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Solving large scale eigenvalue problems

Survey

Survey of today’s lecture

We continue with the Arnoldi algorithm and its ‘symmetric cousin’,
the Lanczos algorithm.

I The Lanczos algorithm and its deficiencies

I Loss of orthogonality

I Limiting the memory consumption of Arnoldi:
Restarting Lanczos/Arnoldi algorithms
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Solving large scale eigenvalue problems

Arnoldi algorithm

Reminder: the Arnoldi algorithm

I The Arnoldi algorithm constructs orthonormal bases for the
Krylov spaces

Kj(x) = Kj(x,A) := R([x,A x, . . . ,Aj−1 x]) ∈ Rn×j , j = 1, 2, . . .

I These bases are nested.

I Let {v1, . . . , vj} be an orthonormal bases for Kj(x,A).
We obtain vj+1 by orthogonalizing A vj against {v1, . . . , vj}:

rj = A vj − VjV
∗
j A vj = A vj −

j∑
i=1

vi (v∗i A vj),

vj+1 = rj/‖rj‖.

I This is the Gram–Schmidt orthogonalization procedure.
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Solving large scale eigenvalue problems

Arnoldi algorithm

Arnoldi algorithm

1: Let A ∈ Rn×n. This algorithm computes orthonormal basis for Kj(x).
2: v1 = x/‖x‖2;
3: for j = 1, . . . do
4: rj := Avj ;
5: for i = 1, . . . , j do {Gram-Schmidt orthogonalization}
6: hij := v∗

i rj , rj := rj − vihij ;
7: end for
8: hj+1,j := ‖rj‖;
9: if hj+1,j = 0 then {Found an invariant subspace}

10: return (v1, . . . , vj ,H ∈ Rj×j)
11: end if
12: vj+1 = rj/hj+1,j ;
13: end for
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Solving large scale eigenvalue problems

Lanczos algorithm

Lanczos algorithm = Arnoldi + symmetry

Let A be symmetric, A = A∗. In the Arnoldi algorithm we form

rj = A vj −
j∑

i=1

vi (v∗i A vj),

v∗i A vj = (A vi )
∗ vj

A vi ∈ Ki+1(x) =⇒ A vi ⊥ vj for i + 1 < j ,

=⇒ v∗i A vj = 0 for i + 1 < j .

Thus,
rj = A vj − vj(v∗j A vj),−vj−1(v∗j−1A vj) =: A vj − vjαj − vj−1βj−1.
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Solving large scale eigenvalue problems

Lanczos algorithm

Lanczos algorithm = Arnoldi + symmetry (cont.)

‖rj‖ = v∗j+1rj = v∗j+1(Avj − αjvj − βj−1vj−1) = v∗j+1Avj = β̄j .

From this it follows that βj ∈ R.
Therefore,

βjvj+1 = rj , βj = ‖rj‖.

Altogether
Avj = βj−1vj−1 + αjvj + βjvj+1.
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Solving large scale eigenvalue problems

Lanczos algorithm

Lanczos algorithm = Arnoldi + symmetry (cont.)
Gathering these equations for j = 1, . . . , k we get

AVk = Vk


α1 β1
β1 α2 β2

β2 α3
. . .

. . .
. . . βk−1

βk−1 αk


︸ ︷︷ ︸

Tk

+βk [0, . . . , 0, vk+1].

Tk ∈ Rk×k is real symmetric.

The equation above is called Lanczos relation.
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Solving large scale eigenvalue problems

Lanczos algorithm

Lanczos algorithm

1: Let A ∈ Rn×n be symmetric. This algorithm computes an
orthonormal basis Vm = [v1, . . . , vm] for Km(x) where m is the
smallest index such that Km(x) = Km+1(x), and the matrix Tm.

2: v := x/‖x‖; V1 = [v];
3: r := Av;
4: α1 := v∗r; r := r − α1v;
5: β1 := ‖r‖;
6: for j = 2, 3, . . . do
7: q = v; v := r/βj−1; Vj := [Vj−1, v];
8: r := Av − βj−1q;
9: αj := v∗r; r := r − αjv;

10: βj := ‖r‖;
11: if βj = 0 then
12: return (V ∈ Rn×j ; α1, . . . , αj ; β1, . . . , βj−1)
13: end if
14: end for
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Solving large scale eigenvalue problems

Lanczos algorithm

Discussion of the Lanczos algorithm

I Lanczos algorithm needs just three vectors to compute Tm.

I The cost of an iteration step j does not depend on the index j .

I The storage requirement depends on j .

I Remark on very large eigenvalue problems.

I From AVm = VmTm and Tms
(m)
i = ϑ

(m)
i s

(m)
i we have

Ay
(m)
i = ϑ

(m)
i y

(m)
i , y

(m)
i = Vms

(m)
i .

I In general m is very large. We do not want go so far.
When should we stop?
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Solving large scale eigenvalue problems

Lanczos algorithm

The Lanczos process as an iterative method

I We have seen earlier that eigenvalues at the end of the
spectrum are approximated very quickly in Krylov spaces.

I Thus, only a very few iteration steps may be required to get
those eigenvalues (and corresponding eigenvectors) within the
desired accuracy.

I Can we check this? Can we check if |ϑ(j)i − λi | is small?

Lemma (Eigenvalue inclusion of Krylov–Bogoliubov)

Let A ∈ Rn×n be symmetric. Let ϑ ∈ R and x ∈ Rn with x 6= 0 be
arbitrary. Set τ := ‖(A− ϑI )x‖/‖x‖. Then there is an eigenvalue
of A in the interval [ϑ− τ, ϑ+ τ ].
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Solving large scale eigenvalue problems

Lanczos algorithm

The Lanczos process as an iterative method (cont.)

Apply the Lemma with x = y
(j)
i = Vjs

(j)
i and ϑ = ϑ

(j)
i , a Ritz pair

of the j-th step of the Lanczos algorithm, i.e., Tjs
(j)
i = ϑ

(j)
i s

(j)
i .

‖Ay
(j)
i − ϑ

(j)
i y

(j)
i ‖ = ‖AVjs

(j)
i − ϑ

(j)
i Vjs

(j)
i ‖

= ‖(AVj − VjTj)s
(j)
i ‖ (Lanczos relation)

= ‖βjvj+1e∗j s
(j)
i ‖ = |βj ||e∗j s

(j)
i | = |βj ||s

(j)
ji |.

s
(j)
ji is the j-th, i.e., the last element of the eigenvector sj of Tj .

Exercise: Sketch an algorithm that computes the eigenvalues of a real

symmetric tridiagonl matrix plus the last component of all its

eigenvectors. This is the Golub–Welsch algorithm [3].
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Solving large scale eigenvalue problems

Lanczos algorithm

The Lanczos process as an iterative method (cont.)
Lemma =⇒ there is an eigenvalue λ of A such that

|λ− ϑ(j)i | ≤ βj |s
(j)
ji |. (1)

It is possible to get good eigenvalue approximations even if βj is
not small!

Further, it is also known that

sin∠(y
(j)
i , z) ≤ βj

|sji |
γ
, (2)

where z is the eigenvector corresponding to λ in the Lemma and γ
is the gap between λ and the next eigenvalue 6= λ of A.

γ may be estimated by |λ− ϑ(j)k |, k 6= i .
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example

Matrix:
A = diag(0, 1, 2, 3, 4, 100000),

Initial vector:
x = (1, 1, 1, 1, 1, 1)T/

√
6.

I The Lanczos algorithm should stop after m = n = 6 iteration
steps with the complete Lanczos relation.

I Up to rounding error, we expect that β6 = 0 and that the
eigenvalues of T6 are identical with those of A.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
j = 1

α1 = 16668.33333333334, β1 = 37267.05429136513.

j = 2

α2 = 83333.66652666384, β2 = 3.464101610531258.

The diagonal of the eigenvalue matrix Θ2 is:

diag(Θ2) = (1.999959999195565, 99999.99989999799)T .

The last row of β2S2 is

β2S2,: = (1.414213562613906, 3.162277655014521) .
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
The matrix of Ritz vectors Y2 = Q2S2 is

−0.44722 −2.0000 · 10−05

−0.44722 −9.9998 · 10−06

−0.44721 4.0002 · 10−10

−0.44721 1.0001 · 10−05

−0.44720 2.0001 · 10−05

4.4723 · 10−10 1.0000


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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
j = 3

α3 = 2.000112002245340 β3 = 1.183215957295906.

The diagonal of the eigenvalue matrix is

diag(Θ3) = (0.5857724375775532, 3.414199561869119, 99999.99999999999)T

The largest eigenvalue has converged already. This is not
surprising as λ2/λ1 = 4 · 10−5. With simple vector
iteration the eigenvalues would converge with the factor
λ2/λ1 = 4 · 10−5.

The last row of β3S3 is

β3S3,: =
(
0.83665, 0.83667, 3.74173 · 10−5

)
.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
The matrix of Ritz vectors Y3 = Q3S3 is

0.76345 0.13099 2.0000 · 10−10

0.53983 −0.09263 −1.0001 · 10−10

0.31622 −0.31623 −2.0001 · 10−10

0.09262 −0.53984 −1.0000 · 10−10

−0.13098 −0.76344 2.0001 · 10−10

−1.5864 · 10−13 −1.5851 · 10−13 1.00000


The largest element (in modulus) of Y T

3 Y3 is ≈ 3 · 10−12.

The Ritz vectors (and thus the Lanczos vectors qi ) are
mutually orthogonal up to rounding error.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
j = 4

α4 = 2.000007428756856 β4 = 1.014186947306611.

The diagonal of the eigenvalue matrix is

diag(Θ4) =


0.1560868732577987
1.999987898940119
3.843904656006355
99999.99999999999

 .

The last row of β4S4 is

β4S4,: =
(
0.46017,−0.77785,−0.46018, 3.7949 · 10−10

)
.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
The matrix of Ritz vectors Y4 = Q4S4 is
−0.93229 0.12299 0.03786 −1.2 · 10−15

−0.34487 −0.49196 −0.10234 2.4 · 10−15

2.7 · 10−6 −0.69693 2.7 · 10−6 −3.0 · 10−15

0.10234 −0.49195 0.34488 −2.4 · 10−15

−0.03785 0.12299 0.93228 1.2 · 10−15

−8.8 · 10−9 1.5 · 10−8 8.8 · 10−9 1.0000

.

We have β4s4,4
.

= 4 · 10−10. According to our previous
estimates (ϑ4, y4), y4 = Y4e4 is a very good
approximation for an eigenpair of A. This is the case.

Y T
4 Y4 has off-diagonal elements of the order 10−8. They

are in the last row/column of Y T
4 Y4. So, all Ritz vectors

have a small but not negligible component in the direction
of the ‘largest’ Ritz vector.

Large scale eigenvalue problems, Lecture 9, April 25, 2018 19/44



Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
j = 5

α5 = 2.363169101109444 β5 = 190.5668098726485.

The diagonal of the eigenvalue matrix is

diag(Θ5) =


0.04749223464478182

1.413262891598485
2.894172742223630
4.008220660846780

9.999999999999999 · 104

 .

The last row of β5S5 is

β5S5,: =
(
−43.570,−111.38, 134.09, 63.495, 7.2320 · 10−13

)
.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
The matrix of Ritz vectors Y5 is

−0.98779 −0.084856 0.049886 0.017056 −1.1424 · 10−17

−0.14188 0.83594 −0.21957 −0.065468 −7.2361 · 10−18

0.063480 0.54001 0.42660 0.089943 −8.0207 · 10−18

−0.010200 −0.048519 0.87582 −0.043531 −5.1980 · 10−18

−0.0014168 −0.0055339 0.015585 −0.99269 −1.6128 · 10−17

4.3570 · 10−4 0.0011138 −0.0013409 −6.3497 · 10−4 1.0000


Evidently, the last column of Y5 is an excellent eigenvector
approximation. Notice, however, that all Ritz vectors have
a relatively large (∼ 10−4) last component.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
This, gives rise to quite large off-diagonal elements of
Y T
5 Y5 − I5 =

2.220·10−16 −1.587·10−16 −3.430·10−12 −7.890·10−9 −7.780·10−4

−1.587·10−16 −1.110·10−16 1.283·10−12 −1.764·10−8 −1.740·10−3

−3.430·10−12 1.283·10−12 0 5.6800·10−17 −6.027·10−8

−7.890·10−9 −1.764·10−8 5.6800·10−17 −2.220·10−16 4.187·10−16

−7.780·10−4 −1.740·10−3 −6.027·10−8 4.187·10−16 −1.110·10−16

 .

Similarly as with j = 4, the first four Ritz vectors satisfy
the orthogonality condition very well. But they are not
perpendicular to the last Ritz vector.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
j = 6

α6 = 99998.06336906151, β6 = 396.6622037049789.

The diagonal of the eigenvalue matrix is

diag(Θ6) =


0.02483483859326367

1.273835519171372
2.726145019098232
3.975161765440400

9.999842654044850 · 10+4

1.000000000000000 · 10+5

 .

The eigenvalues are not the exact ones.

There are even two copies of the largest eigenvalue of A!
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
The last row of β6S6 is

β6S6,: =
(
−0.20603, 0.49322, 0.49323, 0.20604, 396.66,−8.6152 · 10−15

)
although theory predicts that β6 = 0. The sixth entry of
β6S6 is very small, which means that the sixth Ritz value
and the corresponding Ritz vector are good
approximations to an eigenpair of A.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
In fact, eigenvalue and eigenvector are accurate to
machine precision. β5s6,5 does not predict the fifth column
of Y6 to be a good eigenvector approximation, although
the angle between the fifth and sixth column of Y6 is less
than 10−3. The last two columns of Y6 are

−4.7409 · 10−4 −3.3578 · 10−17

1.8964 · 10−3 −5.3735 · 10−17

−2.8447 · 10−3 −7.0931 · 10−17

1.8965 · 10−3 −6.7074 · 10−17

−4.7414 · 10−4 −4.9289 · 10−17

−0.99999 1.0000

 .
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example (cont.)
As β6 6= 0 one could continue the Lanczos process and
compute ever larger tridiagonal matrices. If one proceeds
in this way one obtains multiple copies of certain

eigenvalues [2]. The corresponding values βjs
(j)
ji will be

tiny. The corresponding Ritz vectors will be ‘almost’
linearly dependent.

From this numerical example we see that the problem of
the Lanczos algorithm consists in the loss of orthogonality
among Ritz vectors which is a consequence of the loss of
orthogonality among Lanczos vectors, since Yj = QjSj and
Sj is unitary (up to roundoff).

Large scale eigenvalue problems, Lecture 9, April 25, 2018 26/44



Solving large scale eigenvalue problems

Lanczos algorithm

Lanczos algorithm with complete reorthogonalization

To verify this claim, we rerun the Lanczos algorithm with complete
reorthogonalization.

This is in fact almost the Arnoldi algorithm.

It can be accomplished by modifying line 9 in the Lanczos
algorithm.

11: αj := v∗r; r := r − αj v; r := r − Vj(V
∗
j r);

The cost of the algorithm increases considerably. The j-th step of
the algorithm requires now a matrix-vector multiplication and
n(2j +O(1)) floating point operations.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited

With matrix and initial vector as before we get the following
numbers.

j = 1

α1 = 16668.33333333334, β1 = 37267.05429136513.

j = 2

α2 = 83333.66652666384, β2 = 3.464101610531258.

The diagonal of the eigenvalue matrix Θ2 is:

diag(Θ2) = (1.999959999195565, 99999.99989999799)T .
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited (cont.)
j = 3

α3 = 2.000112002240894 β3 = 1.183215957295905

The diagonal of the eigenvalue matrix is

diag(Θ3) =

 0.5857724375677908
3.414199561859357
100000.0000000000

 .
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited (cont.)
j = 4 α4 = 2.000007428719501, β4 = 1.014185105707661

diag(Θ4) =


0.1560868732475296

1.999987898917647
3.843904655996084
99999.99999999999


The matrix of Ritz vectors Y4 = Q4S4 is

−0.93229 0.12299 0.03786 −1.1767 · 10−15

−0.34487 −0.49196 −0.10234 2.4391 · 10−15

2.7058 · 10−6 −0.69693 2.7059 · 10−6 4.9558 · 10−17

0.10233 −0.49195 0.34488 −2.3616 · 10−15

−0.03786 0.12299 0.93228 1.2391 · 10−15

2.7086 · 10−17 6.6451 · 10−17 −5.1206 · 10−17 1.00000


Largest off-diagonal element of |Y T

4 Y4| is ∼ 2 · 10−16
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited (cont.)
j = 5

α5 = 2.000009143040107 β5 = 0.7559289460488005

diag(Θ5) =


0.02483568754088384

1.273840384543175
2.726149884630423
3.975162614480485

10000.000000000000


The Ritz vectors are Y5 =

−9.91 · 10−01 −4.62 · 10−02 2.16 · 10−02 −6.19 · 10−03 −4.41 · 10−18

−1.01 · 10−01 8.61 · 10−01 −1.36 · 10−01 −3.31 · 10−02 1.12 · 10−17

7.48 · 10−02 4.87 · 10−01 4.87 · 10−01 −7.48 · 10−02 −5.89 · 10−18

−3.31 · 10−02 −1.36 · 10−01 8.61 · 10−01 −1.01 · 10−01 1.07 · 10−17

6.19 · 10−03 2.16 · 10−02 −4.62 · 10−02 −9.91 · 10−01 1.13 · 10−17

5.98 · 10−18 1.58 · 10−17 −3.39 · 10−17 −5.96 · 10−17 1.000000 . . .


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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited (cont.)
Largest off-diagonal element of |Y T

5 Y5| is about 10−16

The last row of β5S5 is

β5S5,: =
(
−0.20603,−0.49322, 0.49322, 0.20603, 2.8687 · 10−15

)
.
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Solving large scale eigenvalue problems

Lanczos algorithm

Numerical example revisited (cont.)
j = 6

α6 = 2.000011428799386 β6 = 4.178550866749342·10−28

diag(Θ6) =


7.950307079340746·10−13

1.000000000000402
2.000000000000210
3.000000000000886
4.000000000001099
9.999999999999999·104


The Ritz vectors are very accurate. Y6 is almost the
identity matrix. The largest off diagonal element of Y T

6 Y6

is about 10−16. Finally,

β6S6,: =
(
5.0·10−29,−2.0·10−28, 3.0·10−28,−2.0·10−28, 5.0·10−29, 1.2·10−47

)
.
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Solving large scale eigenvalue problems

An error analysis of the unmodified Lanczos algorithm

An error analysis of the unmodified Lanczos algorithm

Let quantities Vj ,Tj , rj , etc., be the numerically computed
quantities.
Despite the gross deviation from their theoretical counterparts,
they deliver fully accurate Ritz value and Ritz vector
approximations. Let’s write

AVj − VjTj = rje
∗
j + Fj (3)

where the Fj accounts for errors due to roundoff. Similarly,

Ij − V ∗
j Vj = C ∗

j + ∆j + Cj , (4)

where ∆j is diagonal and Cj is strictly upper triangular.
C ∗
j + ∆j + Cj indicates deviation of the Lanczos vectors from

orthogonality.
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Solving large scale eigenvalue problems

An error analysis of the unmodified Lanczos algorithm

An error analysis of the unmodified Lanczos algorithm
(cont.)

We assume that computations that we actually perform are
accurate.

1. The tridiagonal eigenvalue problem can be solved exactly, i.e.,

Tj = SjΘjS
∗
j , S∗

j = S−1
j , Θj = diag(ϑ1, . . . , ϑj). (5)

2. The orthogonality of the Lanczos vectors holds locally, i.e.,

v∗i+1vi = 0, i = 1, . . . , j − 1, and r∗j vi = 0. (6)

3. Furthermore,
‖vi‖ = 1. (7)

By the above assumption =⇒ ∆j = O and c
(j)
i ,i+1 = 0.
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Theorem by Paige

One can prove (see [1, p.266])

Theorem (Paige)

y
(j)
i

∗
vj+1 =

g
(j)
ii

βjs
(j)
ji

(8)

(ϑ
(j)
i − ϑ

(j)
k )y

(j)
i

∗
y
(j)
k = g

(j)
ii

s
(j)
jk

s
(j)
ji

− g
(j)
kk

s
(j)
ji

s
(j)
jk

− (g
(j)
ik − g

(j)
ki ). (9)

where |g (j)
ik | ≈ ε ‖A‖.
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Interpretation

I |y(j)i

∗
vj+1| becomes large if βj |s

(j)
ji | becomes small, y

(j)
i is

‘good’ (converged) Ritz vector. Each new Lanczos vector has
a significant component in the direction of ‘good’ Ritz vectors.

Convergence ⇐⇒ loss of orthogonality .

I |s(j)ji | � |s
(j)
jk |: ‘good’ vs. ‘bad’ Ritz vectors y

(j)
i and y

(j)
k .

Two small (O(ε)) quantities counteract each other.
If |ϑi − ϑk | = O(1), then |y∗i yk | � ε and ‘bad’ Ritz vector has
significant component in direction of ‘good’ Ritz vector.

I ϑi − ϑk = O(ε), s
(j)
ji = O(ε), s

(j)
jk = O(ε)⇒ s

(j)
ji /s

(j)
jk = O(1).

Right hand side of (9) as well as |ϑi − ϑk | is O(ε).

Must have y
(j)
i

∗
y
(j)
k = O(1), i.e. almost parallel vectors.
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Partial reorthogonalization

It is possible to monitor the loss of orthogonality.

It is sufficient to keep Lanczos vectors semi-orthogonal, since

Wj = V ∗
j Vj = Ij + E , ‖E‖ <

√
εM ,

implies that tridiagonal matrix Tj is the projection of A onto the
subspace R(Vj).

In partial reorthogonalization quantities ωj ,k ≈ v∗kvj are
monitored [4].

Reorthogonalization takes place in the j-th Lanczos step if
maxk(ωj+1,k) >

√
εM . vj+1 is orthogonalized against all vectors vk

with ωj+1,k > εM
3/4.
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Restarting Arnoldi and Lanczos algorithms

I The number of iteration steps can be very high in
Arnoldi/Lanczos algorithms.

I Iteration count depends on properties of the matrix
(distribution of its eigenvalues) but also on initial vectors.

I High iteration counts entail a large memory requirement and a
high amount of computation (reorthogonalization).

I Restarted Arnoldi/Lanczos algorithms reduce these costs by
limiting the dimension of the search space [5].

I Iteration is stopped after a number of steps, dimension of
search space is reduced, and finally the Arnoldi / Lanczos
iteration is resumed.
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The m-step Arnoldi iteration

1: Let A ∈ Rn×n. This algorithm executes m steps of the Arnoldi
algorithm.

2: v1 = x/‖x‖; z = Av1; α1 = v∗1z;
3: r1 = w − α1v1; V1 = [v1]; H1 = [α1];
4: for j = 1, . . . ,m − 1 do
5: βj := ‖rj‖; vj+1 = rj/βj ;

6: Vj+1 := [Vj , vj+1]; Ĥj :=

[
Hj

βje
T
j

]
∈ F(j+1)×j ;

7: z := Avj ;
8: h := V ∗

j+1z; rj+1 := z− Vj+1h;

9: Hj+1 := [Ĥj ,h];
10: end for
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The m-step Arnoldi iteration (cont.)
After execution of m-step Arnoldi algorithm: Arnoldi relation

AVm = VmHm + rme∗m, Hm =

[ ]
(10)

with
rm = βmvm+1, ‖vm+1‖ = 1.

If βm = 0 then R(Vm) is invariant under A. This lucky situation
implies that σ(Hm) ⊂ σm(A). Ritz values and Ritz vectors are
eigenvalues and eigenvectors of A.
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The m-step Arnoldi iteration (cont.)
What we can realistically hope for is βm = ‖rm‖ being small:

AVm − rme∗m = (A− rmv∗m)Vm = VmHm.

Then, R(Vm) is invariant under a perturbed matrix A + E , that
differs from A by a perturbation E with ‖E‖ = ‖rm‖ = |βm|.

From general eigenvalue theory we know that in this situation
well-conditioned eigenvalues of Hm are good approximations of
eigenvalues of A.

In the sequel we investigate how we can find a q1 such that βm
becomes small?
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Boston, 1985.

[3] G. H. Golub and J. H. Welsch: Calculation of Gauss Quadrature
Rules. Math. Comput. 23 (1969), pp. 221–230.

[4] H. Simon, Analysis of the symmetric Lanczos algorithm with
reorthogonalization methods, Linear Algebra Appl., 61 (1984),
pp. 101–132.

Large scale eigenvalue problems, Lecture 9, April 25, 2018 43/44



Solving large scale eigenvalue problems

References

References (cont.)

[5] D. C. Sorensen, Implicit application of polynomial filters in a k-step
Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp.
357–385.

Large scale eigenvalue problems, Lecture 9, April 25, 2018 44/44


	Survey
	Arnoldi algorithm
	Lanczos algorithm
	An error analysis of the unmodified Lanczos algorithm
	Implicitely restarted Arnoldi/Lanczos algorithms
	References

