
SECFUZZ: Fuzz-testing Security Protocols

Petar Tsankov, Mohammad Torabi Dashti, David Basin
Institute of Information Security, ETH Zurich

{ptsankov|torabidm|basin}@inf.ethz.ch

Abstract—We propose a light-weight, yet effective, technique
for fuzz-testing security protocols. Our technique is modular,
it exercises (stateful) protocol implementations in depth, and
handles encrypted traffic. We use a concrete implementation
of the protocol to generate valid inputs, and mutate the
inputs using a set of fuzz operators. A dynamic memory
analysis tool monitors the execution as an oracle to detect
the vulnerabilities exposed by fuzz-testing. We provide the
fuzzer with the necessary keys and cryptographic algorithms
in order to properly mutate encrypted messages. We present
a case study on two widely used, mature implementations of
the Internet Key Exchange (IKE) protocol and report on two
new vulnerabilities discovered by our fuzz-testing tool. We
also compare the effectiveness of our technique to two existing
model-based fuzz-testing tools for IKE.

To appear in:
In Proc. of the 7th International Workshop on Automation of Software Test (AST 2012).
June 2-3, 2012, Zurich, Switzerland.

I. INTRODUCTION

Context. Software testing is an exploratory process that
helps us to gain confidence in the correctness of a software
system with respect to its specification. Testing is often
performed by executing the system using the inputs that are
foreseen in the specification. The system’s output is then
compared to the output prescribed by the specification to
determine a pass/fail verdict. For testing implementations
of security protocols, one must investigate the behaviors
of the system also using inputs that are not foreseen by
the specification. This is because the attacker may try any
input in order to force the system into an insecure state.
This is a serious problem in practice: of the top 25 most
dangerous software errors listed in the Common Weakness
Enumeration database [1], the top 4 are due to improper
handling of unexpected inputs.

Fuzz-testing addresses this problem: the system is ex-
ecuted using the inputs that are not anticipated by the
specification, and then the system’s behavior is checked for
failures [2], [3]. Unexpected inputs are often generated by
mutating (or, fuzzing) valid inputs according to a set of
fuzz operators. Since the unexpected inputs are usually not
associated to any output in the specification, the specification
cannot be used as an oracle to issue pass/fail verdicts.
One can however look for the behaviors that are generally
undesired in software systems such as accessing unallocated
memory, and raise an alarm if such behaviors are witnessed.
Various dynamic memory analysis tools can be used for this
purpose.

Fuzz-testing stateful systems (such as security protocols)
requires generating valid inputs that explore the system in

depth. That is, one uses valid inputs to guide the system
into states that are deep in its state space, and then feeds
the system with unexpected inputs. Various sources can be
used for generating valid inputs. One can gather typical input
data (e.g. download image files from the Internet in order
to test an image processing software), use a formal model
of the system (known as model-based fuzz-testing), analyze
the source code of the system (known as white-box fuzz-
testing), etc.

Contributions. We use a concrete implementation of the
protocol as a black-box for generating valid inputs. For
example, to test the server side of a security protocol, we use
the client’s implementation to generate valid inputs for the
server. The server and the client both execute the security
protocol, with the provision that all messages sent to the
server pass through our fuzzer. The fuzzer obtains valid
inputs from the client without having to “understand” the
underlying protocol. The fuzzer mutates the inputs according
to a set of fuzz operators, and then sends them to the server.
Note that we require that a running version of the “opponent”
of the system under test is available. In the example above,
the server is the system under test (SUT), and the client is
the server’s opponent. This requirement is often met when
testing protocols. It is however not universally satisfied, e.g.
think of Web services for which only a WSDL description
is available. We remark that our approach is different from
the aforementioned input generation methods as we do not
use the model or the source code of the SUT to generate
valid inputs for fuzz-testing.

By decoupling the input generation and the input mutation
steps we gain modularity: we can use the same fuzzer to
test different protocols. All we need to test the Alice of
a protocol is a running Bob of the same protocol, and
a set of fuzz operators (we come back to these later).
This method is however not directly applicable to security
protocols, because security protocols exchange messages
that are encrypted and possibly contain randomly generated
numbers. Since mutating encrypted messages almost always
results in garbage, the fuzzer must have access to the
encryption keys, random numbers used in encryptions, and
the cryptographic algorithms used in the protocol. We solve
this problem in our case study by configuring the system
such that the fuzzer can read the encryption keys, pointers
to cryptographic algorithms, etc. from a log file.

In addition to generating inputs that explore the imple-
mentation in depth, the effectiveness of fuzz-testing depends
on the fuzz operators. The fuzz operators mutate valid inputs,
ideally to the effect of exposing vulnerabilities. Here, we
define three classes of fuzz operators for security protocols.
We justify the choice of these operators by referring to
common vulnerability databases and argue that our operators
can expose prevalent software weaknesses. We show their
effectiveness in practice through our case study. Moreover,
in the context of our case study we compare our fuzz-testing
tool to two model-based fuzz-testing tools, namely PRO-
TOS [4] and IKEFUZZ [5]. The comparison shows that our
tool is incomparable to PROTOS, and better than IKEFUZZ,
in terms of the vulnerabilities the tools discover.

To summarize, our contributions are threefold. First, we
propose a modular fuzz-testing technique for testing stateful
security protocols that handles encrypted traffic. Second, we
give a set of fuzz operators that are effective for finding
vulnerabilities in security protocols. Finally, we empirically
evaluate the effectiveness of our technique and the proposed
fuzz operators through a case study on the Internet Key
Exchange protocol (IKE). The results demonstrate that our
approach can find real vulnerabilities: we report on previ-
ously unknown vulnerabilities in two widely used, mature
implementations of IKE, namely OpenSwan and Shrew
Soft’s VPN Client. The fuzzer used in our case study,
dubbed SECFUZZ, is implemented in Python and is publicly
available at http://www.infsec.ethz.ch/research/software/.

Related work. White-box fuzz-testing [6]–[8] and model-
based fuzz-testing [9]–[11] are related to our work. These
two methods generate valid inputs for exploring the SUT
in depth. What distinguishes these from our technique is
that they assume access to, respectively, the source code and
a model of the SUT. In white-box fuzz-testing, generating
new valid inputs is expensive (in general, intractable), and
constructing accurate models for model-based testing is a
challenging task (e.g. see [12]). This makes our technique
a light-weight alternative to these methods, as we make no
assumptions on the availability of the source code or system
models. White-box and model-based fuzzers do however
not rely on any implementation of the opponent of the
SUT. They are therefore potentially more thorough than our
technique.

Outline. In Section II we present our modular fuzz-testing
method, i.e. we explain how the SUT, the fuzzer, and
the implementation used for generating valid inputs are
executed together. In Section III we define our fuzz operators
and argue that they are effective for exposing software
vulnerabilities. In Section IV we present our case study on
IKE and the vulnerabilities that we found in OpenSwan and
the Shrew Soft’s VPN Client. There, we also compare the
effectiveness of SECFUZZ to two model-based fuzz-testing
tools for IKE.

Opponent
end-point

Fuzzer
log
file

Dynamic
analysiswrites to

reads

SUT

Figure 1. Test setup: messages sent to the SUT pass through the fuzzer.
The input generating end-point shares information (e.g. keys, encryption
algorithms, etc.) with the fuzzer using a log file.

II. SECFUZZ SETUP

Our aim is to test a security protocol implementation for
failures by executing it using unexpected inputs. In this paper
we use the term failure to indicate the manifestation of a
fault, where a fault is the concrete incorrect step performed
by the system. We achieve this in three steps: first, a concrete
implementation of the protocol is used to generate inputs for
the SUT; we refer to these inputs as valid inputs. Second,
a fuzzer modifies the valid inputs; we refer to the modified
inputs as mutated inputs. Finally, the SUT is executed using
the mutated inputs and its behavior is checked for failures.

Figure 1 illustrates our test setup. The SUT is one of
the end-points participating in a security protocol and the
opponent is the other end-point. For example, if the SUT is
the security protocol’s Alice then the opponent end-point
is the corresponding Bob. Note that the two end-points
need not be “the same software”, i.e. they may be different
implementations of the same security protocol. In contrast to
a standard deployment setting in which the two end-points
communicate directly, in our test setup we configure the
communication environment to route the messages destined
for the SUT through the fuzzer. As a result, the opponent
end-point generates and passes valid inputs to the fuzzer. The
fuzzer’s role is to mutate the valid inputs and send them to
the SUT. Furthermore, we use a shared medium (depicted
as a log file in Figure 1) to allow the opponent end-point
to communicate data such as encryption keys to the fuzzer.
The SUT is executed within a dynamic memory analysis
tool which serves as an oracle for detecting failures. Note
that our test setup is general, i.e. suitable for fuzz-testing
any two-party security protocols, and its extension to n-party
security protocols is straightforward.

We remark that the fuzzer needs “fresh” messages from
an active session of the protocol. Unlike in simple protocols
where the fuzzer can use previously captured inputs (as in,
e.g., Codenomicon’s traffic capture fuzzer [13]), the inputs
to security protocol implementations use randomness, e.g.
a fresh key, and hence cannot be reused. Our test setup
addresses this by placing the fuzzer as a mid-point in the
communication channel connecting the opponent end-point
to the SUT.

In what follows we give more details on how the opponent
end-point generates valid inputs, how the fuzzer handles

encrypted messages, and why we use a dynamic memory
analysis tool for failure detection.

A. Generating Inputs
We define the input to the SUT as the sequence of

messages it receives in a single protocol execution. To
generate an input in our test setup, depicted in Figure 1, we
instruct the opponent end-point to initiate a new protocol
session. The two end-points execute the protocol and the
fuzzer gradually (i.e., message by message) obtains the input
to the SUT, and may choose to mutate parts of the input. This
process can be repeated to generate (and mutate) more valid
inputs. The input generated in a protocol execution typically
depends on the opponent end-point’s configuration, which
can be in the form of, e.g., configuration files, command
line arguments, etc. Therefore, to generate a different input
we restart the opponent end-point with a new configuration.

B. Fuzzing Encrypted Messages
Encrypted messages pose a challenge to the fuzzer be-

cause it cannot apply fine-grained mutations to them, for
example to modify the value of a field in the message.
In our test setup, the opponent end-point communicates
the information necessary for decryption (i.e. encryption
keys, random numbers used in encryption, and pointers to
cryptographic algorithms) to the fuzzer using a log file.
If the opponent end-point does not support such logging
features, one may pick an open-source implementation of
the security protocol under test, and add this functionality
to the opponent of the SUT. Note that the opponent and the
SUT need not be the same software (see above).

We remark that the fuzzer only learns the name of
the cryptographic algorithms (e.g. AES) and the concrete
instantiation of the algorithm (e.g. Cipher Block Chaining
mode with 256 bits key length); hence the fuzzer must have
access to an implementation of the cryptographic algorithms
in order to perform encryption and decryption. Typically,
security protocols use standard encryption algorithms, which
allows the fuzzer to use an external cryptographic library.
Note that the fuzzer decrypts a message only when mutating
an encrypted message; other messages are directly passed to
the SUT. This reduces the overhead of fuzz testing. Indeed,
in our experiments with SECFUZZ, the triangular routing
through the fuzzer (as shown in Figure 1) is at most two
times slower than the direct communication between the
end-points.

C. Detecting Vulnerabilities
An integral part of any form of testing is the oracle that

issues pass/fail verdicts. We use dynamic memory analysis
tools that monitor the SUT’s internal behavior as opposed
to tools that monitor only external behaviors. For our case
study we used Purify [14] and Valgrind [15].

The use of dynamic memory analysis tools benefits us
in several ways. First, we gain precision as they detect

. . .

f1

p2 p3 pj

m2 m3 mi

f2 f3 f4 fk

p1

m1

Figure 2. Structure of the input to security protocols. m, p, and f , denote
a message, a payload, and a field, respectively.

vulnerabilities that may be missed by simply monitoring the
I/O behavior of the SUT. For instance, reading a block of
memory shortly after it has been freed often does not result
in an obvious failure and its detection requires observing
the system’s internal behavior. Second, the aforementioned
tools do not report false positives, which makes SECFUZZ a
sound tool. Finally, dynamic analysis tools typically provide
detailed information about the system’s state when a failure
is detected; thus, locating the fault that caused the manifested
failure is greatly simplified. A drawback of dynamic analysis
tools is that they often incur a significant run-time overhead,
which in some cases may slow down the SUT up to
fifty times. In our experiments, this overhead is acceptable
when monitoring end-points of security protocols, which are
relatively small programs.

In our case study, we have used dynamic analysis tools
that focus on memory errors. Indeed, memory errors are
the most common source of security vulnerabilities, such
as denial of service, remote code execution, etc. However,
dynamic analysis is in general not bound to memory error
detection; one may employ dynamic analysis tools for other
purposes such as dynamic invariant detection [16], e.g., for
checking security invariants.

III. FUZZ OPERATORS

Fuzz-testing is intrinsically incomplete: the input domain
is often infinite and it is infeasible to test the system
against all possible inputs. The effectiveness of fuzz-testing
therefore depends on the fuzz operators’ ability to produce
“good” mutated inputs; that is, mutated inputs that expose
vulnerabilities (i.e. faults that can be exploited by attackers)
in the system.

In this section, we present a set of fuzz operators tailored
for mutating inputs to security protocols. We first describe
the inputs’ structure. Then, we define our fuzz operators and
explain their relevance for exposing real software vulnera-
bilities. We empirically demonstrate the effectiveness of our
fuzz operators in a case study presented in Section IV.

A. Input Structure

We define the input to a security protocol’s end-point as
the sequence of messages it receives in a single execution
of the protocol. Specifications typically define the internal
structure of each message as a list of payloads. The structure
of each payload is then defined as a list of fields, each

Table I
FUZZ OPERATORS FOR SECURITY PROTOCOLS

Category Operator’s Name Description

Fuzz messages Insert random message Inserts a well-formed message at a random position in the messages sequence

Fuzz payloads
Insert random payload Inserts a random payload at a random position in the list of payloads
Duplicate random payload Duplicates a randomly chosen payload
Remove random payload Removes a randomly chosen payload

Fuzz fields
(numerical)

Set to random number Sets the field to a randomly chosen number
Set to zero Sets the field to zero

Fuzz fields
(strings)

Append random bytes Appends a sequence of random bytes
Modify random byte Replaces a randomly chosen byte with a random byte
Set to the empty string Sets the field to the string of length zero
Insert string termination Inserts the string termination character at a randomly chosen position

field defining how the payload bits are interpreted. Figure 2
illustrates the input’s structure.

In order to fuzz messages, the fuzzer needs to “under-
stand” the structure of the input, i.e. to be able to distinguish
different fields in a bit string that represents a message. This
does not pose a challenge in practice: the message formats
for a large number of security protocols have been specified,
and the corresponding parsers and message constructor
functions have been implemented in public libraries such
as Scapy [17]. See Section IV-B for more details.

B. Fuzz Operators

The layered structure of the inputs to protocol implemen-
tations (see Figure 2) allows us to mutate them at different
levels of abstraction. We categorize our fuzz operators
into three classes, operators for fuzzing (1) messages, (2)
payloads, and (3) fields. We further classify the field fuzz
operators into operators for fuzzing numerical fields and
fuzzing string fields, depending on whether a field holds
a number or a string, respectively. Our fuzz operators for
each of these classes are defined in Table I. Note that some
operators are subsumed by others. For instance, Set to zero
is a special case of Set to random number, and Duplicate
random payload is subsumed by Insert random payload.
We however define these special cases as separate operators,
because testing boundary values has been proven particularly
effective in exposing programming errors; see e.g. [18]. We
remark that our fuzz operators are general and they can be
applied to fuzz-testing different security protocols.

In what follows we present our fuzz operators in more
detail. For each class of fuzz operators we state a hypothesis
and argue that if the hypothesis holds, then our operators can
expose vulnerabilities that are introduced by common pro-
gramming mistakes. We justify our hypotheses by referring
to common vulnerability databases.

1) Fuzzing fields and payloads: The field and payload
fuzz operators mutate the internal structure of individual
messages. The payload fuzz operators add, remove, or dupli-
cate payloads. This results in missing or extra payloads in the
message. The field fuzz operators mutate the values stored

in the fields of a payload. Numerical fields often indicate
the type or length of other fields/payloads. In contrast,
string fields hold values that are typically used as inputs
to the system’s internal functions and hence they often have
specific syntax, for example a string representing a date.

Note that a message often has dependencies across its
fields. For example, a string field with variable length may
have a dedicated field indicating the string’s length; we say
that the value of the length field depends on the string
field. Similarly, each payload often has a field indicating
the type of the next payload in the message. In our exper-
iments we observed that the SUTs preprocess the received
messages using packet filters, which often block messages
with inconsistent fields. Therefore, to ensure that not all
mutated messages are blocked, we update the dependent
fields after applying a field/payload fuzz operator. This
does however not imply that mutated inputs are always
consistent. In the example above, the length field does not
have dependent fields; hence mutating the length may result
in an inconsistent input.

Hypothesis: Programmers often fail to properly validate
inputs. Proper input validation refers to verifying the input’s
structure for compliance with the protocol’s specification.
This includes checking for valid input length, input type
(e.g., “road” is a valid sequence of characters; however, it is
invalid if the field must contain the name of a month), con-
sistency across fields, missing and extra inputs, etc. Improper
input validation may fail to reject an input with invalid
structure, which can lead to undesired system behavior.

Argument: Our fields and payload fuzz operators mutate
the input’s structure. If the hypothesis holds, then these
operators can expose failures.

Justification: According to the Common Weaknesses Enu-
meration database (CWE), improper input validation faults
are prevalent and dangerous [1]. The CWE defines “im-
proper enforcement of message or data structure” as a
general class of software weaknesses such as “improper han-
dling of syntactically invalid structure”, “improper handling

of unexpected data type”, and others [19]. These software
weaknesses directly relate to and support our hypothesis.

2) Fuzzing messages: The message fuzz operators mutate
the sequence of messages sent to the SUT. We define
the Insert random message operator for this purpose. This
operator takes a well-formed message (e.g. captured from a
previous session, or an older message in the current session
of the protocol) and inserts this message at a random position
in the message sequence. As a result, the SUT receives
several valid messages followed by a message with valid
structure, but at an unexpected position in the message
sequence.

Hypothesis: Programmers often fail to properly bridge the
abstraction gap between the specification and the implemen-
tation. While the specification is often input-incomplete, i.e.
it does not specify the system’s behavior for all possible
inputs, the implementation must be prepared to handle any
input. Programmers often fail to correctly map the abstract
specification to an input-complete implementation. This may
result in inadequate exception handling, which in turn can
introduce vulnerabilities.

Argument: If the hypothesis holds, the message fuzz
operators can expose failures.

Justification: Transforming an abstract specification into
a concrete system is well known to be a difficult problem.
In Section IV we demonstrate a previously unknown vul-
nerability that was exposed by feeding the SUT with an
unexpected message, which further supports our hypothesis.

We remark that the effectiveness of the fuzz operators pre-
sented in this section relies on the aforementioned hypothe-
ses. In addition to the case study presented in Section IV, we
intend to test the validity of these hypotheses by applying
SECFUZZ to a variety of security protocols in the future.

IV. CASE STUDY ON THE INTERNET KEY EXCHANGE
PROTOCOL

To evaluate the effectiveness of our fuzz-testing technique
we conducted a case study on the Internet Key Exchange
(IKE) protocol [20]. IKE is used for key exchange within
IPSec, which is commonly used to construct virtual private
networks. We chose two mature, widely used IKE imple-
mentations as our test subjects: OpenSwan [21] and Shrew
Soft’s VPN Client [22].

We start with a brief overview of IKE. Then we present
our tool for fuzz-testing security protocols, called SECFUZZ.
Next, we describe our experiments on the aforementioned
IKE implementations. Finally, in the context of our case
study we compare SECFUZZ to two existing model-based
fuzz-testing tools for IKE, namely PROTOS and IKEFUZZ.

A. The Internet Key Exchange Protocol

IKE is used to set up security associations between
two end-points. A security association (SA) is a set of
cryptographic attributes (e.g. keys, cryptographic algorithm,

access

done

propose SAs

accept SA
ack

SA
established

Initiator Responder

ISAKMP
state

crypto
helper

Phase 1

Figure 3. An abstract view of Openswan’s implementation of IKE. A data
race can cause the crypto helper thread to access freed memory.

etc.) and a security policy used to protect information. IKE
uses the Internet Security Association and Key Management
Protocol (ISAKMP), which is a framework for authentica-
tion and key exchange [23]. The protocol proceeds in two
phases. The first phase sets up an ISAKMP SA, which is
used to establish a secure channel for further communication
between the end-points. The purpose of the second phase is
to set up a security association on behalf of another service,
such as IPSec.

B. The SECFUZZ Tool

The SECFUZZ tool supports the fuzz operators defined
in Section III and relies on Scapy, a Python library for
parsing and manipulating messages [17]. Currently, the
implementation of SECFUZZ is limited to IKE messages;
nevertheless, it can be easily extended to other message
formats (e.g. IEEE 802.11 authentication protocol) due to
Scapy’s flexibility.

SECFUZZ executes as follows. Each protocol execution
between the SUT and its opponent end-point constitutes
one test case. SECFUZZ listens for messages destined for
the SUT and applies one fuzz operator per test case. To
detect the beginning of a new test case, SECFUZZ checks if
a message belongs to a new protocol session. For each new
session SECFUZZ retrieves the corresponding cryptographic
attributes (e.g. key, cryptographic algorithm, etc.) from the
opponent end-point’s log file. When a new test case begins,
SECFUZZ chooses uniformly at random a fuzz operator and
a position at which the input is mutated. The tool counts the
messages sent to the SUT and applies the fuzz operator when
the position for fuzzing is reached. For field and payload
fuzz operators the position for fuzzing indicates which
message is mutated and for the message fuzz operator it
indicates the place where the message sequence is modified.

C. Experiment 1: OpenSwan

In this section we present our experiment on OpenSwan,
which is an open-source IPSec implementation for Linux. It
is available on most popular Linux distributions, including
RedHat and Debian. We first describe how we instantiate
our SECFUZZ test setup and then we report on a previously
unknown vulnerability discovered by SECFUZZ.

1) The Setup: The SUT in this experiment is the IPSec’s
responder in OpenSwan version 2.6.35. This was the latest
version at the time of conducting our experiment. The SUT
is executed inside Memcheck [24], which is a memory
error detector for C and C++ binary programs based on
Valgrind [15]. It can detect a wide range of memory errors
such as use of undefined variables, invalid memory access,
incorrect heap memory management, memory leaks, and
others.

The opponent end-point to the SUT is OpenSwan’s initia-
tor. To ensure that the opponent end-point generates different
inputs, we automatically generated OpenSwan configuration
files and every 60 seconds the opponent is restarted with
a new configuration file. When configured in debug mode,
OpenSwan logs the cryptographic keys, algorithms, etc., to
a file. To allow SECFUZZ to decrypt messages, we set the
debug flag in OpenSwan’s configurations and provided the
fuzzer with remote access to this log file.

We execute the opponent end-point, the SUT, and the
fuzzer on different virtual machines connected to the same
local network. To force the messages destined for the SUT
to pass through the fuzzer, we modify the ARP table of the
opponent’s machine by mapping the SUT’s IP to the fuzzer’s
MAC address.

2) The Results: We found a use-after-free memory access
problem. Use-after-free vulnerabilities are serious as they
can, with a high likelihood, be exploited [19]. As pointed out
in Section II-C, dynamic memory analysis tools can greatly
simplify the process of locating faults. Indeed, Memcheck
reported the stack traces of the threads that accessed and
freed the memory. This detailed information was sufficient
for us to inspect the code and pinpoint the problem’s cause:

Figure 3 shows an abstract view of OpenSwan’s IKE
implementation. OpenSwan stores the ISAKMP SA’s state
information established after IKE’s phase 1 in a specific data
structure (depicted as “ISAKMP state” in Figure 3). In phase
2, the initiator proposes a set of SAs to the responder. The
responder selects an SA and computes the necessary cryp-
tographic attributes for the new SA (e.g. key, initialization
vector, etc.). OpenSwan creates a “crypto helper” thread
for this purpose, which keeps a pointer to the ISAKMP
state. Then, the responder replies with an “accepted SA”
message. Finally, the initiator sends an acknowledgment to
demonstrate its liveness and readiness to use the new SA. 1

The vulnerability is exposed when the data structure
storing the ISAKMP state is freed before the crypto helper
thread accesses the state. This may happen when the initiator
sends a “close ISAKMP session” message immediately after
the “propose SAs” message. After receiving this message,
the responder closes the ISAKMP session and frees the
memory storing the ISAKMP state. This introduces a data
race: if the memory is freed before the crypto helper accesses

1These are the three messages exchanged in IKE Quick mode [20].

Table II
AVERAGE TIME TO REVEAL VULNERABILITIES BY SECFUZZ, PROTOS,

AND IKEFUZZ

`````````Vulnerability
Fuzzer SECFUZZ PROTOS IKEFUZZ

1. CVE-2011-3380 7 3 94 min. 7

2. CVE-2011-4073 3 80 min. 7 7

3. CVE-2012-0783 3 10 min. 7 7

4. Vulnerability 4 7 3 94 min. 7

it, then the thread accesses freed memory. This vulnerability
is exposed by our Insert random message fuzz operator.

We reported the vulnerability to OpenSwan’s developers,
who then released a security patch. More details on the
vulnerability and the patch can be found in CVE-2011-4073.

D. Experiment 2: Shrew Soft’s VPN Client for Windows

In the second experiment we tested Shrew Soft’s VPN
Client, which is a popular IKE implementation for Windows.

1) The Setup: For dynamic analysis we used IBM’s
Rational Purify [14]. This tool detects memory access er-
rors (e.g. uninitialized memory access, buffer overflows,
improper memory frees) and memory leaks. The SUT is
Shrew Soft’s VPN Client, which implements IKE’s initiator.
For the experiment we used version 2.1.7 of the software,
which again was the latest version at the time of conducting
the experiment. The opponent end-point to the VPN Client
is OpenSwan’s responder. The rest of the experimental setup
is similar to the one used in our OpenSwan experiment.

2) The Results: We found an unhandled exception vulner-
ability in the VPN Client. The source code of the implemen-
tation is not available and we could not investigate the error
in detail. We reported the vulnerability to the developers,
who confirmed and fixed the vulnerability. The vulnerability
is exposed by the Set to the empty string fuzz operator and
occurs before authentication; hence it can be exploited by
any attacker. We expect a patched version of the Shrew Soft’s
VPN Client to be released before the publication of CVE-
2012-0783, which will detail the vulnerability.

E. SECFUZZ Compared to Other IKE Fuzzers

In this section, we report on the effectiveness of SECFUZZ
in terms of the “number of found failures” and the “average
time to find a failure”. 2 These metrics can be used by
software developers and managers to perform risk analysis
and decide whether they should fuzz-test their product.
Moreover, we use these metrics to compare the effectiveness
of SECFUZZ to two model-based fuzzers tailored for IKE
implementations, namely PROTOS [4] and IKEFUZZ [5]. We
remark that these model-based fuzzers are significantly more
complex than SECFUZZ (e.g. IKEFUZZ has 16901 lines of

2We use average time to find failures because fuzz-testing is inherently
probabilistic.



code versus 876 in SECFUZZ) as they use a model of the
IKE protocol to generate valid inputs.

For our comparisons, we used OpenSwan version 2.6.35
and Shrew Soft’s VPN Client version 2.1.7 as test subjects.
We ran the experiments on Linux virtual machines using
a Thinkpad T420 laptop and provided each fuzzer with
10 hours for testing each IKE implementation. We then
measured the average time the fuzzers needed for each
vulnerability they found. Table II summarizes our results.

As Table II shows, PROTOS and SECFUZZ each found
two vulnerabilities in the test subjects; in our experiments
IKEFUZZ could not discover any failures. Interestingly,
the vulnerabilities found by PROTOS and SECFUZZ are
different. In what follows, we further explain the results of
Table II.

The CVE-2011-3380 vulnerability is exposed when
OpenSwan receives an SA payload with an invalid key
length. The key length is specified in a field holding a list of
SA attributes. SECFUZZ currently cannot mutate fields that
store lists of values; hence SECFUZZ could not mutate the
key length attribute in order to expose the vulnerability.

The second vulnerability is described in Section IV-C. The
problem is exposed when OpenSwan receives an unexpected
“close session” message in IKE’s phase 2. PROTOS is
limited to mutating only phase 1 messages of IKE, and
moreover it does not have an equivalent to our Insert random
message fuzz operator. These limitations prevent PROTOS
from discovering this vulnerability.

The third vulnerability pertains to Shrew Soft’s VPN
Client. PROTOS and IKEFUZZ are limited to fuzz-testing
IKE responders, and the VPN Client implements IKE’s
initiator end-point. Thus, only SECFUZZ can fuzz-test Shrew
Soft’s VPN Client.

Vulnerability 4 pertains to the use of IP6 in OpenSwan.
In our experiments with SECFUZZ we decided to confine
our fuzz-testing to IP4, and therefore did not generate IP6
configurations. SECFUZZ could in principle be configured
for IP6, and would then discover this vulnerability (see Sec-
tion II). We have communicated this (previously unknown)
vulnerability to the OpenSwan development team.

To summarize, SECFUZZ appears as effective as PROTOS,
and they both are more effective than IKEFUZZ. SECFUZZ
has several major advantages over PROTOS: it can fuzz-test
any IKE implementations (i.e. initiator and responder end-
points), it can mutate phase 2 messages, and it can mod-
ify message sequences by inserting well-formed messages.
SECFUZZ is weaker than PROTOS in two regards: SECFUZZ
currently cannot mutate fields storing lists of values, and also
it depends on the opponent end-point’s configurations. These
limitations are however straightforward to overcome.

ACKNOWLEDGMENTS

The work has been partially supported by the EU FP7
projects SPACIOS (no. 257876). We thank Paul Wouters

(OpenSwan) and Matthew Grooms (Shrew Soft) for assisting
us with investigating the two vulnerabilities. We also thank
Hubert Ritzdorf for his help with the IKE case study.

REFERENCES
[1] T. M. Corporation, “2011 CWE/SANS Top 25 most dangerous

software errors,” Sep. 2011. [Online]. Available: http://cwe.mitre.
org/top25/index.html

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natara-
jan, and J. Steidl, “Fuzz revisited: A re-examination of the reliability
of UNIX utilities and services,” Office, vol. 1525, no. October 1995,
pp. 1–23, 1995.

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, pp. 32–44,
December 1990.

[4] “Protos test-suite: c09-isakmp,” https://www.ee.oulu.fi/research/
ouspg/PROTOS Test-Suite c09-isakmp.

[5] “IkeFuzz,” https://www.ee.oulu.fi/research/ouspg/ikefuzz.
[6] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox

fuzz testing,” in NDSS, 2008.
[7] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated

random testing,” in Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation, ser.
PLDI ’05. New York, NY, USA: ACM, 2005, pp. 213–223.

[8] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” Proceedings of the 8th USENIX conference on Operating
systems design and implementation, pp. 209–224, 2008.

[9] G. Banks, M. Cova, V. Felmetsger, K. C. Almeroth, R. A. Kemmerer,
and G. Vigna, “SNOOZE: Toward a stateful network protocol fuzzer,”
in ISC, 2006, pp. 343–358.

[10] T. Alrahem, A. Chen, N. DiGiuseppe, J. Gee, S.-P. Hsiao, S. Mattox,
T. Park, I. G. Harris, and et al., “Interstate: A stateful protocol fuzzer
for SIP,” in Defcon 15, August 2007, pp. 1–5.

[11] R. Kaksonen, M. Laakso, and A. Takanen, “System security as-
sessment through specification mutations and fault injection,” in
Proceedings of the IFIP TC6/TC11 International Conference on
Communications and Multimedia Security Issues of the New Century.
Deventer, The Netherlands: Kluwer, B.V., 2001, pp. 27–.

[12] Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security
flaw detection of network protocol implementations,” 2008 IEEE Intl.
Conf. on Network Protocols, pp. 114–123, 2008.

[13] Codenomicon, “The Defensics traffic capture fuzzer.” [Online].
Available: http://www.codenomicon.com

[14] R. Hastings and B. Joyce, Purify: A Tool for Detecting Memory Leaks
and Access Errors in C and C++ Programs. USENIX, 1992, pp.
125–138.

[15] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan Notices, vol. 42,
no. 6, pp. 89–100, 2007.

[16] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly
detecting relevant program invariants,” in Proceedings of the 22nd
international conference on Software engineering, ser. ICSE ’00.
New York, NY, USA: ACM, 2000, pp. 449–458.

[17] “Scapy,” http://www.secdev.org/projects/scapy/.
[18] C. Wysopal, L. Nelson, E. Dustin, and D. Zovi, The Art of Software

Security Testing: Identifying Software Security Flaws. Pearson
Education, 2006.

[19] T. M. Corporation, “CWE-List (2.1),” Sep. 2011. [Online]. Available:
http://cwe.mitre.org/data/

[20] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC
2409 (Proposed Standard), Internet Engineering Task Force, Nov.
1998, obsoleted by RFC 4306, updated by RFC 4109. [Online].
Available: http://www.ietf.org/rfc/rfc2409.txt

[21] “Openswan,” https://www.openswan.org.
[22] “Shrew Soft VPN Client,” http://www.shrew.net.
[23] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet

Security Association and Key Management Protocol (ISAKMP),”
RFC 2408 (Proposed Standard), Internet Engineering Task Force,
Nov. 1998, obsoleted by RFC 4306. [Online]. Available: http:
//www.ietf.org/rfc/rfc2408.txt

[24] “Memcheck: A memory error detector,” http://valgrind.org.


