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We give a brief overview on hardware and software on the Intel Paragon. By means of a simple example
we introduce the most important message passing primitives and show how performance of a program
depends on their proper choice.

1.Introduction

In December 1993, a massively parallel processor (MPP)
computer—the Intel Paragon XP/S5+ of Intel’s Supercom-
puting Systems Division—was installed at ETH Zurich’s
central computing facility. After a test phase during which
hardware and software were improved considerably, the
machine passed the acceptance tests by July 1994.

The Intel Paragon is a scalable distributed-memory multi-
computer. Its architecture supports Multiple Instruction
stream/Multiple Data stream (MIMD) and most notably
Single Program/Multiple Data (SPMD) styled applica-
tions. It is based on Intel’s i860XP RISC processor and a
high-speed inter-connection network. The Paragon follows
the Intel iPSC/1, iPSC/2, iPSC/860, and Touchstone Delta,
as the fifth in a very successful and influential row of MPP
computers. The first three machines were built around a
hypercube network. The Delta and Paragon network topol-
ogy is a planar mesh.

The purpose of this new machine is to give Swiss research-
ers the possibility to get first-hand experience with the use
of massively parallel multicomputers. The Paragon system
at ETH Zurich is already supporting large production
applications running in the fields of computational fluid
dynamics, ordinary differential equations, field theory and
non-relativistic electron gas simulations. Many porting and
development efforts are under way in such diverse areas as
parallel numerical algorithms, computation of protein sur-
faces, combinatorial optimization, searching in large
parameter spaces, electro-magnetic field computations,
drought monitoring, molecular simulation and Monte
Carlo simulations of polymers.

For technical and economic reasons, the future of high
speed computing will be based on scalable massively par-
allel multicomputers. It is however not yet clear at all how
the hardware and software environment will look like.
Therefore, at ETH, Intel’s MPP has been complemented
by two powerful workstation clusters, the C*-cluster with
20 IBM RS 6000/590 processors and the Convex/HP clus-
ter (Meta Series) with 16 HP 735 processors. Also, a suc-

cessor of A. Gunzinger’s Music system [3] is under way,
that is based on DEC’s Alpha chip.

2. Hardware

The Intel Paragon at ETH Zurich consists of 112 nodes. Its
compute power stems from the 96 compute nodes that are
arranged in a grid of size 6 x 16, cf. Figure 1. Attached to
this grid are one boot node, 9 I/O nodes, and 6 service
nodes, that are acting as logical front-ends. The (parallel)
execution of application programs takes place on the com-
pute nodes.

The hardware configuration of compute and service nodes

is identical. This means that nodes of one kind can be
reconfigured to become nodes of the other kind. Each node
consists of two i860XP RISC processors, see Figure 2.
One of them is working as the application processor, the
other one as the message processor. They share a common
memory. The purpose of the message processor is to
relieve the application processor from the overhead work
related to message-passing. The message-passing proces-
sor sends and receives messages from the other nodes via

the network interface (Line Transfer Unit, LTU, in Figure .

2). The application processor can concentrate on the
node’s primary task, computing on compute nodes, com-
piling, editing, etc. on service nodes, accessing external
storage devices on I/O nodes. All nodes have 32 MByte of
main memory. This sums up to 3.6 GByte of main mem-
ory. 8 RAID disks of 4.8 GByte each are connected to the
I/0 nodes.

The i860XP processor runs at 50 MHz. It has two pipe-
lines for floating-point operations, an adder that can pro-
duce a result (64-bit IEEE arithmetic) every cycle, and a
multiplier which can produce a result every other cycle.
This adds up to 75 Mflop/s peak performance of a single
RISC processor and an overall peak performance of the
complete system of 96 - 75 Mflop/s = 7.2 Gflop/s. The
performance that can be expected realistically is around
the Linpack benchmark performance of about 10 Mflop/s
per node.
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Figure 1. The grid structure of the ETH Intel Paragon XP/S.

The network has a theoretical bidirectional bandwidth of
about 200 MByte/s. Measured performance under the cur-
rently installed operating system shows about 65 MByte/s
for bandwidth and about 65sec for latency. Latency is
mainly due to software overhead. So, the time to transfer a
message of n 64-bit floating point numbers takes about

(65 +0.12n) pnsec @)

Notice that the bandwidth is in good balance with the 10
Mflop/s performance of the processor. The transfer time
does not depend much (~5%) on the distance between
communicating nodes, so that one need not bother where
nodes are actually placed. Formula (1) indicates that short
messages should be avoided. However, as we will see later,
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Figure 2. A view of the Paragon node

it is possible to hide some of the overhead regarding mes-
sage-passing (latency hiding).

The theoretical processor-to-memory bandwidth is about
400 MByte/s.

The best known benchmark for floating point performance
is the Linpack benchmark. In Table 1 we give the most
recent numbers [2].

Linpack Benchmark, Mflop/s

p n=100 | TPP Best Effort n=1000 | Theoretical Peak
10 34 50
Highly Parallel Computing
P | Gy | e M2 Foeak(Gflop/s)
64 2.0 8000 2000 3.2
128 4.0 12000 3000 6.4
256 7.6 16000 4000 13
512 15.2 23000 9000 26
1872 72.9 55000 17500 94
3680 | 143.4 55700 20500 184
Table 1. Benchmarks for the Paragon

3. Software

The Paragon operating system is OSF/1, Release 1.2, a
version of UNIX. A copy of the Mach 3.0 Microkernel
resides on each node and implements core operating sys-
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tem functions. (Despite its name, the microkernel occupies
about 6MB of the main memory.)

For simplicity of administration and performance reasons,
at ETH only one user application process can run on one
node. So-called time and space sharing mode are disabled.

UNIX services such as the file system server run on the
service nodes with access transparently provided from
each microkernel.

Although each node of the Paragon runs its own operating
system, the highly parallel machine appears as a single
system to the user with a single process id space and a sin-
gle file system. Every file, every process and every net-
work service is available to every (authorized) application.

Compilers are provided so far for the programming lan-
guages Fortran 77, C, C++ and Ada. Intel’s High Perfor-
mance Fortran (HPF) is promised for later this year. The
Fortran compiler in particular the linker is quite slow.
There are Fortran and C cross-compilers. So, a program
can be edited and compiled by the programmer locally on
his/her workstation and only the executable has to be trans-
ferred to the Paragon. At ETH, workstations and super-
computers are networked via the Andrew File System
(AFS), which makes files visible from workstations as
well as the Paragon.

The only parallel programming model that is provided so
far on the Paragon is the message-passing programming
model. The proprietary NX message-passing intetface [7]
is a rich library of routines for the application programmer,
which provides various forms of send and receive func-
tions. Portable message-passing environments as PVM,
Parmacs, or MPI are mapped onto NX.

There are a number of tools available for the Paragon: The
System Performance Visualization tool (SPV) displays
CPU, mesh, and memory bus utilization values. The values
are updated in short time intervals. Figure 1 shows a global
view of the machine. In this picture a 16-processor and a
48-processor job can be observed. Figure 2 shows the utili-
zation of a single node. It allows to observe the behavior of
an application program on-line. Also it visualizes the
usage of the machine and also what part of the machine is
free to be used.

The Interactive Parallel Debugger (IPD), a source level
debug tool, implements all the capabilities associated with
traditional symbolic debugging, plus a variety of observ-
ing, controlling, and repairing complex, multi-node appli-
cation programs.

ParaGraph is a performance visualization tool. It takes as
input a trace-file that is produced by the Paragon perfor-
mance monitoring subsystem during an actual run of a par-
allel program. The resulting trace data can then be
replayed graphically with ParaGraph to provide a dynamic
depiction of the behavior of the parallel program. Figure 5

shows a space-time diagram that visualizes the activity of
the processors and the messages being sent. This tool is
very useful. Unfortunately, it seems not to work properly if
asynchronous message-passing is used.

Intel provides a small library of parallel scientific subrou-
tines. ProSolver is a collection of routines for solving sys-
tems of linear equations. There are routines for matrices
that are stored in dense, skyline or sparse form. The first
two are direct solvers, the last solves the system iteratively
with the conjugate gradient method with incomplete
Cholesky factorization as preconditioner. Furthermore
there is a FFT library, and a version of Lapack for scalable
parallel computers, Scalapack [1], available for the Intel
Paragon.

Optimized for the execution on the nodes only are, among
others, the BLAS, Linpack, Eispack, Lapack, and the sub-
routines of the NAG scientific library.

4. Operating the Intel Paragon

Presently, during the day from 8am to 7pm, jobs run inter-
actively on the compute nodes. During this time the Para-
gon is divided into two partitions consisting of 32 and 64
compute nodes, respectively. An application program is
executed within one partition. The smaller partition is pro-
vided for runs of applications which are in the develop-
ment phase.

Very time consuming production runs are performed dur-
ing the night, when all compute nodes belong to one big 96
node partition which can be accessed only in batch job
mode. The batch jobs are scheduled by the NQS system.

On a weekly basis, the work load of the 96 compute nodes
is 20-40%. Most of the load is due to large batch jobs. Sys-
tem breakdowns occur 1-3 times per week.

5. The Message-passing Programming
Model

Message-passing is so far the only means of communica-
tion among user processes on the Paragon. Data exchange
among processes via virtual shared memory is only
planned. The NX message-passing interface contains sev-
eral routines for sending and receiving messages [4]. We
introduce some of them by means of the following simple
example. We consider a parallel program running on nodes
0...p— 1 that are arranged logically in a ring. Each copy
of the program holds a m x m matrix A and m x n matrices
B, C. A and B are initialized differently on each node. We
want C to be the matrix product BA of the matrices B and A
of the previous node. A first approach could look like in
the following program excerpt: the resulting matrix is sent
in pieces of size m x bsize, where bsize is the width of the
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block of C from column bstart + 1 to column bstart +
bsize.

subroutine doit (m,n,A,B,C,...)
include ‘fnx.h’ ! link NX library
double precision A(m,n),B(m,m),C(m,n)
p = numnodes () I number of nodes

myid = mynode () ! node 1d
next = mod(myid+1,p)

prev mod (myid+p-1,p)
bstart = 0
ib = 0

1 continue
ib = ib + 1

call dgemm (’‘N,’N’,m,bsize,m,1.0,A,m,
> B(l,bstart+1),m,0.0,sndbuf,m)

dummy = csend(ib, sndbuf, bsize*m*8,next, 0)
dummy = crecv(ib,rcvbuf,bsize*m*8)

do j=1,bsize
do i=1,m
C(i,bstart+j) = rcvbuf (i+(j-1)*m)
enddo
enddo

bstart = bstart + bsize
if (ib .1lt. nb) goto 1

The program, which is loaded on all participating nodes,
first computes portions of BA which are stored in a buffer
variable. Then it calls the function csend. By this, a mes-
sage of type ib is issued which sends bsize - m - 8 Byte of
data stored in array sndbuf to the next processor. The type
variable is an identifier that allows the receiver to distin-
guish between different messages from the same origin.
We chose the type to be the number of the block being
sent. The last parameter has no meaning if space sharing is
disabled, but has to be 0. If the message is submitted the
function call returns an unimportant value. When the pro-
grams returns from crecv the message has arrived and is
stored in revbuf from which it can be copied into C.

The functions csend and crecv are implementations of
so-called synchronous or blocking send and receive. This
means that the functions return only if the message-pass-
ing operation has completed. In Figure 3(a) we show the
situation with two processors. The thick lines indicate
computing, the thin lines message-passing. For the latter,
horizontal lines indicate the time for startup, oblique lines
for transmission.

In many instances, proceeding in this way is too time con-
suming. In the above example we could, e.g., receive the
ib-th portion of C from the previous node while we are
computing the local ib-th portion. We just have to make
sure that the data have arrived when we use rcvbuf. Analo-
gously, we just have to make sure that the send buffer has
been emptied before we fill it anew in the next call to

dgemm. The necessary asynchronous or non-blocking mes-
sage-passing primitives are isend and irecv.

1 continue
recvmsg = irecv(prev,rcvbuf,bsize*m*8)

if (ib .gt. 1) call msgwait (sndmsg)

call dgemm (... ,sndbuf, m)

sndmsg = isend(myid, sndbuf,bsize*m*8,next,0)
call msgwait (rcvmsg)

do j=1,bsize
do i=1,m
C(i,bstart+j) = rcvbuf (i+(j-1)*m)
enddo
enddo

if kig .1lt. nb) goto 1

The functions isend and irecv return immediately. The
returned handle can be used to test whether the operation
has actually completed. There are a number of functions to
that end [4]. Here, we only consider the subroutine msg-
wait, that returns when the completion of the respective
asynchronous operation is guaranteed. The rule of thumb
for asynchronous message-passing is: Issue isend/irecv
as early as possible, call msgwait as late as possible.

X

(a) Synchronous message passing

XX

(b) Asynchronous message passing

XX

(c) Asynchronous message-passing with pipelining, nb =2

Figure 3. Message-passing.

With asynchronous message-passing we gain most of the
startup time (cf. Figure 3(b)). Further, if the irecv call is
issued early enough the message processor is able to copy
the message directly into the user variable, here rcvbuf,
instead of storing it into a system buffer first.

Figure 3(b) indicates that the times for the message trans-
fer can take a considerable portion of the overall time. The
oblique arrows can be interpreted as the time for waiting
until sndbuf is completely emptied. A simple remedy to
avoid idle compute processors in this situation is pipelin-
ing. To that end, we introduce a second send buffer. dgemm
writes in each of them alternatingly. In the following fur-
ther improved version of the program we write the arriving
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message directly into C without resorting to the unneces-
sary buffer rcvbuf.

1 continue

fcvmsg(ib) = irecv(ib,C(1,bstart+1),bsize*m*8)
if (ib .gt. 1) call msgwailt (sndmsgl)

call dgemm(...,sndbuf,m)
sndmsgl = isend(ib, sndbuf,bsize*m*8,next, 0)

if (ib .eg. nb) goto 2

fEQmsg(ib) = irecv(ib,C(1l,bstart+1) ,bsize*m*8)
if (ib .gt. 2) call msgwalt (sndmsg2)
call dgemm (...,sndbuf(n*m/2+1),m)

sndmsg?2 = isend(ib,sndbuf (n*m/2+1),
> bsize*m*8,next, 0)

if (ib .lt. nb) goto 1
2 do ib=1,nb
call msgwalt (rcvmsg(ib))
enddo

‘We make sure that all the data have arrived in the appended
do-loop.In Table 2 we give times for the three introduced
versions, and, for comparison, the times for an equally
blocked local matrix multiply (dgemm). Notice that dgemm
performs above 40 Mflop/s for the larger matrices. The dif-
ference between these times gives the overhead of mes-
sage-passing. The timings confirm the sketches of Figure 3
to some extent. The gain of asynchronous message-passing
is in the order of a few percent. The gain obtained with the
second version is substantial, in particular for short mes-
sages.

6. An Application

Consider a basic problem from numerical linear algebra:
solving a system of linear equations Ax = b, where A is a

banded symmetric positive definite matrix with half-band-
width k. The fastest direct algorithm to solve this problem
is block cyclic reduction [5]. To that end we partition A as
indicated in Figure 4 such that there are p large and p-7
small k x k diagonal blocks. In the first step of block cyclic
reduction we eliminate the variables corresponding to the
large blocks. The resulting reduced system is block tridiag-
onal and has order (p-1)k. It is solved by ordinary block
cyclic reduction. The complexity of this algorithm is

c=a" + G K+ 46+ 2kztjlog2 (p) flop. @
p

1
|
|
|
|
1

Figure 4. Band matrix A with n=60, p=4, k= 3.

Here, T and ¢ denote the number of floating point opera-
tions that can be executed during the time for the transfer
of one 64-bit floating point number and during message-
passing startup, respectively.

The important thing to note here is that there are portions

of C that grow with the number of processors. Often, con-
stant terms or terms growing with p are solely due to com-
munication, in which case latency hiding may

n m | nb | csend/crecv | isend/irecv | isend/irecv pure be prerequisite to make an algorithm scalable.
2nd version dgemm . s s .
Otherwise, speedup is limited with increasing
4000 | 40 | 2 400.84 377.06 354.96 313.60 p (Amdah!’s law) or there is, as in our case, a
4000 | 20 | 2 140.13 133.18 110.49 90.01 number of processors, oy, for which speedup
800 | 40 | 2 80.11 77.30 71.04 62.30 is maximal. In the cyclic reduction algorithm
800 | 20 | 2 28.30 27.13 2257 1700  above, p = 12n/7k. The corresponding
800 | 10 | 2 12.80 12.08 927 6.45 speedgp is SOQt =~ 3n/7k. This number is not
very high, mainly because the parallel algo-
400 | 40 | 2 40.35 39.55 37.41 31.06 . .
rithm has a high redundancy of ~4.
400 20 | 2 14.71 14.04 11.78 9.08
400 | 10 | 2 7.00 6.51 4.89 337 Also in this algorithm it is useful t(g hide .
latency. However, because of the &~ term in
200 | 40 | 2 20.75 19.98 18.63 15.82 . . .
(2), this technique can only improve p,.
200 | 20 | 2 7.88 7.95 6.45 4.71 Thus, this algorithm and related direct algo-
200 | 10| 2 3.74 3.64 2.67 1.65 rithms for solving sparse equations (domain
200 | 4 | 2 2.81 2.96 217 1.68 decomposition approach) are not scalable. In
200 | 2 | 2 1.48 157 0.94 0.60 Figure 5 the execution behavior is shown for
200 1111 2 155 115 0.62 0.8 the program with latency hiding. Horizontal

Table 2. Timings with 8 processors and optimal nb on the
Paragon [Milliseconds].

lines indicate the status of the processors,
oblique lines visualize the messages among
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processors; the color of these lines corresponds to the vol-
ume of the messages.

7. Concluding Remarks

a good testbed to decide whether message-passing is the
way to go.

References

The previous sections should have shown that it takes a
considerable effort to obtain well-performing programs for
massively parallel processor computers. Message-passing
programming is far away from traditional programming
and can be quite tedious. It is sometimes easier to get a
HPFortran program running. Whether it is easier to get
(portable) high performance with one programming model
or the other is still an open question.

The large step from a conventional single threaded to a
message-passing program and the uncertainty of how
future MPPs will be programmed have let numerous peo-
ple hesitate to do the high effort of changing their pro-
grams. Concerning the Paragon, the raw performance of
the single nodes may havg been considered too low,
although it is probably easier with an i860 processor to get
a good fraction of the peak performance than on an Alpha
chip, for example.

The Intel Paragon is now stable enough for efficiently
developing and productively running programs. The NX
message-passing library is more elaborate than other (pop-
ular) libraries, in particular it supports asynchronous mes-
sage-passing. The Paragon hardware and software provide

[1] Choi,J., J.J. Dongarra, D. W. Walker and R. C. Wha-
ley. ScaLapack Reference Manual. December 31,
1993.

[2] Dongarra, J. J. “Performance of Various Computers
Using Standard Linear Equations Software.” Techni-
cal Report CS-89-85, Computer Science Department
(Univ. of Tennessee, Knoxville), August 31, 1994.

[3] Gunzinger, A. et al. “Achieving Supercomputer Per-
formance with a Parallel Array Processor.”SPEEDUP
7(2)(1993): 55-58.

[4] Intel Corp. Paragon User’s Guide. October 1993.

[5]1 Johnsson, S. L. “Solving Narrow Banded Systems on
Ensemble Architectures.” ACM Trans. Math. Softw. 11
(1985): 271-288.

[6] Michl, T., S. Maier, S. Wagner, M. Lenke and A.
Bode. “A Parallel Implementation of a Navier Stokes
Solver on Intel Multiprocessor Systems.” SPEEDUP
7(2)(1993): 19-23.

[7] Pierce, P. “The NX Message Passing System.” Paral-
lel Computing 20 (1994): 463-480.

14 7
3 { | P
13 o R
12 ] - o
11 L - c
18 Y E
a J 2
9 i - S
2 - a
7 - R
. |
N
- P |
4 . : M
3 | .4 B
2 A E
1 ]
o I —
5 TIME C¥3ms) S12

Figure 5. ParaGraph display of band solver based on cyclic reduction
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