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Abstract. Cryptographic protocols are the backbone of secure com-
munication over open networks and their correctness is therefore cru-
cial. Tool-supported formal analysis of cryptographic protocol designs
increases our confidence that these protocols achieve their intended se-
curity guarantees. We propose a method to automatically translate text-
book style Alice&Bob protocol specifications into a format amenable to
formal verification using existing tools. Our translation supports specifi-
cation modulo equational theories, which enables the faithful represen-
tation of algebraic properties of a large class of cryptographic operators.

1 Introduction

Internet security builds on cryptographic protocols that achieve properties such
as secrecy, entity authentication, and privacy. The correct operation of these
protocols is critical and manual analysis is not up to the task. Indeed, some
protocols were used for years before flaws were detected using symbolic analy-
sis tools [19,4]. Today, there are many such tools available based on different
formalisms and specification languages: ProVerif [6] uses the applied pi cal-
culus, Scyther [13] uses role scripts, Maude-NPA [15] uses strands [17], and
Tamarin [29] specifies protocols using multiset rewriting. Unfortunately the in-
put languages of all of these tools are difficult for non-expert users to master,
which hinders the widespread acceptance and use of these tools.

The starting point for this paper is our work on the Tamarin tool, which
has been used successfully to analyze many cryptographic protocols [25,30,5].
Tamarin uses multiset rewriting as its input language, which is very general;
but this generality makes it difficult to use, especially for non-experts. Hence an
attractive proposition is to support, additionally, a simpler and more intuitive
language, closer to the text-book notation that many users know from their
studies. The most popular language of this kind is generally known as Alice&Bob
protocol specifications. Due to its popularity, versions of it have been considered
for other analysis tools [1]. It is indeed simple, but it suffers from ambiguities
and imprecision.

We propose a new way to specify protocols in an Alice&Bob style that sup-
ports specification modulo user-specifiable equational theories. This enables one
to specify, along with a protocol, the algebraic properties of the cryptographic op-
erators used. To support this, we analyze the protocol specification’s executabil-
ity and translate executable specifications into an intermediate language based



on role scripts. We then determine which checks should be made on the mes-
sages by the participants, based on their current knowledge and the equational
theory, and insert those checks into the compiled role scripts. Non-executable
specifications are rejected, and warnings to the user are displayed when checks
cannot be inserted as expected, for example, when the same name is used re-
peatedly, but due to encryption the principal cannot verify if all occurrences are
instantiated in the same way. The role scripts can then be further translated to
any protocol analysis tool’s input language, as our theoretical results are gen-
eral. We have implemented this first general-purpose translation step and, for
Tamarin’s input language, we have also implemented the second step. Taken
together, this provides an automatic translation from Alice&Bob specifications
to the Tamarin tool’s input language [18].

As mentioned, equational theories are used to model the algebraic properties
of cryptographic operators. Support for different equational theories therefore al-
lows a more precise analysis of protocols. Specifying suitable equational theories
is fundamental for the symbolic analysis of cryptographic protocols as otherwise
attacks may be missed. Moreover, for some protocols, their execution would even
be impossible without algebraic properties. For example, for Diffie-Hellman key
exchange, the partners cannot establish the same key without exponentiation
being commutative. We focus on subterm-convergent theories, which we require
for the results presented in this paper. Note that these theories have the finite
variant property [12,16], which is a prerequisite for many automated protocol
analysis tools as well.

To handle the imprecision inherent in basic Alice&Bob notation, we build
upon previous work that makes explicit many of this notation’s assumptions.
In particular, Caleiro, Viganò, and Basin [9] provide an operational semantics
based on the spi calculus that formalizes how principals construct and parse
messages and makes explicit what checks should be made by honest principals.
Mödersheim [26] studies a similar problem in the context of equational theories.
See Section 5 for a more detailed comparison.

We also build upon and take inspiration in our work from the research and
tools of José Meseguer. Tamarin uses Maude [11] as a back-end for unification
modulo equational theories. Moreover, inspired by Maude-NPA [15], Tamarin
computes variants following [16]. This motivated the design decision of support-
ing user-specified subterm-convergent equational theories in addition to built-in
theories with the finite variant property that is used both in Tamarin and in
the translation we present in this paper.

In Section 2 we describe Alice&Bob notation. In Section 3 we present the
role-script notation for protocols, explain how to decide the executability of
given Alice&Bob protocols and how to add appropriate checks, and provide an
example. We describe our automated translation to Tamarin in Section 4 and
compare to related work in Section 5, before we draw conclusions in Section 6.
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1. C → S : C, V, n
2. S → C : {k, V, n}kCS , {k, C}kV S

3. C → V : {t, t′}k, {k, C}kV S

4. V → C : {t}k

Fig. 1. An intuitive but ambiguous description of an authentication protocol.

2 Alice&Bob Protocol Notation

In this section we formalize Alice&Bob notation. First, we highlight ambiguities
with the text-book version of this notation due to its inherent imprecision, and
we explain the general idea of our formalization. Afterwards we specify this
notation in more detail.

2.1 Overview

In Alice&Bob notation, a protocol is specified as a list of message exchange steps
of the form

A→ B : msg.

These steps describe the actions that are performed by honest principals in a
protocol run. The semantics of an Alice&Bob specification defines the behavior
of the principals running the protocol. Our semantics is based on the work of
Caleiro, Viganò, and Basin [9].

To illustrate the need for a formal semantics, consider the simplified basic
Kerberos authentication protocol [27] shown in Figure 1. At first glance, this
protocol’s meaning seems clear. The principal in role C sends his identity, the
name of a resource V , and the nonce n to the authentication server S. A nonce
is an arbitrary number to be used only once in a security protocol. The principal
in role S then responds by returning two ciphertexts, the first one generated
with a shared key kCS between C and S and the second generated with a key
kV S , shared between V and S. The principal C then decrypts the first ciphertext
to obtain the key k and verifies the nonce n and the intended communication
partner V . If these checks succeed, then C encrypts fresh nonces t and t′ under
k and sends this ciphertext along with the second ciphertext to V . The principal
V then responds with the encryption of t under the key k, which is obtained by
decrypting the second ciphertext {k,C}kV S

.
While this account provides a high-level explanation of the protocol’s work-

ings, the precise actions the principals must take are not fully spelled out. In
order to send the message {k, V, n}kCS

, {k,C}kV S
in Step 2, S must first con-

struct it. Intuitively, one would assume that S knows kCS and kV S and generates
a fresh key k and can therefore construct the message. But this is not stated
explicitly. It is possible that the protocol’s designer had in mind that k is known
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only to C and V , while S only knows the two ciphertexts in Step 2. The speci-
fication as given does not resolve this ambiguity. It is also unclear whether n is
actually a nonce, even though the choice of name suggests this. It could just as
well be a constant or a publicly known value, neither of which we would assume
of a nonce.

Another aspect left implicit in Figure 1 is what the principals do with the
messages they receive. If we assume that kCS actually denotes the shared secret
key between C and S and that both know the key and C has no other prior
knowledge, then C should extract the key k by decrypting the first ciphertext of
Step 2 with the secret key kCS . This is the only way C can construct the message
{t, t′}k in Step 3. For this reason, we must formalize the new information gained
by analyzing incoming messages based on the knowledge that a principal has.

We formalize Alice&Bob notation based on the notion of knowledge, given
by a set of messages, which grows during protocol execution when new messages
are received or fresh nonces are generated. We define what information is stored,
how incoming messages are parsed and compared to existing knowledge, and
how messages are composed for sending.

In the rest of this section, we provide a complete formalization of Alice&Bob
notation, which is the basis of our Alice&Bob input language and our translation
to the intermediate representation format that follows. Note that Alice&Bob
notation is independent of the adversary model. We do not define the capabilities
of the adversary as they can be independently specified.

2.2 Messages and Message Model

We use a signature Σ containing three sorts, Fresh, Public, and Msg, where
both Fresh and Public are subsorts of Msg. Each operator f : s1 . . . sn → s
defined on any of the sorts has a top sort overloading, i.e., f : Msg . . .Msg →
Msg. We assume disjoint sets of countably infinite variables Xs for each sort,
with X =

⋃
sXs. TΣ,s is the set of ground terms of sort s and TΣ,s(X) is the set

of terms of sort s. We use TΣ and TΣ(X) for the corresponding term algebras.

By default, Σ includes the following operators: pairing, projections (first or
second element of a pair), symmetric and asymmetric encryption and decryption,
digital signing, and hashing. The set of equations E defining these operators gives
rise to an equational theory (Σ, E).

In addition to the default operators, users can specify further operators to-
gether with the equations defining them. The user-defined equations must be
subterm-convergent: directed from left to right, the resulting rewrite system
must be convergent and the right-hand side of any equation is either (1) a con-
stant that is in normal form with respect to the rewrite system or (2) a strict
subterm of the left-hand side. Combining the default theory with such additional
user-supplied operators and their equational specification yields a theory that is
also subterm-convergent. We say that a term t is derivable from a set of terms M
if it can be constructed by repeated application of operators in Σ to the terms
in M under the equational theory E .
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We define positions in terms as sequences p = [i1, . . . , in] of positive natural
numbers. We use t|p to denote the subterm of t at position p, and for the empty
sequence [ ] we define t = t|[ ]. We use the operator · to concatenate sequences.
Two positions p, p′ are siblings if |p| = |p′| and there is an immediate parent
position p′′ such that p = p′′ · [i] and p′ = p′′ · [i′] with i 6= i′ for two natural
numbers i and i′.

All other standard notation follows the account of Baader and Nipkow [2].

2.3 Alice&Bob in Detail

Prior to defining Alice&Bob notation, we first describe the principal’s initial
knowledge and the knowledge that a principal has during a protocol’s execution

Knowledge and Basic Sets. Principals remember messages they acquire dur-
ing protocol execution. We call the set of messages that are derivable from
acquired messages the principal’s knowledge. Knowledge is essential for con-
structing messages to be sent, analyzing received messages, and comparing the
messages received in a protocol step to messages received in an earlier step.

A principal’s knowledge is in general infinite; if Alice knows a message m, she
can immediately derive infinitely many messages, for example by concatenating
arbitrarily many copies of m. To finitely represent the knowledge of the principals
participating in a protocol, basic sets proposed by Caleiro et al. [9] can be used.
A basic set for M is a minimal set of terms from which all terms in M can be
derived.

Initial Knowledge. A principal’s initial knowledge is the basic set of messages
that the principal knows prior to performing any protocol actions, that is, before
the first sending or receiving action. A default initial knowledge can be generated
from the protocol’s context, i.e., the protocol and all the roles appearing in it,
or the initial knowledge can be explicitly given.

Alice&Bob Protocol Specifications. We now define Alice&Bob protocol
specifications.

Definition 1. An Alice&Bob protocol specification is a quadruple (Spec, ρ,Σ, E),
where:

– Spec is a finite sequence step1, . . . , stepn of message exchange steps where,
for t ∈ {1, . . . , n}, stept, has the form

labelt. S → R : (n1, . . . , nv).m .

Here R and S are distinct role names (terms of sort Public), n1, . . . , nv are
distinct variable names of sort Fresh, labelt is a unique name given to this
message exchange step, and m ∈ TΣ(X) is a message.
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– ρ is a partial map TΣ,Public(X) → P(TΣ(X)) from role names to sets of
messages representing that role’s explicit initial knowledge in the protocol.
Note that this explicit initial knowledge may very well be empty and can
then be omitted. The notational conventions below explain the standard initial
knowledge that is always assumed to be available to each role.

– (Σ, E) is a subterm-convergent equational theory specifying operators and
their defining equations.

Note that we require fresh nonces (n1, . . . , nv) to be stated explicitly. They
are assumed to be generated randomly by the sender at the beginning of the
step, before the message is constructed and sent. This information is actually
redundant: since we know the initial knowledge, we can find out if a nonce is
fresh. Nevertheless, we explicitly declare fresh nonces to improve readability and
to help catch specification errors.

Our definition says that the fresh nonces must have distinct variable names.
This not only includes the current message exchange step, but also the complete
protocol. Two fresh variables with the same name may not appear in a protocol
and a variable that appears in the initial knowledge of a principal may not be
redefined as a fresh variable. Moreover, a fresh variable name must not coincide
with any role name; this is ensured by having different sorts for role names and
fresh variables.

The labels are given just for reference and we omit them in many cases. Also,
we drop the parentheses enclosing the fresh variable names when there are none.

Notational Conventions. Alice&Bob protocol specifications rely heavily on
implicit notational conventions. For instance, the notation kCS suggests that
this term is a shared key between C and S. There is also no need to mention
that C is the client and S is the server. We need to be a bit more formal in a
computer-interpretable input language, but we also use the following notational
conventions and some short-hands to keep our Alice&Bob notation compact yet
still precise:

– Variables representing fresh terms (of sort Fresh) and general message terms
(of sort Msg) are denoted by lower case letters, possibly with subscripts.

– Variables representing public terms (of sort Public), including role names,
are denoted by capital letters. In the following example, the principal in role
A sends her own name to the principal in role B,

A→ B : A.

Note that the ‘A’ before the colon denotes the name of a role while the ‘A’
after the colon denotes the name of the principal that executes role A during
an execution of the protocol.

– Constants are public terms that are denoted as strings in single quotes.
Below, the principal in role A sends the constant ‘Hello!’ to the principal in
role B:
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A→ B : ‘Hello!’.

– The asymmetric encryption of a message m with the public key pk(A) of
principal A is denoted by {m}pk(A). This is syntactic sugar for enc(m, pk(k)),
where enc( , ), dec( , ), and pk( ) are operators defined by the equation

dec(enc(m, pk(k)), k) = m. (1)

Thus pk(A) is syntactic sugar for pk(k), where k is a private key (a fresh
term) that A knows.

– Digital signatures are a special case of asymmetric encryption, with sk(A)
denoting the secret key k of the principal in role A with the associated public
key denoted as pk(A). Signature verification is defined by the equation

sigverify(sign(m, sk(A)),m, pk(A)) = True. (2)

This equation is treated as a predicate by principals. In protocol analysis
tools such as Tamarin, it is possible to restrict the protocol executions
analyzed to those that fulfill the predicate.

– The symmetric encryption of a message m with the secret key k(A,B) shared
by the principals A and B is denoted by {m}k(A,B). This is syntactic sugar
for senc(m, k), where senc( , ) and sdec( , ) are operators defined by the
equation

sdec(senc(m, k), k) = m (3)

and k(A,B) = k for a shared secret key k (a fresh term) that both A and B
know.

– For each principal A, we assume that A’s initial knowledge contains its own
private key sk(A). Moreover, A’s initial knowledge includes for each principal
B that principal’s public key pk(B), and the shared secret key k(A,B).
These keys need not be explicitly specified as a principal’s initial knowledge.
The corresponding encryption functions and their definitions (1) and (3) are
included in the equational theory by default. Similarly, pairing and projection
of terms are also included and they satisfy the following two equations.

fst(pair(a, b)) = a

snd(pair(a, b)) = b

For n ≥ 2, we write (a1, . . . , an) for the repeated, left-associative application
of the pairing operator to the terms a1, . . . , an. We drop the parentheses
whenever the resulting expression is unambiguous.

With these conventions, Figure 2 shows a specification of the simplified Ker-
beros authentication protocol in our Alice&Bob syntax.

3 From Equations to Rewriting Rules

We translate Alice&Bob protocol scripts to a tool’s input language via an inter-
mediate representation called role scripts. A role script represents a principal’s
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1. C → S : (n). C, V, n
2. S → C : (k). {k, V, n}k(C,S), {k, C}k(V,S)

3. C → V : (t, t′). {t, t′}k, {k, C}k(V,S)

4. V → C : {t}k

Fig. 2. The simplified Kerberos authentication protocol in our Alice&Bob specification.

view of the protocol specification. It consists of the principal’s send and receive
actions, which each take a message as an argument. The principal sends and
receives messages to and from a channel, without information on who the actual
communication partner is.

3.1 Role Scripts for Protocols

Given input in Alice&Bob notation, we first check its executability under the
fine interpretation of Caleiro et al. [9]. We explain this in Section 3.2. Then
we translate the protocol to role scripts, one role script for each protocol role.
We add appropriate checks to be taken by the principals receiving messages, in
Section 3.3. In Section 3.4 we provide an example that illustrates our algorithms.
Afterwards we can generate output in the input language of any suitable protocol
verification tool, and we have implemented this for Tamarin. Output for other
tools could be generated from the intermediate role scripts in a similar fashion.

Role scripts have the same syntax as Alice&Bob messages described in Sec-
tion 2.2. They also include the knowledge principals acquire from the messages
they receive; in this way, the role scripts make all information explicit.

We represent a protocol by the equational theory its operators support, the
security goals of interest, and a collection of role scripts that specify the mes-
sage exchanges. Each role script consists of a name, an initial knowledge, and an
(ordered) list of actions to be performed. The actions are sending or receiving
a message, creating nonces, and updating the principal’s knowledge afterwards.
Both incoming and outgoing messages contain the name of the designated part-
ner role. In the derived role script specification, our algorithm explicitly states
which generated names are fresh, i.e., nonces, and the checks that need to be per-
formed by roles on received messages. Moreover, the specification of the secrecy
of a given term, as well as non-injective and injective agreement [20] between
roles is supported.

3.2 Deciding Executability

An Alice&Bob specification is a list of message exchange steps. A step is exe-
cutable if the sender’s knowledge (at that point in the protocol’s execution) is
sufficient to create the message specified to be sent. Message creation here refers
to the capability of the principal to (i) generate new nonces and add them to his
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knowledge, and (ii) apply operators to messages in his knowledge. Note that to
derive a principal’s knowledge based on the messages he previously received, it is
necessary to apply operators (like decryption) and use their algebraic properties.
An Alice&Bob specification is executable if all steps of all roles are executable.
Thus to decide whether an Alice&Bob specification is executable, we must de-
termine for each step of every role whether the term specified to be sent in the
step can be derived from the principal’s knowledge at that point in the protocol.

Without equational theories, we have a simple separation of knowledge deriva-
tion rules into construction and deconstruction rules, reminiscent of Paulson’s
inductive approach, where they are called synthesis and analysis rules. A simi-
lar procedure can be used with equational theories that are subterm-convergent
and we now give the high-level description of this. All operators can be applied
as construction rules that produce, bottom-up, constructed terms. From each
equation of the theory, we extract several deconstruction rules that produce,
top-down, (de-)constructed terms.

To prevent endless loops, we split an agent’s knowledge into two sets, the set
of constructed terms C and the set of terms to be deconstructed D. Construction
rules may only be applied to terms in the set C and produce terms that we add to
C. Deconstruction rules take a term from the set D and zero or more terms from
C and produce terms that we add to D. Moreover, we have one rule that may add
any term fromD to C. As a result, constructed terms never need be deconstructed
later because deconstruction yields a subterm (due to the subterm-convergence
property) that must have been used in the construction of the term, and thus is
known already and this shorter derivation can be used.

More precisely, construction rules are created as follows: Let Cn denote the n-
fold Cartesian product of C. Let f ∈ Σ be an n-ary function symbol. Then we add
the rule (t1, t2, . . . , tn) ∈ Cn ` f(t1, . . . , tn) ∈ C to the set of construction rules.
In particular, there is exactly one construction rule for each function symbol.

For deconstruction rules, let l = r be an equation oriented such that r is
a constant or a strict subterm of l. If r is ground, no deconstruction rule is
necessary, as the specifications of ground terms are public knowledge. Otherwise,
we obtain a set of deconstruction rules for every occurrence of r in l as follows.
(See drules and cprems functions in [28, Section 3.2.3].)

1. Consider the set positions of all positions p in l that mark a subterm equal
to r, i.e., all p such that l|p = r.

2. For each p ∈ positions, consider all positions Dp that are strictly above p
and not equal to [ ], i.e., subterms l|p′ of l that contain the term r at position
p′′ in l|p′ , i.e., l|p′.p′′ = r for some p′′ 6= [ ], except for l|p and l.

3. For each p′ ∈ Dp, consider the set Cp′ of positions that have a sibling above
or equal to p′.

4. The deconstruction rules are

l|p′ ∈ D ∧

 ∧
q∈Cp′

l|q ∈ C

 ` l|p ∈ D, (4)

9



Input: M .
M ′ := M

(*) ∀m ∈M , ∀drule(l, q) ∈ drules:
t := apply drule(l, q) to m

if t 6= ⊥ ∧ t 6∈M
then M ′ := M ′ ∪ {t}

if M ′ 6= M then M := M ′ goto (*)

return M

Input: M, t.
D := close(M)
C := M ∪ D
if t ∈ constructall(C, size(t))

then return true

else return false

Fig. 3. Algorithm close(M) (left) and algorithm derivable(M , t) (right).

for each p′ ∈ Dp, where l|p′ must be a term in D and the terms corresponding
to positions in Cp′ are in C. The deconstructed term l|p is added to D.

In the following, we call these rules drules, and we denote such a rule as
drule(l|p′ , p′′), where p′′ is as in Step 2 above and l|p′ is the left-most term in
Rule (4). By applying a drule drule(x, q) to a term t we obtain t|q if x matches t
and there exist terms in C fulfilling the remaining requirements of the left-hand
side of the rule, and ⊥ otherwise. We can now use these rules with the following
effective, but computationally expensive, procedure to compute the closure of D
under application of drules to terms in D. The closure algorithm is as follows.

Closure algorithm. Figure 3 (left) provides pseudo-code for the algorithm
close(M). This algorithm repeatedly applies all drules to all terms in M , adding
the resulting terms to M , until a fixed point is reached.

This algorithm always terminates on finite input sets D. Let D be the set
of all (sub-)terms of elements in D. Let D̂ be the result of applying the closure
algorithm to D. All terms derivable from D are in D due to subterm-convergence,
so D ⊆ D̂ ⊆ D. The closure algorithm monotonically increases its set of derived
terms M . It terminates when no element is added to M in an iteration. As
the resulting set D̂ is bounded above by the finite set of (sub-)terms, i.e., D,
termination is ensured.

Derivability. To decide whether a term t is derivable from a given knowledge
set M , we use the algorithm derivable(M, t), given in Figure 3 (right). The
algorithm first computes the closure of M and the size of t. It then uses the
procedure constructall, with the closure and t’s size as input, to generate all
terms, up to the given size, which are built from elements of the closure with
any operator application. The term t is then derivable if and only if it is in this
set of constructed terms. Since t is finite, the derivability check terminates.

Our derivability algorithm is sound: the above derivability procedure only
returns true for terms that are actually derivable because it only uses drules
(in the closure algorithm) and construction rules on the initial set of terms. Our
algorithm is also complete as it returns the correct answer true for all derivable
terms. We sketch a proof by contradiction of this: Assume there is a term t that
is derivable from M for which our algorithm returns false. That term is derived
using operator application and simplification with the equational theory on the
terms in M . If t is built using only operator application, then it would trivially
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be derivable according to our algorithm, which is a contradiction. Otherwise
an equation in the equational theory must be used in the derivation. Pick the
smallest subterm s of t on which some equation is applicable, i.e., there is no
proper subterm of s for which any equation can be applied. As the equations
are subterm-convergent, applying an equation results in a subterm s|p at some
position p (or a constant, which is known anyway) which must be constructed
using only operator applications. Then we can replace s by s|p in the derived
term t to create a term t′. Now there is one less equation application possible on
t′. We can repeat this until no more equation can be applied as there is a finite
number of equation applications to start with. Thus our algorithm returns true
for this term t as well, which is a contradiction.

3.3 Checking Received Messages

For cryptographic protocols, it is not only important that all participants can
generate all the outgoing messages, but also that each participant checks each
incoming message as thoroughly as possible, to make sure it is as expected and
that the other principals have not deviated from the protocol.

An obvious example of what to check is that a message authentication code
received matches the intended message. Similarly, if a principal generates a
nonce, sends it, and expects to receive it in a subsequent message, he should
check that the nonce he receives actually matches the nonce he generated. These
are sensible checks that should be included in principals’ role scripts; but one
must take care to avoid unrealistic or even infeasible checks.

Example 1. Consider again the Kerberos authentication protocol shown in Fig-
ure 2. In this protocol, it is not possible for the agent C to verify in Step 2 that
the key k appearing in the first ciphertext is equal to the key k in the second
ciphertext. We therefore do not add such a check to C. However, C can verify
that the nonce n generated and sent to S as well as the identity of the intended
communication partner V in Step 1 are equal to the nonce n and the identity V
appearing in the first ciphertext in Step 2. Hence we add these two checks to C.

In general, whenever the same name appears multiple times in a role script,
all its instances must be identical, except for those that the principal in question
cannot actually analyze and check. An example of this is a key inside a ticket
created for a different principal, such as is the case for the principal C in the
second ciphertext in Step 2 of Kerberos. The principal cannot see the content
of that ticket and thus one must not add checks to this principal on this opaque
data.

The key ideas of the algorithms, which we describe in detail in the rest of this
section, are as follows. We compute the closure of the agent’s knowledge with
the above closure algorithm, but track additional information on how terms
are derived. Then, for each received message, we check if any of the accessible
parts of the received message were previously known to the agent. If so, we
generate a check that compares the received message part in question to the
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previously known terms. To determine which parts are accessible, we use the
closure algorithm as well. Essentially, we store all the received terms and the
terms derived from them in a marked set. We test if any term pattern in the
marked set can be generated in different ways from the current knowledge (which
includes other received messages), and if so we generate a check that the resulting
role script should make. Note that this includes the possibility of comparing
(parts of) two received messages with each other if they are supposed to be the
same. We now delve into the formal details.

Let M be the agent’s knowledge. We annotate every term in M with its
provenance and we distinguish between D-terms and C-terms with different an-
notations. We can thus partitionM into the two subsetsD and C. The annotation
is constructed as follows. If m ∈ M was received in the i-th protocol step, it is
in D and annotated with [i] and denoted m[i]. The subterms of a term m[i] are
additionally annotated with their position in m[i], while for the term itself we
use m[i] as shorthand for m[i:[ ]]. We call these annotations locators. These terms
are obtained by applying a drule. For example, suppose that m[3] = 〈t, t〉, then
the two subterms of m[3] are m[3:[1]] = t, m[3:[2]] = t. Terms in C are annotated
by sets of locators rather than a single locator. When a term m[i:p] ∈ D is added
to the set C, its annotation is changed from [i : p] to the one-element set {[i : p]}
and the term is written as m{[i:p]}. Terms that are constructed from terms with
locators are annotated with the set of locators consisting of the union of the
locators of all terms used in the construction. I.e., the term f(tj11 , . . . , t

jk
k ) is

annotated with the set j1 ∪ . . . ∪ jk. The need for locators will become clear in
the algorithm that computes the checks on the received messages.

Definition 2. We say that a term m[i:p] can be verified with knowledge set M ,
if it can be constructed from M without using its subterms. Formally, m[i:p] ∈ D
is equal to some mL ∈ C, where [i : p] is not a prefix of any element in L (and not
equal to one). We define the function verifies(M,m[i:p]) to return the witness
mL if it exists and ⊥ otherwise.

Note that the only terms that must be verified by an agent in a protocol execution
are D-terms.

While generating an agent’s role script from an Alice&Bob specification we
insert all possible checks that can be performed on received messages. In some
cases, a received message can only be checked after further messages have been
received, for instance in commitment schemes. In such a scheme, a principal re-
ceives an encrypted message first and the decryption key afterwards. The prin-
cipal cannot check the first message until he receives the key. We use the set Γ
to store messages for which checks may still be needed.

We start with the set Γ = ∅ and the set M equal to the agent’s initial knowl-
edge. All terms in the initial knowledge are annotated with [0]. Fresh nonces
generated by the agent are also annotated with [0] and added to M , but not
to Γ . We incrementally build the checks for messages in the order they are re-
ceived. Let m be a message received in the i-th protocol step. We generate the
possible checks by applying the algorithm agent-checks(m[i],M, Γ ) described
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Input: m[i], M , Γ .

Γ := Γ ∪m[i]

M := M ∪m[i]

M ′ := M

(*) ∀m[j:p] ∈M , ∀drule(l, q) ∈ drules:

t[j:p·q] := apply drule(l, q) to m[j:p]

if t[j:p·q] 6= ⊥ ∧ t[j:p·q] 6∈M

then Γ := Γ ∪ {t[j:p·q]}, M ′ := M ′ ∪ {t[j:p·q]}
if M ′ 6= M then M := M ′ goto (*)

Γ ′ := ∅
∀γ ∈ Γ ,

if check(γ,M) = ⊥
then Γ ′ := Γ ′ ∪ γ
else print check(γ,M)

Γ := Γ ′

return M,Γ

Fig. 4. Algorithm agent-checks(m[i], M , Γ )

Input: m[i:p], M .

mL := verifies(M,m[i:p])
if mL 6= ⊥

then return m[i:p] =? mL

else return ⊥

Fig. 5. Algorithm check(m[i:p], M)

below on the message m[i], M , and Γ and afterwards update M and Γ with the
algorithm’s output. We define agent-checks in Figure 4. It uses the algorithm
check, defined in Figure 5, that checks individual messages.

The algorithm agent-checks takes as input a messagem[i], a set of unchecked
terms Γ , and a knowledge set M . It first adds m[i] to both Γ and M . It then
closes the knowledge set M with our knowledge closure algorithm modified to
respect locators. Afterwards, it calls the check algorithm for all terms in the
resulting set Γ . The result from check is used to add checks to the generated
role script. Terms for which checks were added are removed from Γ .

The check algorithm creates checks for individual messages as follows. Its
input is an annotated message m[i:p] (i.e., i-th protocol step, position p), and
knowledge set M . If m[i:p] can be verified with M (see Definition 2) then check

returns the corresponding check m[i:p] =? mL, otherwise it returns ⊥ to signify
that no check is possible for this term with the given knowledge set.

Note that for the term m[i:p], the locator implicitly keeps track of how the
term was derived from m[i]. That way the check created in check compares the
term derived from the received message m[i] with the term mL constructed by
the agent.
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We briefly sketch why the checking algorithms are sound and complete. By
construction, all checks m[i:p] =? mL generated by the check algorithm are
computable. Both the left-hand term and the right-hand term are in the agent’s
knowledge. The checks are correct in the sense that m[i:p] is a subterm of a re-
ceived message term and none of the subterms of mL are derived from m[i:p].
That is, the terms used to compute the left-hand and right-hand side have dif-
ferent origins. Finally, we generate all possible checks in the agent-checks algo-
rithm since every subterm that can be derived from a received message is added
to the set Γ . Each term in Γ that can be constructed from terms that have a
different origin is checked against such a construction.

3.4 Putting It All Together

For a given protocol, we execute the above algorithms for each role. If the algo-
rithms decide that the role is executable, they create a role script for the role’s
actions in the protocol. This includes the checks the role needs to make and
warnings that are returned to the user. Essentially, everything left in Γ at the
end of the protocol gives rise to a warning. Of course, if some term t cannot be
checked and a warning is issued, then all terms that use t as a proper subterm
cannot be checked either, and we therefore do not issue warnings for these terms.

The warnings are intended to inform the protocol designer about which mes-
sage (sub-)terms the specified roles must accept as valid without having a way
to check them. The protocol designer should then ensure that these unchecked
parts are intentionally given as part of the specification. In particular, (i) they
could be irrelevant (and should be dropped), or (ii) they are tickets that are just
forwarded and checked by another role (and hence are there for a good reason),
or (iii) they are important and protected under encryption with appropriate au-
thentication. In this last case, the unchecked message part contains new terms
for this role that the role must trust, and have confidence in, due to the overall
protocol run. This could be, for example, a fresh key from a key distribution
server, and generally speaking a term that is only received and not confirmed in
any manner. Hence our approach not only creates explicit checks, but it deter-
mines which terms are not actually checked, and it calls the protocol designer’s
attention to this by issuing warnings.

Consider again the Kerberos authentication protocol previously given in Fig-
ure 2. By the conventions stated in Section 2.3, the protocol implicitly uses
Equation (3) for the symmetric encryption and decryption of terms. Thus Σ
contains the symbols senc and sdec. By Section 3.2 we first obtain the follow-
ing two construction rules:

(x, y) ∈ C2 ` senc(x, y) ∈ C (5)

(x, y) ∈ C2 ` sdec(x, y) ∈ C. (6)

Next we apply the four step procedure in Section 3.2 to obtain a set of decon-
struction rules for Equation (3).

14



sdec(senc(m, k), k) [ ]

[1] senc(m, k)

[1, 1] m k [1, 2]

k [2]

Fig. 6. Tree of subterms of sdec(senc(m, k), k) and their positions.

1. We have l = sdec(senc(m, k), k) and r = m. As illustrated in Figure 6,
there is one position p in l such that l|p = r, namely p = [1, 1].

2. By Figure 6, there is exactly one position that is above p = [1, 1] and not
equal to [ ], namely [1], so D[1,1] = {[1]}.

3. Figure 6 shows that C[1], the set of positions that have a sibling above or
equal to [1], is {[2]}.

4. Our deconstruction rule is therefore:

l|[1] ∈ D ∧ l|[2] ∈ C ` l|[1,1] ∈ D,

that is
senc(m, k) ∈ D ∧ k ∈ C ` m ∈ D.

Similarly, we obtain three construction rules for the pairing operator pair

and the two projections fst and snd, and two deconstruction rules for the two
projections. We omit the details.

We now turn to the role scripts. For readability, we omit irrelevant terms
from a role’s knowledge. The three role scripts in the Kerberos protocol are then
given as follows:

– Role script for role S

S knows: S[0], C [0], V [0], k(C, S)[0], k(V, S)[0]

1. C → S : (n).((C, V ), n)
S checks : (C, V )[1:[1]] = (C [0], V [0])
S checks : C [1:[1,1]] = C [0]

S checks : V [1:[1,2]] = V [0]

S knows: S[0], C [0], V [0], k(C, S)[0], k(V, S)[0], n[1:[2]]

2. S → C : (k).{k, V, n}k(C,S), {k,C}k(V,S),
S warns : n[1:[2]]

This role script is executable because S can generate the message in Step 2
from its knowledge shown above Step 2 by applying pairing and encryption.
Our algorithm obtains the check after Step 1 as the first subterm (C, V )
of the received pair ((C, V ), n) is constructable from the initial knowledge.
Also, both subterms of this pair, namely C and V , are constructable from
the initial knowledge as well, so our algorithm adds an additional check each.
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Note that our algorithm produces redundant checks here (those for C [1:[1,1]]

and V [1:[1,2]]), but these can be filtered out afterwards as they are subterms
of the term (C, V )[1:[1]] checked against the same right-hand side. The only
warning produced is for n[1:[2]], which is indeed a term that this principal
cannot check anything about.

– Role script for role C

C knows: S[0], C [0], V [0], k(C, S)[0]

1. C → S : (n).C, V, n
2. S → C : (k).{k, (V, n)}k(C,S), {k,C}k(V,S)

C checks : (V, n)[2:[1,1,2]] = (V [0], n[0])
C checks : V [2:[1,1,2,1]] = V [0]

C checks : n[2:[1,1,2,2]] = n[0]

C knows: S[0], C [0], V [0], k(C, S)[0], n[0], k[2:[1,1,1]]

3. C → V : (t, t′).{t, t′}k, {k,C}k(V,S)
4. V → C : {t}k

C checks : ({t}k)[4] = {t[0]}k[2:[1,1,1]]
C checks : t[4:[1]] = t[0]

C warns : k[2:[1,1,1]]

This role script is executable because C can generate the first message from
its initial knowledge and the message in Step 3 from its knowledge shown
above Step 3. The term k is obtained by applying Equation (3) to the first
component of the pair received in Step 2 and picking the first element of
the resulting pair. The only resulting warning is for the received key, which
cannot be checked.

– Role script for role V

V knows: S[0], C [0], V [0], k(V, S)[0]

3. C → V : (t, t′).{t, t′}k, {k,C}k(V,S)
V checks : C [3:[2,1,2]] = C [0]

V knows: S[0], C [0], V [0], k(V, S)[0], k[3:[2,1,1]], t[3:[1,1,1]], t′[3:[1,1,2]]

4. V → C : {t}k
V warns : k[3:[2,1,1]], t[3:[1,1,1]], t′[3:[1,1,2]]

This role script is executable because V can generate the message {t}k from
its knowledge. The resulting warning is about the three terms for which no
check can be included: the key k and the two nonces t and t′.

4 Automated Translation to Tamarin

An instance of our Alice&Bob translation to a tool-supported protocol specifi-
cation language is described in more detail in [18]. The translation goes from
Alice&Bob via an intermediate representation format to Tamarin’s input lan-
guage. The intermediate representation is functionally the same as the role
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scripts described in this paper, with minor syntactic differences. Tamarin uses
the tool-generated input to analyze the given protocol.

On loading a protocol theory, Tamarin detects when a protocol rule is not ex-
ecutable; however our automatic translation only produces theories that meet the
executability requirement. Tamarin supports user-specified subterm-convergent
equational theories. Our translation therefore simply copies the equational the-
ory with some minor syntactic changes. Checks on received messages are im-
plemented by pattern matching on the premises of rules. The security goals
of secrecy, non-injective agreement, and injective agreement are translated into
their canonical definition used when specifying protocols for Tamarin.

More detail and further examples are available in [18] and the tool is avail-
able at the webpage [3]. Due to space constraints, we do not list the Tamarin
specification for our running example produced by the translation.

There is also a prototype implementation of an explicit check generator,
following our algorithms described above. It is available at [3].

5 Related Work

We will first discuss other research related to Alice&Bob notation. Afterwards we
consider different tools’ input languages, which are the target languages for our
translation effort. Finally, we discuss other proposed translation mechanisms.

Formalization of Alice&Bob Notation. Alice&Bob notation, while intuitive, suf-
fers from ambiguities and imprecision as shown in Section 2.1. To clarify what
protocol specification notation actually means, Caleiro et al. [8,9] and Möders-
heim [26] have investigated the semantics of Alice&Bob notation.

Caleiro et al. work with a fixed message model and consider how princi-
pals’ knowledge increases during a protocol run as principals receive messages.
Moreover, they provide an operational semantics, based on the spi calculus, that
makes explicit the actions that a principal must execute. The key aspect of
the operational semantics is that it provides detailed checks to be performed
by principals to ensure there was no adversary involvement. Our semantics of
Alice&Bob protocol specifications are based on this work.

In contrast to Caleiro et al.’s semantics, which is based on a fixed message
model, Mödersheim gives a formalization of Alice&Bob notation that is defined
over an arbitrary algebraic theory. However, his method does not directly yield
the actions that must be taken by honest principals.

Input Languages. Each automated security protocol verification tool defines its
own input language. Most of these languages look rather different from Al-
ice&Bob notation. However, their underlying concepts are often similar to the
core idea of Alice&Bob notation: communication is modeled by specifying the
messages that are sent and received by principals participating in a protocol run.
Most input languages however do not explicitly pair the sender and the receiver
as is done in Alice&Bob notation.
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In Maude-NPA [15] protocols are specified by defining strands, which are
similar to the roles used in our work. A strand specifies a sequence of sending
and receiving messages, from one participant’s point of view. Using Maude’s [11]
unification capabilities, Maude-NPA then reasons modulo equational theories.

Similarly, protocols in Scyther [13] are specified by explicitly stating which
actions (sending, receiving, generation of fresh numbers, and claims of security
properties) must be taken by principals. Scyther-proof [23] is a tool based on a
proof-generating variant [24] of the verification theory underlying Scyther. Its
input language uses proper Alice&Bob-style notation for specifying protocols.

In ProVerif [7] protocols are specified in the applied pi calculus as the par-
allel compositions of processes that correspond to roles in Alice&Bob notation.
Checks on received messages must be explicitly stated.

Tamarin’s [29] input language is based on specifying rewriting rules for
multisets of so-called facts. State is usually expressed with the help of user-
defined facts and communication by the predefined In and Out facts, which
represent sending and receiving actions. Hence, Tamarin also works by stating
the send and receive actions of principals.

Even though all of the tools’ input languages have aspects in common with
Alice&Bob notation, they all heavily rely on the specification of additional in-
formation, such as algebraic properties and typing rules, which must be stated
explicitly. Mödersheim uses an elegant Alice&Bob-style language called AnB [26]
where the algebraic properties of the message model are assumed to be fixed,
and consequently need not be included in the protocol specification itself. In
our work, we fuse the different approaches into an input language that has a
pre-defined message model, similar to [26], but which is extensible with user-
specifiable subterm-convergent equations while leaving the adversary model un-
specified.

Existing Translations. There are two steps that a translation from an Alice&Bob
input language into a tool-specific language must perform. The first is to verify
that a given Alice&Bob specification is executable and the second is to extract
the security checks that a role must perform on received messages. It is in these
two steps that existing translations differ. Executability is important, as oth-
erwise protocol participants cannot carry out their steps and run the protocol.
Non-executability indicates either a mistake in the protocol or its formaliza-
tion, for example, a missing setup assumption. Checks on incoming messages
are also important, for example, to ensure that the message authentication code
a participant received refers to the message actually received.

Chevalier et al. [10] translate protocol narrations to strand-like role scripts
that are annotated with explicit unifiability conditions. Their protocol narrations
are similar to our Alice&Bob input, i.e., they specify the messages exchanged
as well as the sending and receiving agent, and the initial knowledge of each
agent. They verify executability during the translation to role scripts. Their
security checks are such that each participant verifies received messages as far
as possible. Namely, a message item that is reused in the description must be
the same for the receiver in all incoming messages. This imposes checks that are
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practically infeasible for agents to perform and we give an example in Section 3.3,
Example 1. For these cases, we do not add such infeasible checks; instead we warn
the protocol designer that something might not be working as intended due to
the inherent imprecision of such protocol narrations or Alice&Bob specifications.
The output of their translation is not directly analyzable by any existing tool,
unlike ours, which can directly output descriptions that can be analyzed by
Tamarin, in addition to producing role scripts.

Another alternative translation is based on endpoint projections [22]. The
protocol, given in a language close to Alice&Bob notation, is transformed in
multiple steps to a role script-like language. Along the way, the implicit assump-
tions in the input are made explicit by making choices. The endpoint projection
must, in particular, deal with the asymmetries introduced by security protocols,
for example, the receiver might not (yet) know the key being used in an encryp-
tion. Making these choices to get to an explicit presentation is similar to what we
do. The main restrictions in their work, compared to ours, is that their transla-
tion cannot handle equational theories beyond equations formalizing symmetric
and asymmetric encryption and it does not allow principals to transmit two or
more messages in a row without receiving a message in between.

The Common Authentication Protocol Specification Language CAPSL [14]
uses message list input similar to our Alice&Bob specifications, extended with
Casper’s % operator [21] to indicate receiver patterns. The use of these extended
patterns makes protocol specification more cumbersome, but it substantially sim-
plifies the problem of determining which checks should be made when receiving
messages, which we do in our work without resorting to such patterns. CAPSL
translates the input message lists into an intermediate language CIL, given in
multiset rewriting. Subsequent translations from CIL to different analysis tools,
such as Maude, have also been carried out [14].

6 Conclusions

We have presented an analysis of Alice&Bob style protocol specifications, yield-
ing a translation into an intermediate role script-like format that handles ex-
ecutability concerns and generates appropriate checks for correct message re-
ception. We have also implemented a further translation of this intermediate
format to the input of Tamarin, a cryptographic protocol verification tool that
uses multiset rewriting for protocol specifications. This translation is automated
and allows Alice&Bob protocol specifications to be analyzed and verified with
Tamarin.

Alice&Bob notation is simple and can be used by novices. Indeed we be-
lieve that our work could help to teach undergraduate students about protocol
specification and analysis in a formal methods course, with some caveats. The
students can specify protocols nicely using Alice&Bob notation, and, when the
back-end verification succeeds, they have proven the security property. However,
when verification fails, the tool’s counter-example is still in a format that is not
very meaningful for students. To make this viable for teaching, one would need to
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define and implement a back-translation from the tool’s output representation to
Alice&Bob like syntax that is easier to understand. This back-translation should
benefit from knowledge gained in the initial translation from Alice&Bob notation
to the tool’s input. In particular, for Tamarin, this counter-example output is
in the form of a constraint system of dependency graphs. We are investigating
the conversion of these back to Alice&Bob notation as future work.
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