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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

Instead of iterating with a single vector one may proceed with a
bunch of vectors simultaneously. Done right, this leads to classic
stable subspace iterations.

I Subspace iteration

I Inverse iteration

I Computing eigenvalues

I Relation to the QR algorithm
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Solving large scale eigenvalue problems

Subspace iteration

Subspace iteration

Let A ∈ Rn×n.
Starting with arbitrary initial matrix X0 = [x

(0)
1 , . . . , x

(0)
p ] ∈ Rn×p

we form the matrix sequence {Xk}∞k=0 defined by

Xk := AXk−1, k = 1, 2, . . . (∗)

Clearly,
Xk := Ak X0.

Does this work!!??

We have to keep columns of Xk linearly independant. Common
approach: keep them orthogonal.
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Solving large scale eigenvalue problems

Subspace iteration

Algorithm: Simple subspace iteration

1: Choose Z0 ∈ Rn×p arbitrary, but with maximal rank p.
Determine X (0) by QR factorization X (0)R(0) := Z (0).

2: k := 0.
3: repeat
4: k := k + 1;
5: Z (k) := AX (k−1)

6: X (k)R(k) := Z (k) {QR factorization of Z (k)}
7: until convergence criterion is satisfied

Observation: In QR factorization column j affects only columns
j , . . . , p of X (k).
Therefore, columns 1, . . . , j , 1 ≤ j ≤ p, execute individual subspace
iteration. In particular, vectors X (k)e1 execute power method.
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Solving large scale eigenvalue problems

Subspace iteration

Important note

I Let A = USU∗ be the Schur decomposition of A. Then,

U∗Xk := SU∗Xk−1 and U∗Xk := SkU∗X0.

I U unitary: ‖Xk‖ =⇒ ‖U∗Xk‖ = 1 for all k .

I If the sequence {Xk}∞k=0 converges to X∗ then the sequence
{Yk = U∗Xk}∞k=0 converges to Y∗ = U∗X∗.

I So, for convergence analysis: can assume w.l.o.g. that A is
upper triangular.

I If we assumed that A is symmetric then for a convergence
analysis we could restrict ourselves to diagonal matrices.

I Note that some performance issues are excluded here.
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Subspace iteration

Convergence of basic subspace iteration

Here, we assume that A is symmetric, or, for simplicity, diagonal,

A = diag(λ1, λ2, . . . , λn),

and p largest eigenvalues are separated from rest of spectrum,

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|.

We are going to show that

ϑ(k) := ∠(R(Ep),R(X (k))) = ∠(R(Ep),R(AkX (0))) −−−→
k→∞

0

Here, R(Ep) = R([e1, . . . , ep]) are the eigenvectors corresponding
to the largest eigenvalues λ1, . . . , λp.
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Solving large scale eigenvalue problems

Subspace iteration

Angles between subspaces

Let Q1 ∈ Rn×p, Q2 ∈ Rn×q be orthogonal matrices, Q∗1Q1 = Ip,
Q∗2Q2 = Iq. Let Si = R(Qi ) ⊂ Rn, i = 1, 2, have dimension p, q.

How we can define a distance or an angle between S1 and S2?

q2

q1

q3

Two intersecting planes in R3
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Solving large scale eigenvalue problems

Subspace iteration

Angles between subspaces (cont.)
Define the angle between the subspaces S1 and S2 to be the angle
between two vectors x1 ∈ S1 and x2 ∈ S2.

How shall we choose these vectors?

Let’s proceed as follows:

1. Take any vector x1 ∈ S1 and determine the angle between x1
and its orthogonal projection (I − Q2Q

∗
2 )x1 on S2.

2. Now maximize the angle by varying x1 among all non-zero
vectors in S1.

Does this lead anywhere?

Doesn’t it depend on how we number the two subspaces?
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Solving large scale eigenvalue problems

Subspace iteration

Angles between subspaces (cont.)

sinϑ := max
r∈S1,‖r‖=1

‖(In − Q2Q
∗
2 )r‖ = max

a∈Rp‖a‖=1
‖(In − Q2Q

∗
2 )Q1a‖

= ‖(In − Q2Q
∗
2 )Q1‖.

Because In − Q2Q
∗
2 is an orthogonal projection, we get

‖(In − Q2Q
∗
2 )Q1a‖2 = a∗Q∗1 (In − Q2Q

∗
2 )(In − Q2Q

∗
2 )Q1a

= a∗Q∗1 (In − Q2Q
∗
2 )Q1a

= a∗(Q∗1Q1 − Q∗1Q2Q
∗
2Q1)a

= a∗(Ip − (Q∗1Q2)(Q∗2Q1))a

= a∗(Ip −W ∗W )a, W := Q∗2Q1 ∈ Rq×p
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Solving large scale eigenvalue problems

Subspace iteration

Angles between subspaces (cont.)
Since Ip −W ∗W is symmetric we have

sin2 ϑ = max
‖a‖=1

a∗(Ip −W ∗W )a

= largest eigenvalue of Ip −W ∗W

= 1− smallest eigenvalue of W ∗W .

Changing roles of Q1 and Q2 we get

sin2 ϕ = ‖(In − Q1Q
∗
1 )Q2‖ = 1− smallest eigenvalue of WW ∗.

W ∗W ∈ Rp×p and WW ∗ ∈ Rq×q, both with equal rank.
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Solving large scale eigenvalue problems

Subspace iteration

Angles between subspaces (cont.)
I If W has full rank and p < q then ϑ < ϕ = π/2.

I If p = q then W ∗W and WW ∗ have equal eigenvalues, and,
thus, ϑ = ϕ.

I If p = q then

sin2 ϑ = 1− λmin(W ∗W ) = 1− σ2min(W ) = 1− cos2 ϑ,

|cosϑ| = σmin(W ),

where σmin(W ) is smallest singular value of W .

For more on angles between subspaces see [2, 3].
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Solving large scale eigenvalue problems

Subspace iteration

Convergence analysis

Want to show that

ϑ(k) = ∠(R(Ep),R(AkX (0))) −−−→
k→∞

0

Straightforward to partition matrices A and X (k),

A = diag(A1,A2), X (k) =

[
X

(k)
1

X
(k)
2

]
, A1,X

(k)
1 ∈ Rp×p.

We know that A1 is nonsingular.

Let us also assume that X
(k)
1 = E ∗pX

(k) is invertible. This means,

that X (k) has components in direction of all eigenvecs of interest.
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Solving large scale eigenvalue problems

Subspace iteration

Convergence analysis (cont.)

AkX (0) =

[
Ak
1X

(0)
1

Ak
2X

(0)
2

]
=

[
Ip
S (k)

]
Ak
1X

(0)
1 , S (k) := Ak

2X
(0)
2 X

(0)
1

−1
A−k1 .

Then,

sinϑ(k) = ‖(I − EpE
∗
p )X (k)‖

=

∥∥∥∥(I − EpE
∗
p )

[
Ip
S (k)

]∥∥∥∥/∥∥∥∥[ Ip
S (k)

]∥∥∥∥ =
‖S (k)‖√

1 + ‖S (k)‖2
.

Likewise,

cosϑ(k) = ‖E ∗pX (k)‖ =
1√

1 + ‖S (k)‖2
,

such that

tanϑ(k) = ‖S (k)‖ ≤ ‖Ak
2‖‖S (0)‖‖A−k1 ‖ ≤

∣∣∣∣λp+1

λp

∣∣∣∣k tanϑ(0).
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Solving large scale eigenvalue problems

Subspace iteration

Convergence analysis (cont.)

Theorem

Let Up := [u1, . . . ,up] be the matrix formed by the eigenvectors
corresponding to the p eigenvalues λ1, . . . , λp of A largest in
modulus. Let X ∈ Rn×p be such that X ∗Up is nonsingular.
Then, if |λp| > |λp+1|, the iterates X (k) of the basic subspace
iteration with initial subpace X (0) = X converges to Up, and

tanϑ(k) ≤
∣∣∣∣λp+1

λp

∣∣∣∣k tanϑ(0), ϑ(k) = ∠(R(Up),R(X (k))).
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Solving large scale eigenvalue problems

Subspace iteration

Generalization

Let us elaborate on this result. Let’s assume that not only
Wp := W = X ∗Up is nonsingular but that each principal submatrix

Wj :=

w11 · · · w1j
...

...
wj1 · · · wjj

 , 1 ≤ j ≤ p,

of Wp is nonsingular. Apply Theorem to each set of columns

[x
(k)
1 , . . . , x

(k)
j ], provided that |λj | > |λj+1|. Then

tanϑ
(k)
j ≤

∣∣∣∣λj+1

λj

∣∣∣∣k tanϑ
(0)
j , (1)

where ϑ
(k)
j = ∠(R([u1, . . . ,uj ]),R([x

(k)
1 , . . . , x

(k)
j ])).
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Solving large scale eigenvalue problems

Subspace iteration

Generalization (cont.)
We can even say a little more. We can combine the statements
in (1) as follows.

Theorem

Let X ∈ Rn×p. Let |λq−1| > |λq| ≥ . . . ≥ |λp| > |λp+1|. Let Wq

and Wp be nonsingular. Then

sin ∠(R([x
(k)
q , . . . , x

(k)
p ]),R([uq, . . . ,up])) (2)

≤c ·max

{∣∣∣∣ λqλq−1

∣∣∣∣k , ∣∣∣∣λp+1

λp

∣∣∣∣k
}
.
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Solving large scale eigenvalue problems

Subspace iteration

Generalization (cont.)
Proof: We investigate the sine of the angle between

S1 = R([x
(k)
q , . . . , x

(k)
p ]) and S2 = R([uq, . . . ,up]).

The orthogonal projector on S2 is

UpU
∗
p − Uq−1U

∗
q−1.

So, how long can the projection of x ∈ S1, ‖x‖ = 1, onto S⊥2 be?

‖(I − (UpU
∗
p − Uq−1U

∗
q−1))x‖ = ‖Uq−1U

∗
q−1x + (I − UpU

∗
p)x‖

= ‖Uq−1U
∗
q−1x‖2︸ ︷︷ ︸

sin2 ϑ
(k)
q−1

+ ‖(I − UpU
∗
p)x‖2︸ ︷︷ ︸

sin2 ϑ
(k)
p

≤ 2 max{sin2 ϑ
(k)
q−1, sin2 ϑ

(k)
p } ≤ 2 max{tan2 ϑ

(k)
q−1, tan2 ϑ

(k)
p }.
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Solving large scale eigenvalue problems

Subspace iteration

Generalization (cont.)
Since

tan2 ϑ(k)p ≤
∣∣∣∣λp+1

λp

∣∣∣∣k tan2 ϑ(0)p , tan2 ϑ
(k)
q−1 ≤

∣∣∣∣ λqλq−1

∣∣∣∣k tan2 ϑ
(0)
q−1,

the claimed result holds true.

Corollary

Let X ∈ Rn×p. Let |λj−1| > |λj | > |λj+1| and let Wj−1 and Wj be
nonsingular. Then

sin ∠(x
(k)
j ,uj) ≤ c ·max

{∣∣∣∣ λjλj−1

∣∣∣∣k , ∣∣∣∣λj+1

λj

∣∣∣∣k
}
.
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Solving large scale eigenvalue problems

Subspace iteration

Numerical example

Subspace iteration with 5 vectors and the diagonal matrix

A = diag(1, 3, 4, 6, 10, 15, 20, . . . , 185)−1 ∈ R40×40.

Critical quotients appearing in Corollary

j 1 2 3 4 5

|λj+1|/|λj | 1/3 3/4 2/3 3/5 2/3

The first column x
(k)
1 of X (k) should converge to the first

eigenvector at a rate 1/3, x
(k)
2 and x

(k)
3 should converge at a rate

3/4 and the last two columns should converge at the rate 2/3.
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Subspace iteration

Numerical example (cont.)
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Solving large scale eigenvalue problems

Subspace iteration

Accelerating subspace iteration

Subspace iteration potentially converges very slowly.

It can be slow even if one starts with a subspace that contains all
desired solutions!

If, e.g., x
(0)
1 and x

(0)
2 are both elements in R([u1,u2]), the vectors

x
(k)
i , i = 1, 2, still converge linearly towards u1, u2 although they

could be readily obtained from the 2× 2 eigenvalue problem[
x
(0)
1

∗

x
(0)
2

∗

]
A
[
x
(0)
1 , x

(0)
2

]
y = λ

[
x
(0)
1

∗

x
(0)
2

∗

] [
x
(0)
1 , x

(0)
2

]
y
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Solving large scale eigenvalue problems

Subspace iteration

Accelerating subspace iteration (cont.)

Theorem

Let X ∈ Rn×p be as earlier. Let ui , 1 ≤ i ≤ p, be the eigenvectors
corresponding to the eigenvalues λ1, . . . , λp of A. Then we have

min
x∈R(X (k))

sin ∠(ui , x) ≤ c

(
λi
λp+1

)k
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Subspace iteration

Accelerating subspace iteration (cont.)
Proof: Had earlier (with diagonal A)

AkX (0) =

[
Ak
1X

(0)
1

Ak
2X

(0)
2

]
=

[
Ip
S (k)

]
Ak
1X

(0)
1 ,

S (k) = Ak
2 X

(0)
2 X

(0)
1

−1︸ ︷︷ ︸
S (0)

A−k1 , s
(k)
ji =

λi
λp+j

s
(0)
ji

We have R(X (k)) = R(AkX (0)) = R
([

Ip
S (k)

])
.

ei plays the role of ui .

We check the angle between ei and

[
Ip
S (k)

]
ei .
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Subspace iteration

Accelerating subspace iteration (cont.)
But we have

min
x∈R(X (k))

sin ∠(ei , x) ≤ sin ∠

(
ei ,

[
Ip
S(k)

]
ei

)
=

∥∥∥∥(I − eiei
∗)

[
Ip
S(k)

]
ei

∥∥∥∥ / ∥∥∥∥[ Ip
S(k)

]
ei

∥∥∥∥
≤
∥∥∥S(k)ei

∥∥∥
=

√√√√n−p∑
j=1

s2ji
λ2ki
λ2kp+j

≤
(

λi
λp+1

)k
√√√√n−p∑

j=1

s2ji .

Consequence: Complement subspace iteration by a so-called
Rayleigh-Ritz step.
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Solving large scale eigenvalue problems

Subspace iteration

Subspace iteration combined with Rayleigh-Ritz step

1: Let X ∈ Rn×p with X ∗X = Ip:
2: Set X (0) := X .
3: for k = 1, 2, . . . do
4: Z (k) := AX (k−1)

5: Q(k)R(k) := Z (k) {QR factorization of Z (k) (or modified
Gram–Schmidt)}

6: Ĥ(k) := Q(k)∗AQ(k),
7: Ĥ(k) =: F (k)Θ(k)F (k)∗ {Spectral decomposition of Ĥ(k)}
8: X (k) = Q(k)F (k) {Ritz vectors in R(X (k))}
9: end for
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Solving large scale eigenvalue problems

Subspace iteration

Convergence

One can show (lecture notes) that the Ritz vectors converge to the
eigenvectors:

∠(x
(k)
i ,ui ) ≤ c

(
λi
λp+1

)k

with a constant c independent of k .
In the case of Hermitian matrices we can show for the eigenvalues
that

|λi − λ
(k)
i | ≤ c1

(
λi
λp+1

)2k

.
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Solving large scale eigenvalue problems

Subspace iteration

Remarks on subspace iteration

1. Subspace iteration is ‘almost always’ applied with a
shift-and-invert approach.
This gives good convergence to a few eigenvectors with
eigenvalues close to the shift.

2. The potentially bad convergence rate λp/λp+1 can be
improved by iterating with more vectors than necessary, q > p.
Then the crucial ratio is λp/λq+1.

3. The (Schur–)Rayleigh–Ritz step may be expensive. It needs
not to be executed in every iteration step. Then, convergence
is checked only in this step.

4. Convergence can be checked vector-wise. Converged vectors
are frozen.
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Solving large scale eigenvalue problems

Subspace iteration

A numerical example

Problem of determining accustic vibration in the interior of a car.
We want to compute the p smallest eigenvalues of

Ax = λBx, A,B ∈ Rn×n. (3)

We know that λ1 = 0 < λ2 ≤ λ3 · · ·

In preparation of the shift-and-invert iteration we rewrite (3) as a
special eigenvalue problem

L−1(A− σB)L−Ty = λ′y, y = LTx, B = LLT . (4)

where B = LLT is the Cholesky factorization of B and λ′ = λ− σ.
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Subspace iteration

A numerical example (cont.)
In the shift-and-invert iteration we will also need the inverse of the
matrix in (4). Here, we chose to use a Cholesky factorization of
A− σB. Therefore, σ < 0 is required.

Subspace iteration is used to compute p = 5 eigenpairs.
X (0) is chosen to be a random matrix with q = 7 > p columns.

The convergence criterion is

‖(I − X (k)X (k)∗)X (k−1)‖ ≤ tol = 10−6.

The shift was chosen σ = −0.01.
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Subspace iteration

A numerical example (cont.)
>> runsivit

||Res(0)|| = 0.999932

||Res(5)|| = 0.273559

||Res(10)|| = 0.0320599

||Res(15)|| = 0.000508543

||Res(20)|| = 1.01009e-05

||Res(25)|| = 5.93181e-07

L =

0.000000000000000

0.012690076288466

0.044384575968237

0.056635010555654

0.116631165221511
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Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm

Let X0 = In, the n × n identity matrix. Then we have

AI = A0 = AX0 = Y1 = X1R1 (SVI )

A1 = X ∗1AX1 = X ∗1X1R1X1 = R1X1 (QR)

AX1 = Y2 = X2R2 (SVI )

A1 = X ∗1Y2 = X ∗1X2R2 (QR)

A2 = R2X
∗
1X2 (QR)

= X ∗2 X1 X
∗
1X2R2︸ ︷︷ ︸
A1

X ∗1

︸ ︷︷ ︸
A

X2 = X ∗2AX2 (QR)
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Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.)
More generally, by induction, we have

AXk = Yk+1 = Xk+1Rk+1 (SVI )

Ak = X ∗kAXk = X ∗kYk+1 = X ∗kXk+1Rk+1

Ak+1 = Rk+1X
∗
kXk+1 (QR)

= X ∗k+1 Xk X
∗
kXk+1Rk+1︸ ︷︷ ︸

Ak

X ∗k

︸ ︷︷ ︸
A

Xk+1 = X ∗k+1AXk+1 (QR)

Relation to QR: Q1 = X1, Qk = X ∗kXk+1.
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Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.)

Ak = AkX0 = Ak−1AX0 = Ak−1X1R1

= Ak−2AX1R1 = Ak−2X2R2R1

...

= Xk RkRk−1 · · ·R1︸ ︷︷ ︸
Uk

= XkUk (QR)

Because Uk is upper triangular we can write

Ak [e1, . . . , ep] = XkUk [e1, . . . , ep]

= XkUk(:, 1 : p) = Xk(:, 1 : p)

u11 · · · u1p
. . .

...
upp
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Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.)
This holds for all p. We therefore can interpret the QR algorithm
as a nested subspace iteration.
There is also a relation to simultaneous inverse vector iteration!
Let us assume that A is invertible. Then we have,

AXk−1 = Xk−1Ak−1 = XkRk

XkR
−∗
k = A−∗Xk−1, R−∗k is lower triangular

Xk R
−∗
k R−∗k−1 · · ·R

−∗
1︸ ︷︷ ︸

U−∗k

=
(
A−∗

)k
X0

Notice that A−∗ = (A−1)
∗
= (A∗)−1.
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Relation of subspace iteration and QR algorithm

Relation of subspace iteration and QR algorithm (cont.)
Thus,

Xk [e`, . . . , en]

ū`,`...
. . .

ūn,` ūn,n

 =
(
A−∗

)k
X0[e`, . . . , en]

By consequence, the last n − `+ 1 columns of Xk execute a
simultaneous inverse vector iteration. This holds for all `.
Therefore, the QR algorithm also performs a nested inverse
subspace iteration.
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