

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Computer Science Department

Stefan Pauli Dr. Andreas Adelmann Prof. Dr. Peter Arbenz

Solve the Poisson equation with the Multilevel Monte Carlo Feynman-Kac formula

Proposal for a bachelor or master thesis

Scope of Work

This thesis is about the efficient computation of the Feynman-Kac formula with Multilevel Monte Carlo (MLMC) methods to solve the Poisson equation $\Delta u(x) = -g(x)$ with non-constant right hand side. The existing [2] parallel Feynman-Kac MLMC C++ code can solve the Poisson equation with constant right-hand side. The required random walk is generated using the walk on sphere [2] algorithm.

- 1. The generation of the walk on sphere algorithm on the multiple levels should be derive for non-constant right hand side.
- 2. The convergence rate of the walk on sphere algorithm in the case of non-constant right hand side should be either measured, derived or found in the literature.
- 3. The convergence rate (versus work) of the conventional and the Multilevel Monte Carlo Feynman-Kac algorithm should be compared experimentally and if possible theoretically.

Optionally the following tasks could be cosidered:

- Solve a PDE related to an particle accelerator with the MLMC Feynman-Kac algorithm .
- Derive and implement an MLMC approach for the "Single Spherical Atom" [1].
- Derive (or find in the literature) and implement an enhanced load balancing algorithm for random walks.
- You can as well propose other useful extensions.

Contacts

- Stefan Pauli, stefan.pauli@inf.ethz.ch, Tel: 044 633 78 34
- Andreas Adelmann, andreas.adelmann@psi.ch, Tel: 056 310 42 33
- Peter Arbenz, arbenz@inf.ethz.ch, Tel: 044 632 74 32

Literature

- [1] M. Mascagni, Novel Stochastic Methods in Biochemical Electrostatics: (Stochastic Methods for PDEs Can Beat Deterministic Methods), Talk at ETH, 2012.
- [2] R. Gantner, Computing the Feynman-Kac Formula Efficiently with Multilevel Monte Carlo, Masterarbeit, Computer Science Department ETH, April 2013
- [3] S. Pauli, P. Arbenz, and C. Schwab, Intrinsic fault tolerance of Multi Level Monte Carlo methods, in SAM-Reports, http://www.sam.math.ethz.ch/reports/2012/24, Aug 201
- [4] M. Giles, Multi-level Monte Carlo path simulation, Operations Research May/June 2008 vol. 56 no. 3 607-617.