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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

We are back at single vector iterations. But now we want to
extract more information from the data we generate.

I Krylov (sub)spaces

I Orthogonal bases for Krylov spaces
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Solving large scale eigenvalue problems

Introduction

Introduction

I In power method: we contruct sequence of the form (up to
normalization

x,A x,A2 x, . . .

I Information at k-th iteration step: x(k) = Akx/‖Akx‖.
I All other information discarded!

I What about keeping all the information (vectors)?
More memory space required!

I Can we extract more information from all the vectors?
Less computational work!
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Solving large scale eigenvalue problems

Introduction

Introductory example

T =

(
51

π

)2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 ∈ R50×50.

I Initial vector x = [1, . . . , 1]∗.

I Compute first three iterates of IVI:
x(1) = x, x(2) = T−1x, and x(3) = T−2x.

I Compute Rayleigh quotients ρ(i) = x(i)
T
Tx(i)/‖x(i)‖2.

I Compute Ritz values ϑ
(k)
j obtained by Rayleigh-Ritz procedure

with span(x(0), . . . , x(k)), k = 1, 2, 3,
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Solving large scale eigenvalue problems

Introduction

Introductory example (cont.)

k ρ(k) ϑ
(k)
1 ϑ

(k)
2 ϑ

(k)
3

1 10.541456 10.541456
2 1.012822 1.009851 62.238885
3 0.999822 0.999693 9.910156 147.211990

The three smallest eigenvalues of T are 0.999684, 3.994943, and
8.974416.

The approximation errors are thus ρ(3) − λ1 ≈ 0.000′14 and

ϑ
(3)
1 − λ1 ≈ 0.000′009, which is 15 times smaller.

Results show that cost of three matrix vector multiplications can
be much better exploited than with plain (inverse) vector iteration
– at the expense of more memory space.
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Solving large scale eigenvalue problems

Krylov spaces: definition and basic properties

Krylov spaces: definition and basic properties

Definition 1

Krylov matrix generated by vector x ∈ Rn and A:

Km(x) = Km(x,A) := [x,Ax, . . . ,Am−1x] ∈ Rn×m (1)

Krylov (sub)space:

Km(x) = Km(x,A) := span
{

x,Ax,A2x, . . . ,Am−1x
}
⊂ Rn. (2)

We can also write Km(A, x) = {p(A)x | p ∈ Pm−1}
where Pd denotes set of polynomials of degree at most d .
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Solving large scale eigenvalue problems

Krylov spaces: definition and basic properties

Krylov spaces: definition and basic properties (cont.)
The Arnoldi and Lanczos algorithms are methods to compute an
orthonormal basis of the Krylov space. Let[

x,A x, . . . ,Ak−1 x
]

= Q(k)R(k)

be QR factorization of Krylov matrix Km(x,A). The Ritz values
and Ritz vectors of A in Km(x,A) are obtained by means of the
k × k eigenvalue problem

Q(k)∗AQ(k)y = ϑ(k)y. (3)

If (ϑ
(k)
j , yj) is an eigenpair of (3) then (ϑ

(k)
j ,Q(k)yj) is a Ritz pair

of A in Km(x).
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Solving large scale eigenvalue problems

Krylov spaces: definition and basic properties

Krylov spaces: definition and basic properties (cont.)
Simple properties of Krylov spaces [2, p.238]

1. Scaling. Km(x,A) = Km(αx, βA), α, β 6= 0.

2. Translation. Km(x,A− σI) = Km(x,A).

3. Change of basis. If U is unitary then
UKm(U∗x,U∗AU) = Km(x,A).
In fact,

Km(x,A) = [x,Ax, . . . ,Am−1x]

= U[U∗x, (U∗AU)U∗x, . . . , (U∗AU)m−1U∗x],

= UKm(U∗x,U∗AU).

Notice that the scaling and translation invariance hold only for the
Krylov subspace, not for the Krylov matrices.
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Solving large scale eigenvalue problems

Krylov spaces: definition and basic properties

Dimension of Kk(x,A)

What is the dimension of Kk(x)?

Clearly, dim(Kk(x)) ≤ k ≤ n.

There must be a m for which K1 $ K2 $ · · · $ Km = Km+1 = · · ·
We have

Amx = α0 x + α1Ax + α2A
2x + · · ·+ αp−1A

m−1x

Thus, Km+1(x) has linearly depending columns.

If we reach m there cannot be a further increase of dimension later.
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Solving large scale eigenvalue problems

Krylov spaces: definition and basic properties

Dimension of Kk(x,A) (cont.)

Let A be diagonalizable and x =
m∑
i=1

qi , where Aqi = λiqi ,qi 6= 0,

with distinct λi . Then,

[x,Ax, · · · ,Akx]︸ ︷︷ ︸
n×(k+1)

= [q1,q2, · · · ,qm]︸ ︷︷ ︸
n×m


1 λ1 · · · λk1
1 λ2 · · · λk2
...

...
...

1 λm · · · λkm


︸ ︷︷ ︸

m×(k+1)

For k < m, the m × (k+1) matrix on the right has linearly
independent columns. (Relation to Vandermonde matrices!)

dim Kk(x,A) = min{k,m}

Large scale eigenvalue problems, Lecture 8, April 18, 2018 10/37



Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km

Now we assume A to be Hermitian. Let s ∈ Kj(x). Then

s =

j−1∑
i=0

ciA
ix = π(A)x, π(ξ) =

j−1∑
i=0

ciξ
i .

Let Pj be the space of polynomials of degree ≤ j . Then

Kj(x) = {π(A)x | π ∈ Pj−1} .

Let m be the smallest index for which Km(x) = Km+1(x). Then,

Pj−1 3
∑

ciξ
i →

∑
ciA

ix ∈ Kj(x)

is bijective for j ≤ m, while it is only surjective for j > m.
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
Let Q ∈ Rn×j be matrix with orthonormal basis of Kj(x)

Let Ã = Q∗AQ. The spectral decomposition

ÃX̃ = X̃Θ, X̃ ∗X̃ = I , Θ = diag(ϑi , . . . , ϑj),

of Ã provides the Ritz values of A in Kj(x). The columns yi of
Y = QX̃ are the Ritz vectors.

By construction the Ritz vectors are mutually orthogonal.

Furthermore,
Ayi − ϑiyi ⊥ Kj(x) (4)
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
It is easy to represent a vector in Kj(x) that is orthogonal to yi .

Lemma 2

Let (ϑi , yi ), 1 ≤ i ≤ j be Ritz values and Ritz vectors of A in
Kj(x), j ≤ m. Let ω ∈ Pj−1. Then

ω(A)x ⊥ yk ⇐⇒ ω(ϑk) = 0. (∗)
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
Proof. “⇐=”
Let ω ∈ Pj with ω(x) = (x − ϑk)π(x), π ∈ Pj−1. Then

y∗kω(A)x = y∗k(A− ϑk I)π(A)x, here we use that A = A∗

= (Ayk − ϑkyk)∗π(A)x
(4)
= 0.

(5)

“=⇒”
Let Sk ⊂ Kj(x) be defined by

Sk := (A− ϑk I )Kj−1(x) = {τ(A)x | τ ∈ Pj−1, τ(ϑk) = 0} ,

(5) =⇒ yk is orthogonal to Sk . Sk has dimension j−1.
As the dimension of a subspace of Kj(x) that is orthogonal to yk is
j−1, it must coincide with Sk .
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
We define the polynomials

µ(ξ) :=

j∏
i=1

(ξ−ϑi ) ∈ Pj , πk(ξ) :=
µ(ξ)

(ξ − ϑk)
=

j∏
i=1
i 6=k

(ξ−ϑi ) ∈ Pj−1.

(Normalized) Ritz vector yk can be represented in the form

yk =
πk(A)x

‖πk(A)x‖
, (6)

as πk(ϑi ) = 0 for all i 6= k. According to the Lemma πk(A)x is
perpendicular to all yi with i 6= k .
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
By the first part of Lemma 2 µ(A)x ∈ Kj+1(x) is orthogonal to
Kj(x). As each monic ω ∈ Pj can be written in the form

ω(ξ) = µ(ξ) + ψ(ξ), ψ ∈ Pj−1,

we have
‖ω(A)x‖2 = ‖µ(A)x‖2 + ‖ψ(A)x‖2,

as ψ(A)x ∈ Kj(x).

Let u1, · · · ,um be the eigenvectors of A corresponding to
λ1 < · · · < λm that span Km(x).

Let ‖x‖ = 1. Let ϕ := ∠(x,u1). Then

‖u1u∗1x‖ = cosϕ, ‖(I− u1u∗1)x‖ = sinϕ.
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
Let h := (I − u1u∗1)x/‖(I − u1u∗1)x‖.

Lemma 3 (Parlett [2])

For each π ∈ Pj−1 the Rayleigh quotient

ρ(π(A)x;A−λ1I ) = ρ(π(A)x;A)−λ1 =
(π(A)x)∗(A− λ1I )(π(A)x)

‖π(A)x‖2

satisfies the inequality

ρ(π(A)x;A− λ1I ) ≤ (λm − λ1)

[
tanϕ

‖π(A)h‖
π(λ1)

]2
.
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
Proof.
With h from above we have the orthogonal decompositions

x = u1u∗1x + (I − u1u∗1)x = cosϕ u1 + sinϕ h

and
s := π(A)x = cosϕ π(A)u1 + sinϕ π(A)h.

Thus,

ρ(s;A− λ1I ) =
cos2 ϕ u∗1(A− λ1I )π2(A)u1 + sin2 ϕ h∗(A− λ1I )π2(A)h

‖s‖2

(Au1 = λ1u1)
=

sin2 ϕ h∗(A− λ1I )π2(A)h

‖s‖2
.
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Solving large scale eigenvalue problems

Polynomial basis for Km

Polynomial basis for Km (cont.)
Since λ1 < λ2 < · · · < λm, we have

w∗(A− λ1I )w ≤ (λm − λ1)‖w‖2 for all w ∈ R(u1)⊥.

Setting w = π(A)h we obtain

ρ(s;A− λ1I ) ≤ sin2 ϕ (λm − λ1)
‖π(A)h‖2

‖π(A)x‖2
.

With

‖s‖2 = ‖π(A)x‖2 =
m∑
`=1

π2(λ`)(x∗u`)
2 ≥ π2(λ1) cos2 ϕ

we obtain the claim.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad

I For simplicity we consider convergence of Ritz values ϑ
(j)
1 to

λ1.

I The error bounds to be presented have been published by
Saad [3]. We follow the presentation in Parlett [3].

I The error bounds for ϑ
(j)
1 − λ1 are obtained by carefully

selecting the polynomial π in Lemma 3.

I Of course we would like π(A) to be as small as possible and
π(λ1) to be as large as possible.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
First, by the definition of h, we have

‖π(A)h‖2 =
‖π(A)(I − u1u∗1)x‖2

‖(I − u1u∗1)x‖2
=
‖π(A)

∑m
`=2(u∗`x)u`‖2

‖
∑m

`=2(u∗`x)u`‖2

=

∑m
`=2(u∗`x)2π2(λ`)∑m

`=2 (u∗`x)2
≤ max

2≤`≤m
π2(λ`) ≤ max

λ2≤λ≤λm
π2(λ).

The last inequality is important! In this step the search of a
maximum in a few selected points (λ2, . . . , λm) is replaced by a
search of a maximum in a whole interval containing these points.

Notice that λ1 is outside of this interval.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
Among all polynomials of given degree that take a fixed value
π(λ1) the Chebyshev polynomial has the smallest maximum.

min
π∈Pj−1

max
λ2≤λ≤λm

|π(λ)|
|π(λ1)|

=

max
λ2≤λ≤λm

Tj−1(λ; [λ2, λm])

Tj−1(λ1; [λ2, λm])

=
1

Tj−1(λ1; [λ2, λm])

=
1

Tj−1(1 + 2γ)
, γ =

λ2 − λ1
λm − λ2

.

Tj−1(1 + 2γ) is the value of the Chebyshev polynomial
corresponding to the ‘normal’ interval [−1, 1].
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
The point 1 + 2γ is obtained if the affine transformation

[λ2, λm] 3 λ −→ 2λ− λ2 − λm
λ1 − λ2

∈ [−1, 1]

is applied to λ1.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
Thus we have proved the first part of the following

Theorem 4 (Saad [3])

Let ϑ
(j)
1 , . . . , ϑ

(j)
j be the Ritz values of A in Kj(x) and let

(λ`,u`), ` = 1, . . . ,m, be the eigenpairs of A (in Km(x)). Then

0 ≤ ϑ(j)1 − λ1 ≤ (λm − λ1)

[
tanϕ

1

Tj−1(1 + 2γ)

]2
, γ =

λ2 − λ1
λm − λ2

,

and

tan∠(u1,projection of u1 on Kj) ≤ tanϕ · 1

Tj−1(1 + 2γ)
.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
Proof. For proving the second part of the Theorem we write

x = u1 cosϕ+ h sinϕ.

Then
s = π(A)x = π(λ1)u1 cosϕ+ π(A)h sinϕ

is an orthogonal decomposition of s. By consequence,

tan∠(s,u1) =
sinϕ ‖π(A)h‖
cosϕ |π(λ1)|

.

The rest is similar as above.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)

Theorem 4 can be rewritten to give error bounds for λm − ϑ(j)j but
also for the interior eigenvalues, see lecture notes.
For the largest eigenvalue we have

0 ≤ λm − ϑ(j)j ≤ (λm − λ1) tan2 ϕm
1

Tj−1(1 + 2γm)2
, (7)

with

γm =
λm − λm−1
λm−1 − λ1

, and cosϕm = x∗um.

From more general results one sees that the eigenvalues at the
beginning and at the end of the spectrum are approximated the
quickest.
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Solving large scale eigenvalue problems

Error bounds by Saad

Error bounds by Saad (cont.)
If the Lanczos algorithmus is applied with (A− σI )−1 then we
form Krylov spaces Kj(x, (A− σI )−1). Here the eigenvalues are
1
λ̂1
≥ 1

λ̂2
≥ · · · ≥ 1

λ̂m
, λ̂i = λi − σ.

Eq. (7) then becomes

0 ≤ 1

λ̂1
− 1

ϑ̂
(j)
m

≤ (
1

λ̂1
− 1

λ̂m
)

tan2 ϕ1

Tj−1(1 + 2γ̂1)2
, γ̂1 =

1
λ̂1
− 1

λ̂2
1
λ̂2
− 1

λ̂m

.

One can show that

1 + 2γ̂1 = 2(1 + γ̂1)− 1 ≥ 2
λ̂2

λ̂1
− 1 > 1.
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Error bounds by Saad

Error bounds by Saad (cont.)
Since |Tj−1(ξ)| grows rapidly and monotonically outside [−1, 1] we
have

Tj−1(1 + 2γ̂1) ≥ Tj−1(2
λ̂2

λ̂1
− 1),

and thus

1

λ̂1
− 1

ϑ̂
(j)
1

≤ c1

 1

Tj−1(2 λ̂2
λ̂1
− 1)

2

(8)

With the simple inverse vector iteration we had

1

λ̂1
− 1

λ̂
(j)
1

≤ c2

(
λ̂1

λ̂2

)2(j−1)

(9)
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Error bounds by Saad

Error bounds by Saad (cont.)

λ̂2

λ̂1
j = 5 j = 10 j = 15 j = 20 j = 25

2.0 3.00e − 06
3.91e − 03

6.63e − 14
3.81e − 06

1.46e − 21
3.72e − 09

3.24e − 29
3.63e − 12

7.17e − 37
3.55e − 15

1.1 2.71e − 02
4.66e − 01

5.45e − 05
1.79e − 01

1.08e − 07
6.93e − 02

2.14e − 10
2.67e − 02

4.24e − 13
1.03e − 02

1.01 5.60e − 01
9.23e − 01

1.04e − 01
8.36e − 01

1.48e − 02
7.56e − 01

2.02e − 03
6.85e − 01

2.75e − 04
6.20e − 01

Table 1: Ratio
(1/Tj−1(2λ̂2/λ̂1 − 1))2

(λ̂1/λ̂2)2(j−1)
for varying subspace dimensions j

and ratios λ̂2/λ̂1.
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Orthogonal basis

An orthogonal basis for Km

Problem: The matrix

Km(A, x) :=

 x Ax · · · Am−1x


becomes more and more ill-conditioned as m increases.
(Remember vector iteration for computing largest eigenvalue.)

Solution: We have to find a well-conditioned basis of Km.
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Solving large scale eigenvalue problems

Orthogonal basis

Arnoldi & Lanczos algorithms

Task: For j = 1, 2, . . . ,m, compute orthonormal bases {v1, . . . , vj}
for the Krylov spaces

Kj = span
{

x,Ax,A2x, . . . ,Aj−1x
}
.

The algorithms that do this are

I Lanczos algorithm for A symmetric/Hermitian.

I Arnoldi algorithm for A nonsymmetric.

Difficulty: Because of ill-conditioning, do not want to explicitly
form x,Ax, . . . ,Ajx.
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Orthogonal basis

Arnoldi & Lanczos algorithms (cont.)
Instead of using Ajx we proceed with Avj .
(Notice that Avi ∈ Ki+1 ⊂ Kj for all i < j .)

Orthogonalize Avj against v1, . . . , vj by the Gram–Schmidt:

wj = Avj −
j∑

i=1

vihij .

wj points in the desired new direction (unless it is 0). Therefore,

vj+1 = wj/‖wj‖.
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Orthogonal basis

Arnoldi algo to compute orthonormal basis of Krylov space

1: Let A ∈ Rn×n. This algorithm computes orthonormal basis for Kj(x).
2: v1 = x/‖x‖2;
3: for j = 1, . . . do
4: r := Avj ;
5: for i = 1, . . . , j do {Gram-Schmidt orthogonalization}
6: hij := v∗

i r, r := r − vihij ;
7: end for
8: hj+1,j := ‖r‖;
9: if hj+1,j = 0 then {Found an invariant subspace}

10: return (v1, . . . , vj ,H ∈ Rj×j)
11: end if
12: vj+1 = r/hj+1,j ;
13: end for
14: return (v1, . . . , vj+1,H ∈ Rj+1×j)
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Orthogonal basis

Arnoldi relation

The Arnoldi algorithm returns if hm+1,m = 0, i.e., if it has found an
invariant subspace. The vectors {v1, . . . , vm} then form an
invariant subspace of A,

AVm = VmHm, Vm = [v1, . . . , vm].

The eigenvalues of Hm are eigenvalues of A as well and the Ritz
vectors are eigenvectors of A.

This algorithm costs j matrix-vector multiplications, n2/2 +O(n)
inner products, and the same number of axpy’s.

In general, we cannot afford to store the vectors v1, . . . , vm
because of limited memory space. So, we stop prematurely
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Orthogonal basis

Arnoldi relation (cont.)
Define Vm := [v1, . . . , vm]. Then we get the Arnoldi relation

AVm = VmHm + wmeTm = Vm+1H̄m.

Picture from Saad: Iterative Methods for Sparse Linear Systems:
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Orthogonal basis

Arnoldi relation (cont.)
Here,

H̄m =


h11 h12 · · · h1,m
h21 h22 · · · h2,m

h3,2 · · · h3,m
. . .

...
hm+1,m


The square matrix Hm ∈ Rm×m is obtained from H̄m ∈ R(m+1)×m

by deleting the last row.
Notice that

Hm = V T
m AVm.

If A is symmetric =⇒ Hm ≡ Tm is symmetric and thus tridiagonal!

The Lanczos relation is AVm = VmTm + wmeTm = Vm+1T̄m.
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