

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Computer Science Department Prof. Dr. Peter Arbenz Paul Scherrer Institute Dr. Andreas Adelmann

Compact finite difference formulations for the Poisson equation with application to particle accelerators

Proposal for a bachelor/master thesis

Introduction

The 7-point stencil ∇_7^2 to approximate the Laplacian $-\Delta u(\mathbf{x})$ on a regular grid with spacing h is well known,

$$-\nabla^2 u(\mathbf{x}) = \frac{1}{h^2} \left(6u(\mathbf{x}) - \sum_{j=1,2,3} u(\mathbf{x} \pm h\mathbf{e}_j) \right) + \mathcal{O}(h^2) \equiv -\nabla_7^2 u(\mathbf{x}) + \mathcal{O}(h^2).$$

This stencil is used almost always if the Laplacian is approximated by finite differences for solving, e.g., the Poisson equation, the Navier–Stokes equations, or other equations [2].

The purpose of this thesis is to investigate so-called compact formulations for the Laplacian [4]. One of them is the 19-point stencil

$$-\nabla_{19}^2 u(\mathbf{x}) \equiv \frac{1}{6h^2} \left(24u(\mathbf{x}) - 2\sum_{\substack{j=1,2,3\\j\neq k}} u(\mathbf{x} \pm h\mathbf{e}_j) - \sum_{\substack{j,k=1,2,3\\j\neq k}} u(\mathbf{x} \pm h\mathbf{e}_j \pm h\mathbf{e}_k) \right).$$

Provided $f(\mathbf{x})$ is sufficiently smooth, a *forth* order finite difference approximation for the Poisson equation $-\Delta u(\mathbf{x}) = f(\mathbf{x})$ is obtained by

$$\nabla_{19}^2 u(\mathbf{x}) = f(\mathbf{x}) + \frac{h^2}{12} \nabla_7^2 f(\mathbf{x}) + \mathcal{O}(h^4).$$

Scope of work

If the work is to become a bachelor thesis the compact formulation is to be incorporated into a (MPI-parallelized) Poisson solver that employs the 7-point stencil so far. If the work is to become a master thesis then additionally the solver is to be integrated into a full-fledged particle solver where a sequence of Poisson problems has to be solved.

Since the compact finite difference formulation is much more accurate than the 7-point stencil, a coarser grid suffices to get the same accuracy in the solution of the Poisson equation. The question is thus: how much coarser can we choose the grid without losing accuracy in the overall solver. If time permits the compact finite difference formulation is to be incorporated into a solver for non-square domains [1].

Requirements

- Student in computational science or related fields.
- Very good knowledge in numerical mathematics.
- Fluent in C++.
- For the master thesis, attendance in the lecture on "Particle Accereration Methods" by Dr. Adelmann is advantageous.

Deliverables

- The work is to be documented in a short and concise thesis (LATEX, PDF). It must be written such that it is intelligible to a fellow-student.
- The code should be written as clean as possible. It must be properly documented.
- At the end of the thesis, the work is to be presented in a 30 minutes' talk.

Contact

- Prof. Dr. Peter Arbenz, Computer Science Department, ETH Zurich, arbenz@inf.ethz.ch
- Dr. Andreas Adelmann, Paul Scherrer Institute (PSI), andreas.adelmann@psi.ch

References

- [1] A. Adelmann, P. Arbenz, and Y. Ineichen. A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations. *J. Comput. Phys.*, 229(12):4554–4566, 2010.
- [2] R. J. LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations*. SIAM, Philadelphia, PA, 2007.
- [3] S. O. Settle, C. C. Douglas, I. Kim, and D. Sheen. On the derivation of highest-order compact finite difference schemes for the one- and two-dimensional Poisson equation with Dirichlet boundary conditions. *SIAM J. Numer. Anal.*, 51(4):2470–2490, 2013.
- [4] W. F. Spotz and G. F. Carey. A high-order compact formulation for the 3D Poisson equation. *Numerical Methods for Partial Differential Equations*, 12(2):235–243, 1996.
- [5] K. Zhang, L. Wang, and Y. Zhang. An improved finite-difference method with compact correction term for solving Poisson equations. ePrint archive: arXiv:1606.07755[math.NA], June 2016.

Updated May 17, 2017. P. Arbenz