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ABSTRACT
We address the problem of secure data deletion on log-
structured file systems. We focus on the YAFFS file system,
used on Android smartphones, and on the flash translation
layer (FTL), used in SD cards and USB memory sticks. We
show that neither of these systems provide temporal data
deletion guarantees and that deleted data remains indefi-
nitely on these systems if the storage medium is not used
after the data is marked for deletion. Moreover, the time
that data remains on log-structured file systems increases
with the storage medium’s size.

We propose two user-level solutions that achieve secure
deletion: purging, which ensures that all data is deleted, and
ballooning, which reduces the expected deletion latency. We
show that these two solutions can be combined to guaran-
tee the periodic, prompt secure deletion of data regardless
of the storage medium’s size and with acceptable wear of
the memory. As these solutions require only user-level per-
missions, they enable the user to securely delete data even if
this feature is not supported by the kernel or hardware, over
which users typically do not have control. This, for example,
allows mobile phone users to achieve secure deletion with-
out violating their warranties or requiring non-trivial tech-
nical knowledge to update their firmware with a customized
kernel. Our solutions empower users to ensure the secure
deletion of their data without relying on the manufacturer
to provide this functionality. We implement these solutions
on Nexus One smartphones and show that they succeed in
secure deletion. When used properly, our solutions neither
prohibitively reduce the longevity of the flash memory nor
noticeably reduce the device’s battery lifetime.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.2
[Operating Systems]: Storage Management
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1. INTRODUCTION
Deleting a file from a storage medium serves two pur-

poses: it reclaims storage and ensures that any sensitive in-
formation contained in the file becomes inaccessible. When
done for the latter purpose, it is critical that the file is se-
curely deleted, meaning that its content does not persist on
the storage medium after deletion. Secure deletion enables
users to protect the confidentiality of their data if their stor-
age media are compromised, stolen, or confiscated under a
subpoena. In the case of a subpoena, the user may even
be forced to disclose all passwords or other credentials that
enable access to the data stored on the storage medium;
in such a scenario, to preserve the confidentiality of their
data, users can only sanitize their storage medium before it
is seized.

Secure deletion is almost always ignored in file system
design [5, 6, 21, 27, 31], largely due to performance rea-
sons. Typically, deletion is implemented as a rapid oper-
ation where a file is unlinked, meaning its metadata states
that it is no longer present while the file’s contents remain on
the storage medium until overwritten by new data [9]. The
time between deleting data and its actual removal from the
storage medium is called the deletion latency. Therefore,
deleted data remains accessible during the entire deletion
latency.

Secure deletion is particularly important on modern smart-
phones, as they increasingly store personal data such as the
owner’s private communication, browsing history, and loca-
tion history. Mobile phones further store business data, for
which company policy or legislation may mandate the data’s
deletion after some time elapses or at some geographic loca-
tions. Prior to this work, the only effective user-level secure
deletion solution available for mobile phones was the factory
reset, which securely deletes all user data on the phone by
returning the phone to its initial state. This is clearly inap-
propriate for users who wish to selectively delete data, such
as some emails, but still retain their address books and in-
stalled applications. Other applications, such as FileShred-
derPro [20], claim to securely delete files by overwriting
them with random data. However, due the nature of log-
structured file systems, this solution is no more effective
than deleting the file, since the new copy invalidates the
old one but does not physically overwrite it [27].



In this work, we address secure deletion on modern smart-
phones, focusing on the flash file system YAFFS [6]. YAFFS
is a log-structured file system developed specifically for flash
memory storage. Android phones’ internal memory uses
YAFFS to store data such as browsing caches, maps caches,
names of nearby wireless networks, GPS location data, SMS
messages, electronic mails, and telephone call listings.

We also address secure deletion on flash memory when it
is accessed through a flash translation layer (FTL). An FTL
is an indirection layer between the flash memory and the file
system that abstracts away all the nuances of flash memory,
allowing traditional file systems such as FAT [14] to be used
on the storage medium. Internally, FTLs implement a log-
structured file system, mapping logical sectors to physical
sectors [1]. FTLs are widely used on SD cards, USB sticks
and solid state drives.

We analyze how deletion is performed in YAFFS and on
an FTL and show that log-structured file systems in general
provide no temporal guarantees on data deletion; the time
deleted data persists on a log-structured file system is pro-
portional to the size of the storage medium and related to the
writing behaviour of the device using the storage medium.

We propose user-level solutions for secure deletion in log-
structured file systems: purging, which provides guaranteed
time-bounded deletion of all data previously marked to be
deleted, and ballooning, which continuously reduces the ex-
pected time that any piece of deleted data remains on the
medium. We combine these two solutions into an effective
hybrid solution.

We implement these solutions on an Android smartphone
(Nexus One) and show that they neither prohibitively re-
duce the longevity of the flash memory nor noticeably reduce
the device’s battery lifetime. We simulate our solutions for
phones with larger storage capacities than the Nexus One,
and show that while purging alone is expensive in time and
flash memory wear, when combined with ballooning it be-
comes feasible and effective. Ballooning provides a trade off
between the deletion latency and the resulting wear on the
flash memory, and also substantially reduces the deletion
latency on large, sparsely occupied storage media.

The rest of this paper is organized as follows. In Section 2
we give background on flash memory and file systems. In
Section 3 we examine the current state of secure deletion
in log-structured file systems. In Section 4 we present our
solutions, along with experimental results. In Section 5 we
discuss related work and in Section 6 we draw conclusions.

2. SYSTEM MODEL AND BACKGROUND

System Model.
We consider a scenario in which users have private sensi-

tive data on mobile storage media that they wish to selec-
tively securely delete. This includes cache files that should
be continually deleted, such as location data encoded by
GPS data or observed wireless networks. All valid data must
remain available during the deletion.

We consider the coercive attacker as our adversary. This
attacker can—at any moment—both obtain the user’s stor-
age medium and compel the user to reveal any secret keys
and passphrases [26]. The attack’s unpredictable nature
prevents the user from performing any sanitization proce-
dures before disclosure. This differentiates our secure dele-
tion problem from secure data deletion in the context of

repurposed hardware [9].
Under this attacker model, common solutions to preserv-

ing data confidentiality fail. Encrypting all the data on the
storage medium does not work since the adversary is given
all our encryption keys. The use of factory reset is impracti-
cal as the unpredictable compromise time requires deleting
the entire phone’s memory with such frequency that little
useful data could reside on the storage medium.

We therefore need novel solutions to this problem. So-
lutions can exist at either of two system levels: user-level
and kernel-level. User-level means that the solution must
be executable as an application that does not require any
elevated permissions or modifications to the operating sys-
tem. This mode of access is greatly limited: an application’s
interaction with the file system consists solely of the creation
and deletion of its own local files. It cannot change the file
system’s behaviour in any way to achieve secure deletion.
However, as we show, it empowers users to integrate secure
deletion solutions themselves without waiting until they are
offered by storage medium manufacturers. This is important
given the failure of manufacturers to provide sanitization or
to correctly implement sanitization [30]. Kernel-level access
is much less limited: it assumes that arbitrary changes can
be made to the file system and a new kernel can be in-
stalled on the device—allowing for more efficient solutions,
as kernel-level capabilities are a strict superset of user-level
capabilities.

Flash Memory.
Flash memory is a non-volatile storage medium consist-

ing of an array of electrical components that store informa-
tion [1]. A page of flash memory is programmed to store data,
which can thereafter be read until the page is erased [8].
Once programmed, the contents of flash memory should not
be altered in place, but rather an erase procedure must be
performed on erase blocks, which have a granularity larger
than read/write chunks [8]. The support of multiple pro-
grammings between erasures varies between flash types, and
its use is generally discouraged [23]. Flash erasure is costly:
its increased voltage requirement eventually wears out the
medium. Erase blocks can only handle 104 to 105 era-
sures [29] before wearing out and becoming unusable.

Log-structured File Systems.
A log-structured file system differs from a traditional block-

based file system (such as FAT [14] or ext2 [5]) in that the en-
tire file system is stored as a chronological record of changes
from the initial empty state. As files are written, new fixed-
size chunks are appended to the log indicating the resulting
change; a page can store either a file’s header or some data.
The file system maintains in volatile memory the appropri-
ate data structures to quickly find the newest version of each
header and data page [8, 6].

Log-structured file systems complicate secure deletion be-
cause the traditional solution of overwriting a file with new
content simply appends a second version of the file, while
the first copy still remains in the log. Similarly, encrypting
a file also appends a new encrypted version of that file, while
the plaintext remains in the log.

Data is removed from a log-structured file system dur-
ing garbage collection [8]. The garbage collector operates at
the erase block level, which has a larger granularity than a
page. While implementation details may vary, in principle



the garbage collector erases any erase block that only con-
tains deleted data, and also compacts erase blocks with a
significant amount of wasted space by first copying live data
to the log’s end and then erasing the old erase block.

Flash Translation Layer (FTL).
An FTL is a hardware or software device that interacts di-

rectly with the flash memory controller and exposes a block
device interface [1]. Any block file system, such as FAT [14]
or ext2 [5], can be used to store data on the flash memory,
and the FTL opaquely handles bad block detection, wear-
levelling, and garbage collection of erase blocks [1]. FTLs
are widely used in SD cards, USB sticks, and SSD drives.
FTLs are also used for the internal memory of iOS devices.

FTLs vary in implementation [7, 10], however they all
have a simple design. They map logical block addresses to
physical flash memory addresses [15] and effectively imple-
ment a log-structured file system over the flash erase blocks.
Updates to logical sectors are written to unused locations,
and the mapping is updated to reflect this change. The file
system should tell the FTL when it discards a sector, mean-
ing that the data in that sector has been deleted by the file
system and the FTL no longer needs to preserve the data
during erase block garbage collection.

The Linux ftl driver is an open-source implementation of
an FTL based on Intel’s specification [15]. This driver selects
erase blocks for garbage collection using a greedy algorithm,
where the erase block with the most wasted space is selected
to be compacted. To add some wear-levelling, it periodically
selects the erase block with the fewest past erasures instead.

YAFFS.
Yet Another Flash File System (YAFFS) is a log-structured

file system designed specifically for flash memory [6]. It is
notably used as the file system for the internal memory of
Android mobile phones [11].

YAFFS allocates memory by selecting an unused erase
block and allocating sequentially the numbered chunks in
that erase block. YAFFS searches for empty erase blocks
sequentially by the erase block number as defined by the
physical layout of memory on the storage medium, wrap-
ping cyclically when necessary. It begins its search from the
last allocated erase block and returns the first empty erase
block it finds. When the allocation of an erase block re-
duces the total number of empty erase blocks in the sys-
tem below a minimum threshold, then YAFFS performs
garbage collection to reclaim wasted space on partially-full
erase blocks. Garbage collection copies the valid chunks
from the partially-full erase block to the end of the log and
then erases the erase block. If there is no erase block that
can be compacted, that is, there is not a single unneeded
page stored on the medium, then YAFFS reports the file
system as full and fails to allocate an erase block.

Garbage collection in YAFFS is either initiated by a thread
that performs system maintenance, or takes place during
write operations. Usually, a few chunks are copied at a time,
whereby the work to copy an erase block is amortized over
many write operations. If the file system contains too few
free erase blocks, then a more aggressive garbage collection
is performed. In this case, erase blocks with any deleted
space are collected, and the procedure continues until the
entire erase block can be reclaimed.

YAFFS selects erase blocks for garbage collection using a

Figure 1: A lifetime of stored data. At time t0 the erase block

is allocated and data written onto it soon after. At time t1 the

data is deleted. At time t2 the erase block is reallocated, thus

removing the data from the medium. t2− t1 is called the deletion

latency, and t2 − t0 is called the erase block reallocation period.

greedy strategy based on the ratio of deleted chunks on an
erase block, however it only searches within a small moving
range of erase blocks with a minimum threshold for deleted
chunks. This cyclic and proactive approach to garbage col-
lection results in a strong cyclic trend in erase block alloca-
tions. When the system is very low on free space, YAFFS
selects the erase block with the most wasted space by exam-
ining all erase blocks in the storage medium.

3. DATA DELETION IN EXISTING
LOG-STRUCTURED FILE SYSTEMS

In this section, we investigate data persistence on log-
structured file systems by analyzing the internal memory
of a Nexus One running Android/YAFFS and simulating
larger storage media for both YAFFS and an FTL. We in-
strument the file system at the kernel level to log erase block
allocation information. Afterwards, we examine the deletion
latency for storage media of various types. Deletion latency,
illustrated in Figure 1, is the time that deleted data remains
accessible on the storage medium. In particular, we measure
the average and worst-case data deletion latency for specific
devices, application configurations and usage patterns.

Our results show that modern Android smartphones have
large deletion latency, where deleted data can remain in-
definitely on the storage media. This motivates our secure
deletion solutions in the next section.

3.1 Instrumented YAFFS
We built a modified version of the YAFFS Linux kernel

module that logs data about the writing behaviour of an
Android phone. We log the time and number for every erase
block allocation and erasure. This information shows us
where YAFFS stores data written at some point in time and
when that data becomes irrecoverable. This allows us to
compute the deletion latency of data in our simulation.

We used the instrumented phone daily for 670 hours, roughly
27.9 days. Throughout the experiment we recorded 20345
erase block allocations initiated by 73 different writers. A
writer is any application, including the Android OS itself or
one of its services (e.g., GPS, DHCP, compass, etc.). The ex-
periment’s logs show that median time between erase blocks
reallocations is 44.5 hours. When an erase block is realloca-
ted, it means that data deleted prior to reallocation is gone,
thus forming an upper bound for deletion latency.

3.2 Simulating Larger Storage Media
Log-structured file systems favour allocating empty erase

blocks before compacting partially-empty erase blocks [10,



6]. We hypothesize that the erase block reallocation period—
and consequently the deletion latency—is highly dependent
on the file system’s size. We tested this hypothesis by sim-
ulating the writing behaviour of an Android phone on sim-
ulated YAFFS and FTL storage media of various sizes. We
first describe our experimental setup and then present our
results.

Experimental Procedure.
To experiment with different flash storage medium sizes,

we simulated an Android mobile phone using a flash storage
medium in memory. We used our own discrete event simu-
lator that writes, overwrites, and deletes files on a storage
medium. This medium is a directory on our computer that
simulates accessing flash memory through a flash file system
or a block file system with an FTL.

We used the collected statistics from our instrumented
phone in Section 3.1 to determine the writing behaviour for
our discrete event simulator. We logged every chunk that
was written to the device for a week, and used this data
to compute the period between successive creations of new
files, and the type of file to create. A file type is defined by
its lifetime, a distribution over the period between opening
a file for write, a distribution over the number of chunks to
write to a file each time it is opened, and a distribution over
a file’s chunks that indicates where the writes will occur.

Additionally, we implemented a secret writer that oper-
ated alongside the simulated writers. It periodically wrote a
one-page secret message, waited until a new erase block was
allocated, and then deleted the secret message. We used this
to determine the deletion latency for data written at that
particular moment in time.

We performed experiments using the flash file system YAFFS
and the block file system FAT when accessed through an
FTL. YAFFS was mounted on a virtual flash storage medium
created by the kernel module nandsim. For our tests with
FTL, we used the ftl kernel module that implements a soft-
ware FTL layer for flash hardware, which we then simulated
in memory.

There were some differences between the YAFFS and FTL
configurations. The internal memory of the Android phone
has a page size of 2048 bytes, whereas the FTL driver has
a hardcoded size of 512 bytes that is consistent with the
page size of the file systems that are used on consumer de-
vices such as SD cards. Therefore, each FTL experiment
we performed has a four-fold larger YAFFS complement. In
our experiments, we kept the same number of page writes
the same between file systems, regardless of the difference
in size. We also used an erase block size of 64 chunks for
YAFFS (consistent with the Google Nexus One phone [11])
and 32 chunks for FTL (consistent with nandsim’s flash de-
vices with a 512-byte chunk size). This difference implies
that the same number of writes to both YAFFS and FTL
results in twice as many erase block allocations for the latter.

In our experiments, we ignored the small unaligned writes
to the virtual page map and to fixed sectors in the FAT file
system corresponding to updates to the file allocation table.
The Linux ftl driver is a simple implementation based on In-
tel’s specification [15], while FTLs used in consumer devices
have had well-funded development, and can be optimized to
deal effectively with these frequent writes [32]. The exact
implementation can also vary among devices, as the design
space and optimization possibilities of FTLs is a research

(a) YAFFS’ erase block allocation over time on an
Android phone.

(b) FTL’s erase block allocation over time in sim-
ulation.

Figure 2: Plot of erase block allocation over time for YAFFS and

an FTL. The time between two points on the same horizontal line

is the erase block reallocation period.

area of its own [10, 7]. We therefore collected data on the
writes we are certain must occur, and recall that for each
write, a (possibly amortized) number of additional writes
must also occur.

Deletion Latency.
We plotted the flash storage media’s erase block allocation

over time to gain intuition on its behaviour. Figure 2 (a)
shows the results for our YAFFS storage medium and (b)
for our FTL storage medium. The X-axis corresponds to
time, and the Y-axis represents the space of sequentially-
numbered erase blocks. A black square on the graph means
that an erase block was allocated at that time. For clarity,
Figure 2 (a) shows the allocations for every 15th erase block
and (b) for every 30th.

We present the results of our experiment in Table 1, which
gives the median and 95th percentile deletion times in hours
for secrets written onto the storage medium during simula-
tion. The results are provided for YAFFS and FTL parti-
tions of different sizes. The maximum measurement is unde-
fined because these systems provide no deletion guarantee.

We observe the effect of cyclic erase block allocation in
YAFFS, as there is both a linear growth in deletion latency
as the size of the partition increases, and a high percentile



Partition Deletion latency (hours)
size / type median 95th %ile
200 MB YAFFS 41.5 ± 2.6 46.2 ± 0.5
1 GB YAFFS 163.1 ± 7.1 169.7 ± 7.8
2 GB YAFFS 349.4 ± 11.2 370.3 ± 5.9
50 MB FTL 53.5 ± 4.2 91.6 ± 10.3
250 MB FTL 131.6 ± 15.4 335.5 ± 40.5
500 MB FTL 233.0 ± 17.9 714.4 ± 27.4

Table 1: Deletion latency in hours for different configuration

parameters.

observation close to the median. FTL’s greedy allocation
is evident in the unpredictability of sequential allocations
and the substantially larger gap between the median and
95th percentile deletion latencies. For instance, a YAFFS
implementation on a 2 GB partition (e.g, the data partition
on the Samsung Galaxy S [28]) can expect deleted data to
remain up to a median of two weeks before actually being
erased. In the next section, we present solutions to reduce
this data deletion latency.

4. USER-SPACE SECURE DELETION
In this section, we introduce our solutions for secure dele-

tion: purging, ballooning, and a hybrid of both. These solu-
tions all work at user-level and are designed for the scenario
where a security-conscious mobile phone user wants to in-
stall a secure deletion application from an application mar-
ketplace, but is unwilling (or insufficiently skilled) to install
a new phone operating system or is prohibited from doing
so by the mobile phone’s manufacturer. User-level solutions
allow the users themselves to achieve secure deletion without
voiding warranties or relying on the hardware manufacturer
to provide secure deletion.

User-level solutions have limited access to the flash storage
medium. Such solutions can only create, modify, and delete
the user’s own local files. Such solutions cannot force the file
system to perform erase block erasures, prioritize garbage
collection of particular areas in memory, or even know where
on the storage medium the user’s data is stored.

All of the solutions we present operate with the following
principle: they reduce the file system’s available free space
to encourage more frequent garbage collection, thereby de-
creasing the deletion latency for deleted data. Purging con-
sists of filling the storage medium to capacity, thus ensuring
that no deleted data can remain on the storage medium.
Purging executes intermittently and halts after completion.
Ballooning continually occupies some fraction of the storage
medium’s empty space to ensure it remains below a target
threshold, thereby reducing the deletion latency. Balloon-
ing executes continually during the lifetime of the storage
medium. The hybrid solution performs ballooning continu-
ally, and periodically purges to guarantee deletion.

We implement our solutions and examine their effective-
ness for various storage medium sizes. We use deletion la-
tency and storage medium wear as our metrics for evaluat-
ing their effectiveness. We show that the hybrid solution
is well-suited for large storage media, where the purging’s
promptness is a tradeoff with storage medium wear.

4.1 Purging
Purging completely fills the file system’s empty space with

junk files, thereby ensuring that all unneeded data is securely

deleted. After filling the storage medium, the junk files are
deleted so that the file system can again store data. Purg-
ing must be explicitly executed, which can take the form of
automated triggers: when the phone is idle, whenever the
browser cache is cleared, or when particular applications are
closed. It is also useful for employees who are contractually
obligated to delete customer data before crossing a border.

Completely filling the storage medium is possible pro-
vided the user is not subjected to disk-quota limitations.
It typically requires garbage collecting (i.e., erasing) most
erase blocks on the storage medium. This is because deleted
chunks can occur in any erase block that sees active use,
resulting in small data gaps throughout the file system.

The fact that the storage medium must be completely
filled follows from a worst case analysis of a log-structured
file system’s erase block allocation strategy. Before the stor-
age medium is completely full, there is some area of the
medium containing one last piece of unneeded but avail-
able data—we must pessimistically assume that is our se-
cret data. It is important to note that purging’s ability to
securely delete data is dependent on the implementation of
the log-structured file system. In particular, we require the
following condition to hold: if the file system reports that it
is out of space, then all previously deleted data chunks are
no longer available on the storage medium. This condition
holds for YAFFS and the Linux FTL implementation, how-
ever other file systems and FTL hardware implementations
may differ.

A natural concern for purging’s correctness is its behaviour
on multithreaded systems. However, using the previous rea-
soning, purging needs to keep writing to the storage medium
until it reports that it completely full. This ensures that any
data that has been deleted prior to purging is irrecoverable
as the drive is completely full. Another concern is that, at
the moment the storage medium is full, other applications
simultaneously writing to the storage medium will also be
told the storage medium is full. We observe that any un-
graceful handling of an unwritable storage medium is a flaw
in the application and the storage medium’s lack of capacity
is a transient condition that is quickly relieved.

We tested purging with the following experiment. We
took a pristine memory snapshot of the phone’s internal
NAND memory by logging into the phone as root, unmount-
ing the flash storage medium, and copying the raw data us-
ing cat from /dev/mtd/mtd5 (the device that corresponds
to the phone’s data partition) to the phone’s external mem-
ory (SD card). We wrote an arbitrary secret pattern not
yet written on the storage medium, and obtained a memory
snapshot to confirm its presence. We then deleted the pat-
tern, obtained a new memory snapshot, and confirmed that
the pattern still remained on the flash memory. Finally, we
filled the file system to capacity with a junk file, deleted it,
and obtained another memory snapshot to confirm that the
pattern was no longer on the flash memory.

Figure 3 (a) shows the resulting erase block allocations
reported by an instrumented version of YAFFS executing
purging, and (b) is the same for the FTL implementation.
The X-axis corresponds to time in hours, and the Y-axis
shows the numbered erase blocks. A small square in the
graph indicates when each erase block was allocated. As
with Figure 2, only a subset of erase block allocations are
plotted for clarity. At the right side of both graphs, we
see the near immediate allocation of every erase block on



(a) Executing purging on YAFFS.

(b) Executing purging on an FTL.

Figure 3: Plot of erase block allocation over time for (a) YAFFS

and (b) FTL. After simulating writing for some time, we per-

formed purging, which is visible at the right edges of the plot

where many erase blocks are rapidly allocated.

the medium. This is the consequence of filling the stor-
age medium to capacity; a log-structured file system must
garbage collect most of its erase blocks to reclaim every avail-
able page.

4.2 Ballooning
In contrast to purging, which guarantees time-bounded se-

cure data deletion, we now present ballooning, which achieves
probabilistic continuous secure deletion. Ballooning arti-
ficially constrains the the file system’s or FTL’s available
free space. This results in more frequent garbage collection
due to reduced capacity, and therefore reduces the time any
deleted data—regardless of when it is deleted—remains ac-
cessible on a log-structured file system. Ballooning creates
junk files to occupy the free space of the storage medium,
which reduces the total number of erase blocks available for
allocation. This reduces the expected erase block realloca-
tion period, which is an upper bound on the deletion latency
for data contained in that erase block (cf. Figure 1).

In Section 4.4, we will explore how varying free space
thresholds—the aggressiveness of ballooning—affect deletion
latency and other measurements. However, we first visual-
ize our hypothesis that ballooning reduces the erase block
reallocation period. Figures 4 (a) and (b) show the erase
block allocations that result from executing ballooning on

(a) Executing ballooning on YAFFS.

(b) Executing ballooning on an FTL.

Figure 4: Plot of erase block allocation over time for (a) YAFFS

and (b) FTL when running ballooning.

YAFFS and an FTL respectively. We see a stark difference
when compared with Figure 2. As the number of allocat-
able erase blocks decreases, YAFFS’ sequential allocation
becomes much more erratic, and the erase block realloca-
tion period decreases. Similarly, the randomness of FTL’s
greedy strategy focuses more on specific rows of erase block
allocation activity. The rows of Figure 4 that contain no al-
location activity likely correspond to erase blocks that have
now been assigned to junk files. Both show a decrease in
the erase block allocation period, which therefore reduces
the expected deletion latency.

4.3 Hybrid Solution: Ballooning with Purg-
ing

The disadvantage of purging is that its cost is dependent
on the free space available on the storage medium. In con-
trast, the disadvantage of ballooning is that it cannot pro-
vide a guarantee on when data is deleted—or indeed even
if. By combining both these approaches, we create a hybrid
scheme that has neither disadvantage. We use purging to
guarantee the secure deletion of data, and we use ballooning
to ensure that a large storage medium’s empty space must
not be refilled during every purging operation.

Reducing the number of erase blocks that must be filled
during purging mitigates three concerns about purging: its
wear on the storage medium, its power consumption, and its
execution time. Large capacity storage media are particular



suitable to this solution, as they may have large segments of
their capacity empty, which ballooning occupies with junk
files to achieve a deletion latency representative of smaller-
sized storage media. In the next section we quantify this
effect with experimental results for various storage medium
sizes and ballooning aggressiveness settings.

4.4 Experimental Evaluation
We developed an application that implements our hybrid

solution. It periodically examines the file system to deter-
mine the amount of free space, and appropriately creates
and deletes junk files to maintain the free space within the
upper and lower thresholds. The oldest junk file is always
deleted before more recent ones to load-balance the erasure
wear on the flash memory. The purging interval is user-
specified, allowing the user to select a tradeoff between the
timeliness of secure deletion and the resulting wear on the
device.

Our application runs successfully on the Android phone.
The only permission it requires is the ability to run while the
phone is in a locked state; the application also needs to spec-
ify that it will run as a service, meaning execution occurs
even when the application is not in the foreground. The ap-
plication can be installed on the phone without any elevated
privileges and operates entirely in user-space. Ballooning
must maintain a minimum of 5% of the erase blocks free
to avoid perpetual warnings about low free space. Purging
triggers a brief warning about low free space that disappears
when purging completes.

We now present the experiments we performed using bal-
looning on simulated flash media of different sizes. We varied
the amount of ballooning that was performed and measured
the time that secrets remained on the storage medium to
determine ballooning’s effectiveness. We measured the ratio
of deleted chunks on erase blocks, which intuitively captures
the amount of ballooning. We also measured the rate of
flash erase block allocations, which intuitively captures the
added cost of ballooning. After each simulation execution,
we performed purging and measured the additional erase
block allocations, which is the purging cost for the amount
of ballooning used by our hybrid solution.

The erase block allocation rate tells us directly the rate
that chunks are written to the flash storage medium. Data
can be written from two sources: the actual data written by
the simulator, and the data copied by the log-structured file
system’s garbage collector. Since we are using fixed write
distributions, the expected rate of writes from the simulator
is identical between experiments. Therefore, the observed
disparity in erase block allocation rates reflects exactly the
additional writes resulting from the increased garbage col-
lections caused by our application to achieve secure deletion.

To quantify the benefit of our application—that is, how
promptly the secure deletion of sensitive data occurs—we
measure the expected time sensitive data remains on the
storage medium. We calculate this measurement using our
secret writer that periodically writes one page secrets onto
the medium and deletes them. We then compute how long
the written secrets remain on the storage medium.

Experimental Results.
Tables 2 and 3 present the results for YAFFS and the

Linux FTL implementation on simulated storage media of
different sizes while using different ballooning thresholds.
The partition size is the full storage capacity of the medium,
and the type is either the file system YAFFS or an FTL
which stores a FAT file system. The fill ratio is the av-
erage proportion of valid data on erase blocks in the stor-
age medium, ignoring both completely full and completely
empty erase blocks. We compute this by taking the peri-
odic average of all fill ratios for eligible erase blocks, and
averaging these measurements (weighted by time between
observations) over the course of our experiment. The erase
block allocations per hour is the rate that erase blocks are
allocated on the storage medium, indicating the frequency of
writes to the storage medium. We used the erase block allo-
cation rate, along with an expected erasure cycle lifetime of
104 erasures, to compute an expected storage medium life-
time in years assuming even wear levelling. The purge cost
is the number of erase blocks that must be allocated to exe-
cute purging with this configuration. Two deletion latencies
are provided: the median and 95th percentile, which give
a good indication of the distribution. The maximum value
is undefined, as ballooning provides no guarantee of secure
deletion. Each experiment was run four times and we pro-
vide 95% confidence intervals for some measurements.

Ballooning, Deletion Latency, and Block Allocation Rate.

As discussed in Section 3.2, without ballooning both the
fill ratios and the deletion latency are highly dependent on
the size of the storage medium. However, as ballooning in-
creases the fill ratio, the deletion latency similarly decreases.
Since the data being stored comes from the same distribu-
tion, fuller erase blocks on identically-sized storage media
imply that there are fewer erase blocks available to store
data, so the expected erase block reallocation period de-
creases and therefore deleted data is removed from the sys-
tem more frequently.

We observe an inverse relationship between the fill ratio
and the erase block allocation rate for each partition type.
Fewer available erase blocks mean more garbage collection
and thus more frequent writes to the storage medium simply
to copy data stored elsewhere.

We see from the deletion latency that device size is not a
deciding factor in deletion latency—deletion latency can be
reduced for any storage medium simply by applying the ap-
propriate amount of ballooning to consume the excess capac-
ity. Small amounts of ballooning on large storage media—
which slightly increase the erase block allocation rate—can
significantly drop the deletion latency. This is because the
vast number of unused erase blocks are not allocated by
greedy or cyclic allocation algorithms as the file system be-
lieves them to be full.

Hybrid Ballooning and Purging.
The purge cost column of Table 2—where cost is mea-

sured as the number of erase blocks that must be erased to
execute purging—was computed by executing purging after
each experiment and measuring the number of erase block
allocations that resulted. We see that when ballooning is not
used, the purging cost is equal to the full size of the partition.
For large partitions, this results in an unreasonable number



Partition Free Fill Block allocs Lifetime Purge cost Deletion latency (hours)
size / type blocks ratio per hour (years) (blocks) median 95th %ile

603.8 20% 32.7 ± 2.3 54 1556.8 41.5 ± 2.6 46.2 ± 0.5
200 MB 91.8 63% 53.4 ± 4.7 33 705.2 10.8 ± 1.7 14.6 ± 1.3
YAFFS 21.0 80% 95.0 ± 24.2 18 429.8 4.2 ± 0.6 6.6 ± 0.2

15.1 84% 166.5 ± 42.5 10 357.8 2.6 ± 0.7 5.4 ± 1.5
4487.2 7% 26.0 ± 1.0 68 7827.0 163.1 ± 7.1 169.6 ± 7.8
254.1 40% 35.8 ± 3.4 50 1106.5 28.4 ± 4.1 33.6 ± 2.6

1 GB 88.2 64% 59.8 ± 8.4 29 765.0 10.4 ± 0.5 16.1 ± 2.0
YAFFS 56.2 72% 70.4 ± 0.8 25 692.3 8.2 ± 0.6 12.6 ± 2.6

26.1 82% 163.6 ± 18.9 10 525.2 4.3 ± 0.4 7.6 ± 0.6
23.7 83% 232.9 ± 11.4 7 360.8 3.0 ± 0.4 6.1 ± 0.6

9503.7 4% 25.3 ± 0.8 70 15663.8 349.4 ± 11.2 370.3 ± 5.9
387.8 43% 36.6 ± 1.5 49 1630.5 34.7 ± 7.5 43.1 ± 8.6

2 GB 254.5 48% 41.1 ± 3.7 43 1237.5 28.7 ± 1.5 34.8 ± 6.1
YAFFS 56.4 76% 87.5 ± 5.8 20 845.8 8.5 ± 0.9 13.0 ± 0.4

37.2 80% 205.4 ± 24.3 8 484.8 4.7 ± 0.5 9.4 ± 1.9
36.9 80% 248.2 ± 33.0 7 338.4 3.3 ± 0.7 7.4 ± 1.0

Table 2: Block allocations, storage medium lifetimes, and deletion times for the YAFFS file system.

Partition Free Fill Block allocs Lifetime Purge cost Deletion latency (hours)
size / type blocks ratio per hour (years) (blocks) median 95th %ile

1850.7 14% 67.2 ± 7.5 26 4463 53.5 ± 4.2 91.6 ± 10.3
50 MB 42.8 50% 90.2 ± 10.2 19 3491 7.0 ± 2.0 71.7 ± 36.7
FTL 1.0 75% 148.9 ± 33.1 12 1388 2.2 ± 0.5 39.7 ± 9.6

1.0 80% 183.9 ± 11.1 9 1247 1.9 ± 0.5 22.7 ± 5.5
1.0 85% 230.7 ± 21.6 7 501 1.3 ± 0.7 18.9 ± 1.6

13906.1 14% 65.6 ± 4.4 27 21121 131.6 ± 15.4 335.5 ± 40.5
250 MB 14483.9 13% 67.6 ± 5.4 26 20993 62.3 ± 7.5 104.1 ± 28.6
FTL 662.2 69% 261.7 ± 17.1 6 11554 6.5 ± 2.2 46.6 ± 0.7

511.9 82% 379.4 ± 10.1 4 3234 3.5 ± 1.5 15.4 ± 1.0
29795.9 13% 62.6 ± 0.6 28 35665 233.0 ± 17.9 714.4 ± 27.4

500 MB 30619.2 15% 65.0 ± 5.7 27 35367 65.4 ± 18.6 118.7 ± 16.8
FTL 4882.9 71% 204.1 ± 6.8 8 20649 54.6 ± 2.3 96.3 ± 0.3

2207.4 75% 329.9 ± 10.6 5 16896 12.4 ± 3.0 57.2 ± 13.1

Table 3: Block allocations, storage medium lifetimes, and deletion times for the Linux FTL implementation.

of erase block allocations required for purging. However, we
see that even mild amounts of ballooning drastically reduce
the cost of purging. In fact, for the two gigabyte YAFFS
partition, a 50% increase in erase block allocations results
in a tenfold improvement in both deletion latency and purg-
ing cost.

Ballooning and Storage Medium Lifetime.
The primary drawback of our solutions is the additional

wear that increased erasures put on the mobile phone, both
in terms of damage to the flash memory and power con-
sumption. It would be a concern for adoption if our solution
significantly reduces the phone’s lifetime or battery life.

The additional wear is directly proportional to the in-
crease in the erase block allocation rate, and inversely pro-
portional to the lifespan. We compute an expected lifetime
in years from the erase block allocation rate and present this
in Table 2. We use a conservative estimate of 104 erasures
per erase block. (Recall that a typical flash erase block can
handle between 104 and 105 erasures [29], and some stud-
ies have indicated this is already orders of magnitude more
conservative than reality [4].) Our results show that even at
high erase block allocation rates, we still expect to see the
storage medium life for upwards of a decade; this is well in
excess of the average replacement period of mobile phones.
Users who require decades of longevity from their mobile
phone can simply use very mild ballooning. In particular,

large capacity storage media combined with mild balloon-
ing yield a system with reasonable purging performance and
flash memory lifetimes that likely exceed that of the owner.

Power Consumption.
To test if our solutions have acceptable power require-

ments, we analyzed the power consumption of write oper-
ations. We measured the battery level of our Nexus One
through the Android API, which gives its current charge as a
percentage of its battery capacity. The experiment consisted
of continuously writing data to the phone’s flash memory in
a background service while monitoring the battery level in
the foreground. We measured how much data must be writ-
ten to consume 10% of the total battery capacity. We ran
the experiment four times and averaged the result. The re-
sulting mean is within the range of 11.01 ± 0.22 GB with a
confidence of 95%, corresponding to 90483 full erase blocks
worth of data. Since this well exceeds the total of 1570 erase
blocks on the device’s data partition, we are certain that our
experiment must have erased the erase blocks as well as writ-
ten to them, thus measuring the power consumption of the
electrically-intensive erasure operation.

Even using the most aggressive ballooning measurement
for YAFFS, where nearly 250 erase blocks are allocated an
hour, it still takes 15 days for the ballooning application to
consume 10% of the battery. Furthermore, the built-in bat-
tery use information reported that the testing application



was responsible for 3% of battery usage, while the Android
system accounted for 10% and the display for 87%. We con-
clude that ballooning’s power consumption is not a concern.

The power consumption required for purging is related to
the size of the storage medium—0.9% of the battery per gi-
gabyte. Other mobile phone batteries may of course yield
varying results. Clearly, any mobile phone with a storage
medium size in excess of a gigabyte will consume an un-
reasonable amount of time and energy to perform purging.
The hybrid solution with mild ballooning is suited for such
storage media as it significantly drops the cost of purging.

5. RELATED WORK
Sanitizing data by overwriting is the most intuitive ap-

proach to secure deletion solution given its analogue in the
analog world. To sanitize a digital file, one opens the file and
overwrites its contents with new data. This is the solution
used by secure deletion tools such as shred [25] and srm [16].
These operate at the user-level; they can be executed by a
normal system user to securely delete the user’s own files.
They requires that a file’s data is stored only at one loca-
tion; when a file is updated, the new data must replace the
old one. This solution is not compatible with flash memory
because in-place updates cannot be performed.

Kernel-level secure deletion solutions have been proposed
for some widely-used block-structured file systems [2, 17,
18]. These solutions typically modify the kernel and enforce
that when any data chunk is marked for deletion, it is then
overwritten with arbitrary data. This is useful to securely
delete truncated parts of files and to ensure secure deletion
for file systems that do not perform immediate updates, i.e.,
file systems that employ journals. Our solutions shares this
property: any chunk of data that is deleted will be securely
deleted. However, these overwriting solutions require in-
place updates of data, where old (sensitive) data is directly
overwritten with new (insensitive) data; in-place updates are
not supported by flash memory.

User-level encryption tools, such as GPG [12], can be
used to prevent the data’s disclosure under device compro-
mise [12]. Care must still be taken to securely delete the
original copy of the data after encrypting it and whenever
it is decrypted for use. A more sophisticated implementa-
tion of this solution is to use a cryptographic file system
that supports full-drive encryption [3, 13]. This solution is
both more effective and usable, but it still has limitations:
users can be coerced to disclose their credentials, or may be
legally obliged to delete data. In our attacker model, we
assume that the attacker can access our secret keys, so this
solution is not appropriate. Moreover, a user-level appli-
cation cannot encrypt data from other applications on the
system. We observe, however, that it would be very useful
if mobile phones encrypted all short-term cache data and
kept all encryption keys only in volatile memory. This way,
securely deleting this data is trivial and a power loss would
still not lose important data.

Wei et al. [30] considered secure deletion on flash storage
in the context of solid state drives, which access the mem-
ory through an FTL. They executed traditional block-based
in-place overwrites to perform secure deletion and deter-
mined that it did not sanitize data on flash storage; this was
their expected hypothesis as flash memory cannot perform
in-place updates. They also showed that some built-in san-
itization methods do not function correctly. They proposed

adding secure deletion by having hardware manufacturers
perform zero overwriting whenever an erase block is dis-
carded, where zero-overwriting is a technique that removes
the information by programming a flash page more than
once between erasures. However, programming flash mem-
ory multiple times between erasures is discouraged for all
flash memory types and outright forbidden for some [23].
It operates outside flash memory’s specification [24], where
officially it results in undefined behaviour [24]. Flash man-
ufacturers prohibit this due to program disturb [22]: bit er-
rors that can be caused in spatially proximate pages while
programming flash memory. The second version of YAFFS
removed its earlier use of multiple programming to set a
deleted flag on data for exactly this reason [6]. Wei et al. pro-
pose the use of scrub budgets for each flash memory type,
which corresponds to the number of times multiple program-
mings can be performed for that specific memory type with-
out resulting in a high risk of bit errors. When the scrub
budget is exceeded, secure deletion occurs the by copying
the valid data elsewhere and erasing the erase block. They
investigate the scrub budgets for some flash memory types
and observe that the scrub budgets for modern, large, dense
flash memories are too small for their solution to provide
great utility.

Lee et al. [19] present a secure deletion solution for YAFFS
using encryption. They propose encrypting all files and in-
cluding the corresponding encryption key in every file header
written to the file system. Secure deletion is thus achieved
whenever all the headers for a file are deleted. They pro-
pose changing the deletion code to force deletion of erase
blocks containing file keys, and ensuring that the file sys-
tem always colocates the same key on the same erase block.
Their approach suffers from a number of limitations. Fore-
most is that their solution (assuming they use cipher block
chaining mode) is not easily integrated into existing file sys-
tems. They required the entire file is available in memory
to encrypt before it is written to the storage medium and
make no mention of initialization vectors (IV). They do not
discuss how to allow efficient random access to files. If in-
stead, they further modify every data block to include a
unique IV, then deleted data can be recovered as long as
the file remains, which does not provide security for trunca-
tions and overwrites of files. This is particularly important
for applications that store all user data in a single long-
lived database. They do not discuss wear-levelling for the
reserved erase blocks storing frequently-erased file headers;
our solution only adds regular file data, relying on the file
system’s implementation of wear-levelling.

It is difficult to compare Lee et al.’s solution with ours
in experiments because their solution was not implemented.
They simulated their algorithm by assuming files were mod-
ified at most twice; our examination of Android phone data
found that a third of all chunks were file headers, suggesting
much more frequent modifications. They intend to erase an
erase block whenever a file is removed; however our data in-
dicates that Android phones delete nearly 10000 tiny cache
files a day—securely deleting each results in frequent erase
block erasures that could be easily batched.

6. CONCLUSIONS AND FUTURE WORK
We have considered deletion latency for log-structured file

systems and showed that there is no guarantee of deletion on
such file systems. We presented three user-level solutions for



secure deletion on YAFFS file systems: purging, ballooning,
and a hybrid of both.

Our simulations of FTL using the provided kernel driver
are limited. It would be useful to perform our experiments
using the exact implementations of various popular FTL
drivers in practice, or to access the raw flash memory be-
hind an FTL in a SD card to know exactly what the erase
block allocations per hour, deletion latency, and purge costs
are as a result of using our solutions. Differences in imple-
mentation may even render our approach unsuccessful: Wei
et al. [30] report the accessibility of deleted data after fill-
ing the entire contents of some particular solid state drives.
As a particular case study, it would be useful to determine
the applicability and optimal ballooning parameters for the
FTL used on iOS devices (iPhones, iPads, etc.).

Our discrete event simulator uses live data from lengthy
usage of an Android mobile phone, building a model of each
application’s writing patterns. It would be useful to ex-
tend this study by collecting large samples of many different
users, thus getting a richer understanding of mobile phone
writing behaviours under a variety of use conditions. The
model could then be reduced to a small number of variables
and distributions that control the frequency of the following
events: a new page is written, an old page is overwritten and
an old page is deleted. These distributions could be com-
posed by appropriately-weighting subdistributions to model
the writing behaviour of different user types.

In conclusion, we have presented useful user-level solu-
tions for secure deletion of data from flash memory, and
have evaluated their effectiveness in terms of wear on the
flash memory, as well as power consumption and time. We
have implemented our solutions and made an application
available on the Android marketplace.
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