close to the shift.

- 2. The potentially bad convergence rate λ_p/λ_{p+1} can be improved by iterating with more vectors than necessary, q > p. Then the crucial ratio is λ_p/λ_{q+1} .
- 3. The (Schur–)Rayleigh–Ritz step may be expensive. It needs not to be executed in every iteration step. Then, convergence is checked only in this step.
- 4. Convergence can be checked vector-wise. Converged vectors are frozen.

A numerical example

Problem of determining accustic vibration in the interior of a car. We want to compute the p smallest eigenvalues of

$$A\mathbf{x} = \lambda B\mathbf{x}, \qquad A, B \in \mathbb{R}^{n \times n}.$$
 (3)

We know that $\lambda_1 = 0 < \lambda_2 \leq \lambda_3 \cdots$

In preparation of the *shift-and-invert iteration* we rewrite (3) as a special eigenvalue problem

$$L^{-1}(A - \sigma B)L^{-T}\mathbf{y} = \lambda'\mathbf{y}, \qquad \mathbf{y} = L^{T}\mathbf{x}, \quad B = LL^{T}.$$
(4)

where $B = LL^T$ is the Cholesky factorization of B and $\lambda' = \lambda - \sigma$.

A numerical example (cont.)

In the shift-and-invert iteration we will also need the inverse of the matrix in (4). Here, we chose to use a Cholesky factorization of $A - \sigma B$. Therefore, $\sigma < 0$ is required.

Subspace iteration is used to compute p = 5 eigenpairs. $X^{(0)}$ is chosen to be a random matrix with q = 7 > p columns.

The convergence criterion is

$$\|(I - X^{(k)}X^{(k)^*})X^{(k-1)}\| \le tol = 10^{-6}.$$

The shift was chosen $\sigma = -0.01$.

-Subspace iteration

A numerical example (cont.)

```
>> runsivit
```

||Res(0)|| = 0.999932 ||Res(5)|| = 0.273559 ||Res(10)|| = 0.0320599 ||Res(15)|| = 0.000508543 ||Res(20)|| = 1.01009e-05 ||Res(25)|| = 5.93181e-07

L =

- $\begin{array}{l} 0.00000000000000\\ 0.012690076288466\\ 0.044384575968237\\ 0.056635010555654 \end{array}$
- 0.116631165221511

イロト 不得下 イヨト イヨト 三日

30/36

Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm

Let $X_0 = I_n$, the $n \times n$ identity matrix. Then we have

$$AI = A_0 = AX_0 = Y_1 = X_1R_1$$
(SVI)

$$A_1 = X_1^*AX_1 = X_1^*X_1R_1X_1 = R_1X_1$$
(QR)

$$AX_1 = Y_2 = X_2R_2$$
(SVI)

$$A_1 = X_1^*Y_2 = X_1^*X_2R_2$$
(QR)

$$A_2 = R_2X_1^*X_2$$
(QR)

$$= X_2^*X_1\underbrace{X_1^*X_2R_2}_{A_1}X_1^*X_2 = X_2^*AX_2$$
(QR)

Large scale eigenvalue problems, Lecture 7, April 11, 2018

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ 圖 □

Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.) More generally, by induction, we have

$$AX_{k} = Y_{k+1} = X_{k+1}R_{k+1}$$
(SVI)

$$A_{k} = X_{k}^{*}AX_{k} = X_{k}^{*}Y_{k+1} = X_{k}^{*}X_{k+1}R_{k+1}$$
(QR)

$$= X_{k+1}^{*}X_{k}\underbrace{X_{k}^{*}X_{k+1}R_{k+1}}_{A_{k}}X_{k}^{*}X_{k+1} = X_{k+1}^{*}AX_{k+1}$$
(QR)

$$\underbrace{A_{k}}_{A_{k}}$$
(QR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

32/36

Relation to QR: $Q_1 = X_1$, $Q_k = X_k^* X_{k+1}$.

Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.)

$$A^{k} = A^{k}X_{0} = A^{k-1}AX_{0} = A^{k-1}X_{1}R_{1}$$

= $A^{k-2}AX_{1}R_{1} = A^{k-2}X_{2}R_{2}R_{1}$
:
= $X_{k}\underbrace{R_{k}R_{k-1}\cdots R_{1}}_{U_{k}} = X_{k}U_{k}$ (QR)

Because U_k is upper triangular we can write

$$A^{k}[\mathbf{e}_{1},\ldots,\mathbf{e}_{p}] = X_{k}U_{k}[\mathbf{e}_{1},\ldots,\mathbf{e}_{p}]$$
$$= X_{k}U_{k}(:,1:p) = X_{k}(:,1:p) \begin{bmatrix} u_{11} & \cdots & u_{1p} \\ & \ddots & \vdots \\ & & u_{pp} \end{bmatrix}$$

-Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.) This holds for all *p*. We therefore can interpret the QR algorithm as a **nested subspace iteration**.

There is also a relation to simultaneous inverse vector iteration! Let us assume that A is invertible. Then we have,

$$AX_{k-1} = X_{k-1}A_{k-1} = X_kR_k$$

$$X_kR_k^{-*} = A^{-*}X_{k-1}, \qquad R_k^{-*} \text{ is lower triangular}$$

$$X_k\underbrace{R_k^{-*}R_{k-1}^{-*}\cdots R_1^{-*}}_{U_k^{-*}} = (A^{-*})^k X_0$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

34/36

Notice that
$$A^{-*} = (A^{-1})^* = (A^*)^{-1}$$

Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.) Thus,

$$X_{k}[\mathbf{e}_{\ell},\ldots,\mathbf{e}_{n}]\begin{bmatrix} \overline{u}_{\ell,\ell} & & \\ \vdots & \ddots & \\ \overline{u}_{n,\ell} & & \overline{u}_{n,n} \end{bmatrix} = (A^{-*})^{k} X_{0}[\mathbf{e}_{\ell},\ldots,\mathbf{e}_{n}]$$

35/36

By consequence, the last $n - \ell + 1$ columns of X_k execute a simultaneous *inverse* vector iteration. This holds for all ℓ . Therefore, the QR algorithm also performs a **nested inverse** subspace iteration.

References

- Z. Bai and G. W. Stewart, Algorithm 776. SRRIT A FORTRAN subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix, ACM Trans. Math. Softw., 23 (1997), pp. 494–513.
- [2] G. H. Golub and C. F. van Loan, *Matrix Computations*, The Johns Hopkins University Press, Baltimore, 1996.
- [3] I. C. F. Ipsen and C. D. Meyer, *The Angle Between Complementary Subspaces*. Amer. Math. Monthly 102 (1995), pp. 904–911.
- [4] B. N. Parlett, *The Symmetric Eigenvalue Problem*, Prentice Hall, Englewood Cliffs, NJ, 1980. (Republished 1998 by SIAM.).
- [5] B. N. Parlett and W. G. Poole, *A geometric theory for the QR, LU, and power iterations*, SIAM J. Numer. Anal., 8 (1973), pp. 389–412.