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Abstract. The (micro-)finite element analysis based on three-dimen-
sional computed tomography (CT) data of human bone takes place on
complicated domains composed of often hundreds of millions of voxel
elements. The finite element analysis is used to determine stresses and
strains at the trabecular level of bone. It is even used to predict fracture
of osteoporotic bone. However, the computed stresses can deteriorate at
the jagged surface of the voxel model.

There are algorithms known to smooth surfaces of voxel models.
Smoothing however can distort the element geometries. In this study
we investigate the effects of smoothing on the accuracy of the finite el-
ement solution, on the condition of the resulting system matrix, and on
the effectiveness of the smoothed aggregation multigrid preconditioned
conjugate gradient method.

1 Introduction

In view of the growing importance of osteoporosis due to the obsolescence of the
population in industrialized countries an accurate analysis of individual bone
strength is in dire need. In fact according to the WHO, lifetime risk for osteo-
porotic fractures in women is estimated close to 40%; in men risk is 13% [7]. With
the advent of fast and powerful computers, simulation techniques are becoming
popular for investigating the mechanical properties of bones and predicting the
strength of a given patient’s bones. In order to gain an improved comprehension
of structure and strength of bone, large scale computer simulations are executed
based on the theory of (non)linear elasticity and the finite element method.

Today’s approach is based on three-dimensional computed tomography (CT)
whereby bones are scanned with a resolution of 50-100μm. Using a direct voxel-
conversion technique the three-dimensional computer reconstructions of bone
can be converted to a finite element mesh, that can be used to perform a ‘virtual
experiment’, i.e., to simulate a mechanical test in great detail and with high
precision. The resulting procedure is called microstructural finite element (μFE)
analysis.

The approach based on the FE analysis leads to linear systems of equations

Ku = f , (1)

where the stiffness matrix K is symmetric positive-definite, the components of
the vector u are the displacements at the nodes of the voxel mesh. f contains
external loads or prescribed displacements.
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The system of equations (1) can be solved very efficiently by the conjugate
gradient algorithm preconditioned by smoothed aggregation multigrid. Systems
of up to hundreds of millions of degrees of freedom have been solved on large
scale computers within a couple of minutes [1, 2, 3].

The voxel approach has deficiencies though. In particular, the jagged domains
leading to exceeding stresses at the nodes of the mesh corresponding to corners
of the domain. A straightforward procedure is to smooth the surface of the com-
putational domain. Taubin [9,10] suggested a surface fairing algorithm that does
not shrink the body it embraces. Boyd and Müller [4] have applied this algo-
rithm to voxel based models. In this note we investigate this latter algorithm in
a parallel environment. In section 2 we discuss how smoothing can be done with
piecewise trilinear isoparametric hexahedral elements. In section 3 we discuss
the effects of the flexible elements on visualization, stresses, and condition of the
stiffness matrix. We also mention how the computational work can be reduced
by splitting distorted hexahedra in piecewise linear tetrahedral elements.

2 Smoothing

In bone structure analysis the computational domain is composed of a multitude
of tiny cubes, so-called voxels, that are generated directly from the output of the
CT scanner. Surface patches and edges are always aligned with the coordinate
directions. In contrast to the originally smooth object, the voxel model has a
jagged surface. The stresses induced by the computed displacements can have
singularities at edges and corners of the surface but also of interfaces between
different materials. A straightforward approach to get rid of the singular stresses
is to smooth the surface and material interfaces of the computational domain.

In computer graphics there is a well-known procedure to smooth polygonal
surfaces called mesh fairing [9, 10]. The coordinates x of the mesh vertices are
moved according to the diffusion equation

∂x
∂t

= D · Δx, D > 0, (2)

where the Laplacian at x is approximated by

Δxi =
∑

j∈N(i)

wij(xj − xi),
∑

j∈N(i)

wij = 1. (3)

Here, N(i) denotes the neighbor nodes of node i. The choice of the weights
evidently affects the quality of the smoothing [10]. The most effective scheme is
due to Fujiwara, where wij is proportional to 1/‖xj−xi‖.

Applying Euler’s method with time step Δt to (2) we get

xnew
i = xold

i + λΔxold
i , λ = DΔt. (4)

Boyd and Müller [4] applied this technique to the voxel model by classifying
nodes as fixed nodes, surface nodes, interface nodes, inner nodes and near-surface
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nodes. Fixed and inner nodes must not move; this is accomplished by leaving
empty their set of neighbors. Surface and interface nodes produce a surface mesh
which is smoothed by the algorithm. Since only surface and interface nodes can
qualify as neighbors of surface and interface nodes, these nodes are subjected
to Taubin’s original 2D algorithm. Near-surface nodes should compensate for
the movements of the surface and interface nodes, such that hexahedra near the
surface are not seriously distorted.

The smoothing procedure (4) shrinks the volume of the 3D object it is applied
to. To compensate this effect, Taubin suggests to replace λ in every second step
by −μ where μ = λ or slightly bigger [9]. The ‘negative diffusion’ has the effect
of (approximately) restoring the volume of the 3D object.

This smoothing procedure was incorporated into our fully-parallel μ-finite el-
ement code PARFE [8] that is based on the Trilinos framework [11], see [6] for
details. A piecewise trilinear finite element space was implemented on the dis-
torted mesh based on isoparametric hexahedral elements. The matrix elements
have been computed approximately by the 64-point tensor product Gaussian
quadrature rule.

3 Results

In this section we discuss four effects of smoothing, (1) the visual quality, (2)
the condition number of the stiffness matrix, (3) the scalability of the smoothing
procedure, and (4) the cost of the assembling of the matrix. The computations
have been done on the Cray XT3 at the Swiss National Supercomputer Center.

To show the visual quality of the smoothing algorithm a sphere was smoothed
with λ and μ as proposed in [10, 4]. A sphere has an absolutely smooth surface
to which the surface coordinates should converge. The smoothing procedure in
fact generates quite a smooth surface, see Fig. 1. The implemented procedure

Fig. 1. A sample sphere. On the left is the original; on the right is a smoothed sphere
subject to 32 smoothing steps with λ = 0.4 and 1/μ + 1/λ = 0.1.
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Fig. 2. A clip through a sphere consisting of two materials. The color indicates the
stress. The original jagged sphere is on the left; the smoothed sphere is on the right
after 32 smoothing steps with the parameters as in Fig. 1. The stresses do not oscillate
so much in the smoothed version as in the unsmoothed version.

Table 1. Impact of the number of smoothing steps on maximal and mean stress

Sphere cube1
Smoothing steps 0 8 16 0 8 16
Max stress (MPa) 367.7 365.3 365.6 231.6 235.2 237.0
Mean stress (MPa) 20.8 20.73 20.4 19.6 20.1 20.3

not only smoothes surfaces, but also interfaces between differing materials, as
can be seen from Fig. 2. To investigate how the visual impression changes as the
number of smoothing steps increases we consider a bone specimen consisting of
98’381 voxels. From Fig. 3 we see that already very few smoothing steps lead to
dramatically improved surfaces. After 28 steps, however, some voxels get so much
distorted that the stiffness matrix loses definiteness. Also the visual impression
does not improve much beyond this point. It is possible but to time consuming
to check individual elements for strong distortion and detach them from the
smoothing process.

The deformed hexahedra not only have an effect on the visual impression, but
also change the distribution of the stresses. Boyd and Müller [4] report that the
peak stresses are lowered by a factor 4 for a sphere model. Camacho et al. [5]
describe a similar effect for the von Mises stresses.

We used two models to measure the stress: a sphere consisting of two materials
and a bone sample (cube1 in [2]) consisting of one material. We applied a varying
number of smoothing steps with λ = 0.4. As suggested in [10, 4] we determined
μ from 1/λ + 1/μ = 0.1. Both models are fixed at z = 0 and a load is exerted
on the top plane (z = zmax).

Table 1 shows the maximal and the mean von Mises stresses. The smoothing
procedure has a minimal effect on these. The maximal stress is observed at
the verge of the loading. Fig. 2 shows that the stresses propagate through the



On Smoothing Surfaces in Voxel Based Finite Element Analysis 73

(a) (b)

(c) (d)

(e) (f)

Fig. 3. A sample mesh representing trabecular bone. The unsmoothed mesh (a) was
smoothed with 4 (b), 8 (c), 16 (d), 28 (e), and 64 (f) steps, respectively. The step size
was 0.4. With more than 28 smoothing steps of the deformations became too severe.
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Fig. 4. Section of Figure 2 at the material interface

sphere and not along the surface where the smoothing takes place. Hence, in this
situation, smoothing does not significantly affect the stresses.

In the artificial bone sample the results are similar. Smoothing only minimally
affects the stresses. The elements on the surface often have unconstrained nodes
or edges that are often displaced much more by smoothing than fixed nodes.
However, they are not relevant for the stiffness of the model.

The changes of the von Mises stresses at the transition of the materials are
analyzed by means of the sphere model, see Fig. 4. The upper material has a
Young’s modulus E = 5000 and a Poisson ratio ν = 0.3. The lower material is
more elastic with E = 12000 and ν = 0.1. The transition causes a jump in the
stresses. The stresses in the voxel elements at the jagged interface differ visibly
in the same material as well as across the material interface. The unsmoothed
model generates high peak stresses, too, that are not observed in the physical
experiment. After 32 smoothing steps the interface becomes nearly a plane. The
peak stress decreases from 46.8 MPa to 42.3 MPa. The resulting stresses vary
much less at the material interface, cf. Table 2.

The smoothing procedure distorts elements which in turn affects the condition
number of the stiffness matrix K. We have investigated the condition by means
of two models. The first model, cube2, is obtained from cube1 by mirroring it
at three faces. Thus it is 8 times bigger than cube1. The (estimated) condi-
tion numbers of the stiffness matrix K after 16 smoothing steps with varying

Table 2. Stresses (in MPa) at the interface of Fig. 4. Smoothing lowers the peak
stresses in the selected 8 elements by 9.6%. The minium peak is increased by 24.5%.

Hexahedra 1 2 3 4 5 6 7 8
Unsmoothed 38.8 39.6 46.8 25.3 47.0 25.7 31.0 32.0
Smoothed 40.1 41.2 42.3 31.5 42.5 31.8 32.9 33.6



On Smoothing Surfaces in Voxel Based Finite Element Analysis 75

Table 3. Condition numbers of the stiffness matrix depending on the Euler step size λ.
16 smoothing steps were applied to the model cube2.

smoothing step size λ 0.0 0.3 0.4 0.475 0.5 0.51
without preconditioning 3.4·105 3.4·105 3.4·105 3.4·105 4.5·105 —
with ml preconditioner 245.2 237.4 239.0 246.1 248.1 —

Table 4. Condition numbers of the stiffness matrix depending on the Euler step size λ.
16 smoothing steps were applied to the 2-materials sphere.

smoothing step size λ 0.0 0.5 0.6 0.67 0.685
without preconditioning 1.75·106 1.65·106 2.31·106 1.51·107 —
with ml preconditioner 507.1 447.0 486.2 664.5 —

Euler step size λ are given in Table 3. For either the preconditioned or the un-
preconditioned system, the condition numbers are not affected much as long as
λ ≤ 0.5.

For the two-materials sphere corresponding numbers are found in Table 4.
Here the condition numbers vary more. Little smoothing improves the condition;
too large step sizes lead to indefinite systems.

In a third test we fixed the step size λ = 0.4 and varied the number of
smoothing steps, cf. Table 5. Here we observe a slow but gradual increase of the
condition number up to 28 smoothing steps. Beyond this point some of the voxel
elements seem to flip over causing indefinite matrices.

To investigate weak scalability we chose the artificial bone displayed in Fig. 3
that is inclosed in a cube and can be mirrored at all faces to generate arbi-
trarily large bones, see [2]. Not surprisingly, the computations, in particular the
new smoothing and assembling procedures, show perfect weak scalability up to
216 = 63 processors. Notice that all voxels are considered flexible if smoothing
is applied at all. This is justified by our application, trabecular bone, where
usually 3/4 of the nodes are near the surface. Surprisingly, the assembling time
only increased by a factor 8; apparently most of the time in this phase is due to
memory accesses. Nevertheless, the assembling has become as time consuming
as the solution phase. To decrease the cost of assembly we split the (distorted)
hexahedra in six tetrahedra with linear basis functions. By this we regained a
factor of 5 in the assembling time, however at the cost of stiffer structures, see [6].

We have tested strong scalability by means of a bone model of a fixed fracture
of the distal radius with 38′335′350 degrees of freedom. Because the patient’s arm

Table 5. cube2 model: condition numbers of the stiffness matrix depending on the
number of smoothing steps with fixed λ = 0.4

# of smoothing steps 8 16 24 26 28 30
without preconditioner 3.41·105 3.40·105 3.40·105 3.40·105 7.12·105 —
with ml preconditioner 234.9 239.0 246.9 248.4 253.1 —
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Table 6. Fixed fracture model with 38’335’350 degrees of freedom

Time Speedup
#CPU Smoothing Assembling Solving Smoothing Assembling Solving

160 3.922 76.79 59.29 1 1 1
240 2.712 52.44 38.76 1.45 1.46 1.53
320 2.002 39.63 32.01 1.96 1.94 1.85
480 1.382 26.69 21.22 2.84 2.87 2.79

could not be fixed perfectly the mesh has no trabecular structure. The model
consists of a full mesh. So, each node has the maximal number of neighbors and
communication volume between compute nodes is relatively high. Table 6 shows
the execution times and speedups for smoothing, assembling, and solving the
preconditioned system. The speedups are almost linear.

4 Conclusions

We have parallelized a smoothing procedure originally proposed by Taubin [10]
that has been adapted by Boyd and Müller [4] for application to trabecular bones.
We have observed that (1) the smoothing procedure results in a large subjective
improvement of the visualization, that (2) the condition of the stiffness matrix is
not increased too much as long as the elements are not distorted too severely, and
that (3) the smoothing procedure applied to the model shows a reduced variation
of the stresses at material transitions. However, drastically lower stresses on the
surface were not obtained. Smoothing entails that the local stiffness matrices
must be computed for each element which results in increased simulation times.
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