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Abstract. Java bytecode verification is traditionally performed using dataflow anal-
ysis. We investigate an alternative based on reducing bytecode verification to model
checking. First, we analyze the complexity and scalability of this approach. We show
experimentally that, despite an exponential worst-case time complexity, model checking
type-correct bytecode using an explicit-state on-the-fly model checker is feasible in
practice, and we give a theoretical account why this is the case. Second, we formalize
our approach using Isabelle/HOL and prove its correctness. In doing so we build on
the formalization of the Java Virtual Machine and dataflow analysis framework of
Pusch and Nipkow and extend it to a more general framework for reasoning about
model-checking based analysis. Overall, our work constitutes the first comprehensive
investigation of the theory and practice of bytecode verification by model checking.
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1. Introduction

1.1. Bytecode verification and model checking

Java is a popular programming language, well-suited for building dis-
tributed applications where users can download and locally execute pro-
grams. To combat the security risks associated with mobile code, Sun has
developed a security model for Java in which a central role is played by
bytecode verification [15, 31], which ensures that no malicious programs
are executed by a Java Virtual Machine (JVM). Bytecode verification
takes place when loading a Java class file and the process verifies that the
loaded bytecode program has certain properties that the interpreter’s
security builds upon. The essential, and non-trivial, part of bytecode
verification is checking type-safety properties of the bytecode, i.e., that
operands are always applied to arguments of the appropriate type and
that there can be no stack overflows or underflows. By checking these
properties statically prior to execution, the JVM can safely omit the
corresponding runtime checks.

In this paper we investigate an alternative approach to bytecode veri-
fication: the use of model checking to validate the type-safety properties
of Java bytecode programs. We explain how this approach works, analyze
theoretically and experimentally when it is feasible and how it scales,
and formally state and prove its correctness. In doing so, we give the first
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comprehensive account of the theory and practice of bytecode verification
based on model checking.

Our account is based on two developments. The first is a system for
bytecode verification, whose module structure is depicted in Figure 1.
The class file reader parses a Java class file, extracting its methods.
The methods, together with the abstract semantics of the Java Virtual
Machine, are passed to a method abstraction module, which produces an
abstract, intermediate representation of each method. This representation
consists of a transition system (describing the method’s execution on the
abstract machine) and additionally a specification of safety properties
that formalize conditions sufficient for the bytecode’s type safety. These
descriptions are translated by code generators into the input language of
the SPIN [10] and SMV [16] model checkers.

Using our system, we carry out experiments that show that despite
an exponential worst-case time complexity, model checking type-correct
bytecode is feasible in practice when carried out using an explicit-state,
on-the-fly model checker like SPIN. The situation here is similar to type
checking in functional programming languages like ML, where the ty-
pability problem for terms is DEXPTIME hard [11], yet the worst-case
complexity is not a problem in practice. In addition, we investigate this
theoretically and explain the practical advantages of the model-checking
approach.

The second development is a formal theory in which we formalize and
prove correct the model-checking approach to bytecode verification. Our
theory is constructed using the Isabelle/HOL system, which is a formal-
ization of higher-order logic within the Isabelle theorem prover [19, 20].
To accomplish this task, we build upon the Isabelle/HOL formalizations
of the JVM [22, 23] and the abstract verification framework that Nip-
kow developed for verifying dataflow algorithms for bytecode verification
[17]. This framework formalizes the notion of a well-typing for bytecode
programs and proves that a bytecode verifier is correct (i.e., accepts only
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programs free of runtime type errors) when it only accepts programs
possessing a well-typing (formalized in Section 6.3). We extend this frame-
work to support polyvariant dataflow analysis and model checking. Using
this extension, we prove that every bytecode program whose abstraction
globally satisfies the instruction applicability conditions (which is what
is established by model checking) possesses such a well-typing, i.e., we
validate the model-checking approach by proving a theorem roughly of
the form

(abstraction(Method) |=LTL 2app conditions(Method))
=⇒ (∃ φ. well typing(φ,Method)) .

1.2. Contributions

We believe that there are several reasons why this work should be of
interest to other researchers. First, we show how to use formal methods
to improve the security and precision of the entire bytecode verification
and execution process. Our implementation declaratively formalizes both
the abstract semantics of the JVM and how to generate type correctness
properties as temporal safety properties. These formalizations, given in
the ML programming language, are used directly to produce the transition
system and the type correctness properties that are verified by the model
checker. Moreover, by basing a bytecode verifier directly on a general
model checker, our approach reduces the chance of errors arising during
an implementation of specialized dataflow algorithms.

Our formal theory provides the explicit link to type safety via the
existence of well-typings. By making this model explicit and precise, as
well as the reasons for its correctness, our formalization goes far beyond
the Java documentation [15], which gives only a semi-formal description
of bytecode verification and leaves numerous aspects of both the bytecode
verifier and the Java Virtual Machine either ambiguous or underspecified.

Bytecode verification by model checking is also more complete than the
conventional approach. As Stärk and Schmid point out [29], there are Java
programs whose compiled bytecode is type-correct that are not accepted
by Sun’s bytecode verifier. The classes of programs that they define (based
on calling subroutines in different contexts) are unproblematic for our
approach.

Second, we show that the model-checking approach is practical and
scales to realistic examples. This is not obvious. In contrast to conven-
tional bytecode verification, which is based on dataflow analysis and has
polynomial time complexity, using a model checker for this task has a
time and space complexity that is exponential in the worst case.

Our experiments show that for type-correct bytecode, model checking
can be performed in a tractable way, using the SPIN model checker, which
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constructs the state space incrementally, on-the-fly. This thesis was tested
on the 10388 methods of the java library distributed with Sun’s Java
Development Kit, where 10318 (which is 99.3%) are verified in under a
second. The reason is that although there are exponentially many states,
for correct code arising in practice, only polynomially many states are
usually reachable (see Section 3 for the exact analysis). This is in contrast
to symbolic BDD-based model checkers like SMV, which must represent
the entire state space and therefore turn out to be impractical for this
kind of problem. For incorrect bytecode, both explicit-state and symbolic
methods may fail to terminate in reasonable time (or exhaust memory).
This is not an issue in practice; when too many resources are used, one
may either time-out (giving a conservative answer) or use an alternative
approach (such as property simplification, as described in Section 3.3) to
detect an error.

This result suggests the usefulness of bytecode verification by model
checking, especially in application domains where time and space require-
ments are less important than correctness and possible extensibility. One
such application is Java for smart cards (JavaCard), a secure smart-card
platform with a simplified JVM. Due to memory limitations, bytecode
verification must be performed off-card (where correct code can then be
digitally signed by the verifier) instead of by the runtime environment.
One of our original motivations for this work was to investigate whether
model checking could be used as an alternative in this domain, along the
lines suggested in [21]. We can now answer this question positively.

Third, our correctness results also help to clarify the general rela-
tionship between bytecode verification by dataflow analysis and bytecode
verification by model checking. These two directions are related: both are
based on abstract interpretation and solving fixpoint equations. However,
while dataflow analysis computes a type for a method and checks that
the method’s instructions are correctly applied to data of that type,
the model-checking approach is more declarative; here one formalizes
the instruction applicability conditions as formulae in a temporal logic
(e.g. LTL) and uses a model checker to verify that an abstraction of
the method (corresponding to the abstract interpreter of the dataflow
approach) satisfies these applicability conditions. The Isabelle/HOL de-
velopment, which we present in Sections 4–7, also provides insights into
the relationship between monovariant and polyvariant dataflow analysis
and model checking, in particular, what differences are required in their
formalization.

In addition, our correctness results have some generality. Since we
formalize model checking declaratively, not algorithmically, as done in
[27], our Isabelle/HOL formalization makes a general statement about the
correctness of the model-checking approach. This statement is indepen-

bcvjar.tex; 21/02/2003; 15:04; p.4



5

dent of the implemented model-checking algorithm and can be applied,
for example, to reason about the correctness results of different model
checkers like SPIN and SMV.

There is a final reason why others may be interested in this work: our
approach gives rise to an unlimited supply of scalable, real-life model-
checking problems. The Java distribution, for example, comes with thou-
sands of class files that we could use for testing our system. Indeed, for
this reason, we would like to suggest bytecode verification as a problem
domain to test and compare different model checkers. Our system is freely
available for such benchmarking purposes.

1.3. Related work

In the recent years, there has been a convergence of ideas in static analysis
and model checking. Namely, different kinds of program analysis can be
performed by fixpoint computations and these computations can either be
carried out by specialized algorithms or by general purpose model check-
ers [27, 28]. Moreover, both static analysis and model checking generally
reason about abstractions of programs, e.g., abstracting the operational
model by identifying data.

While static analysis techniques have a long history, the application
of model checking to static analysis problems is more recent. The idea of
using model checking for bytecode verification was originally suggested
by Posegga and Vogt [21], who carried out a few small examples by hand
to suggest how, in principle, this approach could work for a subset of the
JVM. This was the starting point for the development of our system and
together with Posegga and Vogt we built our first prototype verifier [3]
for model checking bytecode programs based on a subset of the JVM.
The system reported on here represents a further development of these
ideas (superseding the preliminary work reported on in [1, 2]) and our
experiments are the first large-scale effort to apply model checking to
bytecode verification and to study its practical significance.

The Java language and the JVM have both been the focus of numerous
formal studies. This activity has been motivated by the widespread use
of Java, the lack of formal treatment originally given in [15], and the
interplay between different kinds of analysis and security, both in the
sense of type safety and IT security. A number of different approaches
have been proposed for type checking bytecode and an excellent overview
of the area is provided in [14]. Most of this work is theoretically oriented
and is concerned with formalizing models of the JVM [7, 8, 24] and
defining related type systems [6, 9, 25, 30].

Most relevant to our work is the research on formally proving the
soundness of various approaches to bytecode verification or verifying suf-
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ficient conditions for bytecode verifiers to be correct [4, 7, 12, 13, 17, 18,
22, 23]. As we will explain in detail in Section 5, our formal theory builds
upon the work and theories of Pusch [23], Nipkow [17], and Klein [12, 13]
who formalized a model of the JVM in Isabelle/HOL as well as theories
for verifying bytecode verifiers based on dataflow algorithms.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2 we
explain how to abstract class files to model-checking problems. This pro-
vides the basis for the experiments and analysis that we report on in
Section 3. In Section 4 we explain how we build upon the work of Pusch
and Nipkow to formalize the correctness of the model-checking approach
in Isabelle/HOL. We present background theories in Section 5, our adap-
tation of the JVM model in Section 6, and our proof of correctness in
Section 7. Finally, we draw conclusions in Section 8.

2. Abstracting class files to model-checking problems

2.1. Background

In this section we briefly explain the bytecode verification problem and
describe the main elements of our approach.

2.1.1. Bytecode and the JVM
Java programs are compiled to bytecode instructions that are interpreted
by the JVM. The result of compilation, a class file, contains a symbol
table (called the constant pool) describing the fields of the class and a
list of the methods of the class. Figure 2 provides an example, which
will be used throughout this section: a Java implementation of lists and
the bytecode of the method Cons.length(), which is compiled from the
corresponding Java method. The first instruction of this bytecode method
loads the this reference, which is stored in the local variable 0, on the
operand stack. Using this reference, the reference to the tail of the list is
then fetched from the field tl and pushed on the operand stack by the
getfield instruction, and the length() method is (recursively) invoked
by the invokevirtual instruction. Next, the integer constant 1 is pushed
on the operand stack and added to the result of the method invocation.
Finally, the resulting integer is returned by the ireturn instruction.

The JVM supports object orientation and there are specific bytecode
instructions for generating and accessing the objects of a class. The overall
architecture is that of a stack machine: the JVM possesses an operand
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public abstract class EmptyListException extends Error {}

public abstract class List {
public static final List nil = new Nil();
public List cons(Object hd) {return new Cons(hd, this);}

public abstract Object head();
public abstract List tail();
public abstract int length();

}

class Nil extends List {
public Object head() {throw new EmptyListException();}
public List tail() {throw new EmptyListException();}
public int length() {return 0;}

}

class Cons extends List {
Object hd;
List tl;

public Object head() {return hd;}
public List tail() {return tl;}
public int length() {return tl.length() + 1;}

}

Method int Cons.length()
max_stack=2, max_locals=1
0 aload_0
1 getfield Cons.tl
2 invokevirtual List.length()
3 iconst_1
4 iadd
5 ireturn

Figure 2. Java implementation of lists and bytecode of method Cons.length()
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stack, which is used to evaluate expressions. For instance, the iadd in-
struction adds the two topmost elements of the operand stack, discards
those elements from the stack, and pushes the result of the addition back
on the stack. In addition to the operand stack, the JVM also uses an
array of registers to store local variables, e.g., the local variable 0 used in
the aload instruction.

Most JVM instructions are typed. For instance, the getfield Cons.tl
instruction of the method length (see Figure 2), which accesses the tl
field in class Cons, requires that the operand stack contains a reference
to an object of class Cons (and not, for instance, an integer, which would
correspond to an attempt to forge a reference). The operand stack and
the registers (local variables) however are not typed.

2.1.2. Bytecode verification
To guarantee the secure operation of the JVM, one must show that each
method is well-typed. This means that one can assign a state type to
each point in the program, where the state type specifies what kind of
values the operand stack and the local variables may contain at the given
program point. For example, the state type (Empty, loc[0 7→ REF(Cons)])
associates to a program point those states whose operand stack is empty
and whose first local variable contains an object of class Cons. Given this
notion of a well-typing, one can show that the execution of a well-typed
method will never lead to a bad state of the JVM, that is, a state where
the instructions operate on inappropriate data. This allows the JVM to
execute more efficiently by eliminating runtime type checks.

2.1.3. Conventional bytecode verification
Conventional bytecode verification works by abstracting a method to a
state transition system and then computing the type of the method by
dataflow analysis. The bytecode verifier checks that the computed type is
a well-typing, i.e. satisfies the conditions for the correct execution of the
instructions.

The type of a program point is constructed by computing the supre-
mum (see Section 5 for a formal definition) of all state types that the
program point assumes when reached on different execution paths. This
requires the existence of a unique supremum, which is not the case for the
JVM due to multiple inheritance of interfaces. There are several solutions
to this problem, including considering sets of types instead of single types
or leaving the checks for the correct implementation of interfaces to the
Virtual Machine at runtime (as is done by Sun’s bytecode verifier).

Conventional bytecode verification is further complicated by the ex-
istence of subroutines, which are used to compile the finally part of a
Java try-catch-finally construct. The complication is due to the fact
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that one can call (jsr) and return from (ret) subroutines from different
program points where the calling contexts (the stack and the register
values not used by the subroutine) of different execution paths are in-
compatible. Solutions include structural restrictions on bytecode (Sun’s
approach), the use of type sets instead of mere types [6], and polyvariant
dataflow analysis [14]. Polyvariant analysis associates to a program point
a contour-indexed family of state types, where a contour approximates
the control flow leading to a program point; for bytecode verification,
call-stacks containing the return addresses of (nested) subroutines, i.e.
the program points after the jsr instructions, represent the contours. An
instruction is then analyzed once on each contour. In contrast, monovari-
ant analysis associates only one program state type to each program point
(which corresponds to polyvariant analysis with empty contours). It is an
open question as to which solution is best. The polyvariant approach
is more elegant but its time complexity is exponential in the depth of
subroutine nesting.

2.1.4. Model-checking approach
In our approach we also abstract a method to a state transition system.
However, instead of performing a dataflow analysis, we formalize the cor-
rectness properties as predicates on the states of the abstract transition
system and use off-the-shelf model checkers to determine whether these
properties are satisfied. The model checker then either reports that the
method is correct, or it provides a counterexample in the form of an
execution trace that leads to a type error.

This approach is simpler than conventional bytecode verification as
the correctness requirements can be clearly and comprehensibly specified
(see Section 2.3), which helps to avoid errors in the formalization. More-
over, multiple inheritance is unproblematic since the formalization of the
correctness properties only requires that the types are partially ordered.

Furthermore, note that the problems with subroutines, alluded to
above, do not arise, as model checking performs, in the words of Leroy
[14, p. 281], “the ultimate polyvariant analysis.” Namely, model checking
associates to a program point one state type per execution path leading
to that program point. This entails that model checking is polyvariant
also with respect to branching instructions, and thus is less restrictive
than conventional monovariant analysis, as demonstrated by the following
bytecode method.

Method int Example.m(int)
max_stack=2, max_locals=2
0 iload_1 // load int parameter on stack
1 ifeq +3 // if top of stack is 0, branch to line 4
2 iload_1 // again load int parameter on stack
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3 goto 5 // at line 5 the different paths merge
4 aload_0 // load this reference on stack
5 iload_1 // load int parameter on top of stack
6 ireturn // return the top of stack

In this method, the iload instruction at line 5 can be reached via two
different execution paths. On the first path an integer is loaded on the
operand stack (line 2) whereas on the second path the this reference of
the called object is loaded (line 4). With conventional bytecode verifica-
tion, this method would be rejected since the primitive type INT and the
reference type are incompatible and therefore the state types belonging to
the different paths cannot be merged. However, under our model checking
approach, the method is accepted as well-typed since for all instructions
the applicability conditions are fulfilled.

The downside of the more precise analysis is, as in the case of poly-
variant dataflow analysis, a time complexity exponential in the number of
variables used (the number of local variables and the size of the operand
stack). We investigate this problem and its implications in Section 3.2.

2.2. Abstract transition system

We abstract a method M to a finite state transition system (Q, q0,∆).
The set of states Q ⊆ N×(T stack)×(T array) contains triples that consist
of the program counter, the operand stack, and the array of local variables
of the method M . The set T of types contains the primitive types and the
reference types of the JVM (NULLT represents the polymorphic type of
the null reference) and the program addresses (since they can be targets
of ret instructions). We add an element ERR to represent uninitialized
values.

prim = {INT,FLOAT, LDOUBLE,HDOUBLE, LLONG,HLONG}
ref = {REF(cn) | cn ∈ classnames} ∪ {NULLT}
adr = {ADR(i) | i ∈ N}
T = prim ∪ ref ∪ adr ∪ {ERR}

Only a finite subset of T actually occurs in a particular transition
system, and we can compute this subset by inspecting the signature and
the instructions used in the method M . The signature of M , which has
the form

S = (mname, result type, [arg type1 , . . . , arg typen ]) ,

specifies the method’s name, its result type, and its argument types.
The method body is given as a list ins of bytecode instructions, where
insp refers to the pth element of this list. The types introduced by the
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instructions of the method body are then determined as follows (we list
only a few examples).

types of instr(iadd) = {INT}
types of instr(new C) = {REF(C)}
types of instr(getfield C.f) = {REF(C), τ},

where τ is the type of field C.f

Thus the set T of types occurring in a method of class C is

T = {REF(C), result type, arg type1 , . . . , arg typen} ∪⋃
p∈{0,...,|ins|−1} types of instr(insp) .

We compute the initial state q0 of the transition system for a method
M with signature S that belongs to a class C as follows: Execution starts
at program counter 0 with an empty operand stack, the this reference,
and the n parameter instances, which are passed through the first n+1 lo-
cal variables. The remaining local variables, loc[n+1], . . . , loc[max locals],
are initially undefined (max locals is specified in the class file), i.e., q0 =
(0,Empty, loc), where

loc[0] = REF(C)

loc[1] = arg type1 , . . . , loc[n] = arg typen

loc[n+ 1] = ERR, . . . , loc[max locals] = ERR .

The transition relation is defined as ∆ =
⋃

p∈{0,...,|ins|−1}{(q, q′) | q′ ∈
abs instr insp q}, where the function abs instr maps an instruction i and
a state q to the set of q’s successor states. We give a few representative
examples here, which show how the state q, consisting of the program
counter pc, the operand stack opst , and the local variables loc, is modified.

abs instr i (pc, opst , loc) =

{(pc + 1, loc[n].opst , loc)}, if i = iload n
{(pc + 1, pop(opst), loc[n 7→ top(opst)])}, if i = istore n
{(pc + 1, INT.pop(pop(opst)), loc)}, if i = iadd
{(pc + 1, τ.pop(opst), loc)}, if i = getfield C.f and

τ is the type of field f
{(pc + 1, pop(opst), loc),
(pc + offset , pop(opst), loc)},

if i = ifeq offset

{(pc + offset ,ADR(pc + 1).opst , loc)}, if i = jsr offset
{(retaddr(loc[n]), opst , loc)}, if i = ret n and

retaddr(ADR(p)) = p for all p
{(pc, opst , loc)}, if i = ireturn
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Figure 3. Subtyping relation vP

2.3. Type-safety properties

We formalize correctness properties as predicates on the states of the
abstract transition system. These properties must hold globally for all
possible runs of the system and this motivates our use of a temporal
specification formalism. Two different kinds of properties are required.

First, the operand stack must not overflow. The operand stack is
only used to evaluate expressions and hence the maximal stack height
max stack can be computed by the Java compiler in advance. This value
is given as a method attribute in the class file of the method. We can
formulate the corresponding condition as size(opst) ≤ max stack .

Second, each instruction must always operate on data of the appro-
priate type. Note that due to object orientation, for some instructions
different types of data are acceptable as determined by the subtyping rela-
tion vP , which depends on the program P . Figure 3 shows the subtyping
relation vP for a program P consisting of three classes C, D, and E,
where D and E are each a direct subclass of C. In the specification of the
JVM, the applicability conditions can be formalized in a straightforward,
declarative way. We give here a few representative examples.

iload n 7→ loc[n] = INT
istore n 7→ top(opst) = INT
iadd 7→ (top(opst) = INT) ∧ (top(pop(opst)) = INT)
getfield C.f 7→ top(opst) vP REF(C )
ifeq offset 7→ (top(opst) = INT)
jsr offset 7→ True
ret n 7→ loc[n] ∈ adr
ireturn 7→ top(opst) = INT

For a given program P , the relation vP is finite and thus the condi-
tions can be automatically unfolded and checked. The condition for the
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getfield C.f instruction, for instance, would be unfolded to

app instr(getfield C.f) (pc, opst , loc) ≡
top(opst) = REF(C ) ∨ top(opst) = REF(D) ∨
top(opst) = REF(E ) ∨ top(opst) = NULLT.

The overall correctness property for a method is the conjunction of
the global property for the stack height and the local property for each
program point.

(size(opst) ≤ max stack) ∧
∧

p∈{0,...,|ins|−1}
(pc = p⇒ app instr(insp))

2.4. Backends for SPIN and SMV

We have implemented two backends: one for SPIN and one for SMV. The
idea behind both is the same. From our intermediate representation we
produce a transition system in the input language of the model checker
and a property specification. The property specification states globally
invariant correctness properties, i.e., properties that should hold at ev-
ery program point. In LTL this corresponds to checking 2ϕ for a state
property ϕ and in CTL this corresponds to checking AGϕ.

We briefly describe here the SPIN backend (SMV is similar in most
respects). The formalization of the transition system in SPIN’s input
language Promela is straightforward. The types of the transition sys-
tem, i.e. the elements of the set T , are represented as integers. The
stack and the array of local variables are modeled as arrays of integers.
As an example, Figure 4 shows the abstract transition system for the
Cons.length() bytecode presented in Section 1. The data required to
model this method are the address labels {ADR(0), . . . ,ADR(5)} and the
types {ERR, INT,NULLT,REF(Cons),REF(List)}. Initially the operand
stack is empty and the local variable loc[0] contains the this reference
REF(Cons). Each transition modeling an instruction is carried out as an
atomic step.

In SPIN, the invariant ϕ can be expressed in different ways, e.g., as
an observer process or using a SPIN never-claim. We have chosen the
former: The observer process runs interleaved with the abstract state
transition system and it checks that the assertion, which states the cor-
rectness property, holds at each state. This approach is a simple and
efficient way to formalize an invariance property in Promela [26] and
has the practical advantage that temporal formulae need not be trans-
lated separately to automata. Figure 5 shows the correctness proper-
ties for our sample bytecode. For example, for the recursive call by the
invokevirtual List.length() instruction at pc = 2, we require that
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#define ADR0 0
#define ADR1 1
#define ADR2 2
#define ADR3 3
#define ADR4 4
#define ADR5 5
#define ERR 6
#define INT 7
#define NULLT 8
#define REF_CONS 9
#define REF_LIST 10

init {
atomic { loc[0] = REF_CONS; opst_ptr = 0; pc = 0 };
run assertions (); run transitions ()

}

proctype transitions( ) {
do
:: pc==0 -> atomic { opst[opst_ptr]=loc[0];

opst_ptr=opst_ptr+1;
pc=1 };

:: pc==1 -> atomic { opst[opst_ptr-1]=REF_LIST;
pc=2 };

:: pc==2 -> atomic { opst[opst_ptr-1]=INT;
pc=3 };

:: pc==3 -> atomic { opst[opst_ptr]=INT;
opst_ptr=opst_ptr+1;
pc=4 };

:: pc==4 -> atomic { opst[opst_ptr-2]=INT;
opst_ptr=opst_ptr-1;
pc=5 };

:: pc==5 -> atomic { pc=pc }
od

}

Figure 4. Abstract transition system for the Cons.length() bytecode in Promela
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proctype assertions( ) {
do
:: assert (

(pc!=0 || loc[0]==NULLT
|| loc[0]==REF_CONS
|| loc[0]==REF_LIST) &&

(pc!=1 || opst[opst_ptr-1]==NULLT
|| opst[opst_ptr-1]==REF_CONS) &&

(pc!=2 || opst[opst_ptr-1]==NULLT
|| opst[opst_ptr-1]==REF_CONS
|| opst[opst_ptr-1]==REF_LIST) &&

(pc!=4 || opst[opst_ptr-1]==INT &&
opst[opst_ptr-2]==INT) &&

(pc!=5 || opst[opst_ptr-1]==INT) &&
opst_ptr<=2 )

od
}

Figure 5. Correctness properties for the Cons.length() bytecode in Promela

the topmost element of the operand stack is either the null reference
(i.e. opst[opst_ptr-1]==NULLT) or a reference to an instance of the class
List (i.e. opst[opst_ptr-1]==REF_CONS or opst[opst_ptr-1]==REF_LIST).

3. Experimental results and analysis

We have carried out two different kinds of experiments to investigate the
applicability and scalability of model checking for bytecode verification.
First, to test the practical applicability of this approach, we model checked
all the methods associated with a large Java library, namely all methods
of the java package. Second, to better understand how the complexity of
bytecode checking depends on parameters such as method length, nesting
of subroutines, or number of variables and the types involved, we carried
out systematic “stress tests” where we varied each parameter individually,
while leaving the others fixed.

3.1. Practical applicability

To test the applicability of our approach to the verification of real byte-
code, we tested it on all the methods of the java package. This package
contains 1242 classes with 10388 methods in total. These methods are
representative for Java bytecode as they contain all the instructions of
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Figure 6. Verification times for the methods of the java library (log-scale)

the JVM. Moreover, they vary considerably in their complexity in terms
of the different parameters mentioned above. Also representative is their
size. Most Java methods are modestly sized (27.8 instructions per method
on average). In this package, only 510 methods contain more than 100
instructions.

As Figure 6 indicates, SPIN checks almost all of these methods in
negligible time.1 For 69 methods, SPIN requires more than a second and
36 of them exceed the time bound of three minutes; each of these methods
has more than 3000 reachable states. This performance is adequate for
most applications and in particular is more than adequate for off-line
verification (e.g., smart cards) and on-line verification for applications,
such as web applets, where methods are generally small. The picture for
SMV is completely different; even methods with less than 100 instructions
can require more than two minutes to verify and, for 664 methods, SMV

1 In all experiments, times are measured in seconds. All timings are on an 800-
Megahertz Pentium III PC with 1 GB memory.
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static int z;

public static int m n (int x) {

n times


z = z + x;

...
z = z + x;
return z; }

Figure 7. Method schema for testing complexity based on code length

exceeds the time bound of three minutes or runs out of memory. This
suggests that, for this problem domain, explicit-state, on-the-fly methods
are superior to symbolic methods. Our systematic tests shed light on some
of the reasons for this.

3.2. Systematic tests

We carried out four “stress tests” to isolate and investigate the influence
of various parameters on the complexity of the model-checking problem.
In particular, we investigated the effects of individually varying:

1. the length of methods, i.e. the number of instructions,

2. the number of local variables,

3. the depth of the class hierarchy, i.e. the number of types that are used
to model a method, and

4. the depth of the nesting of subroutines.

The methods checked were automatically produced by generating and
compiling appropriate Java programs as explained below.

3.2.1. Method length
We investigated the influence of a method’s length by generating methods
that consist of a single expression repeated n times, for n ∈ {1, . . . , 100}.
Figure 7 shows the form of these methods. The corresponding bytecode
uses only one local variable x and one class variable z. The method is
declared in a static class that is a direct subclass of Object; thus the
class hierarchy has depth one. The repeated line of code, z = z + x, is
translated to a sequence of four bytecode instructions.

As Figure 8 shows, SPIN runtimes scale roughly quadratically with the
size of the method and the associated constant factors are small enough to
allow practical large-scale verification. In contrast, SMV has acceptable
verification times until a threshold of around 200 instructions, and then
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Figure 8. Verification time depending on the number of instructions

scales quite poorly. It may be possible to delay this threshold by tuning
different system specific parameters (e.g., the size of hash tables). How-
ever, the symbolic representation of the entire state space using BDDs in
SMV can lead to memory problems, even with good variable orderings,
and results in runtimes orders of magnitude larger than SPIN’s. It is
interesting to see that these problems appear in even such a simple test.

3.2.2. Number of local variables
In this test, we varied the number of local variables, which also constitute
the arguments of the method, from one to a maximum of 10. The method
body of the ith method consists of a sequence of 10 if-statements (which
keeps the length of the code constant) and uses i variables. In the first 11−
i if-statements, only the variable v1 is used, and each of the remaining
i − 1 if-statements uses a new variable. In the then-branch of an if-
statement, the respective variable is assigned an object of class A and
in the else-branch it is assigned an object of class B. This yields 2i

different possible assignments for the variables of method i. As bytecode
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void m_1(int v0, Object v1)
{ if (v0 == 0) {v1 = new A(); } else {v1 = new B();}
if (v0 == 0) {v1 = new A(); } else {v1 = new B();}
if (v0 == 0) {v1 = new A(); } else {v1 = new B();} }

void m_2(int v0, Object v1, Object v2)
{ if (v0 == 0) {v1 = new A(); } else {v1 = new B();}
if (v0 == 0) {v1 = new A(); } else {v1 = new B();}
if (v0 == 0) {v2 = new A(); } else {v2 = new B();} }

void m_3(int v0, Object v1, Object v2, Object v3)
{ if (v0 == 0) {v1 = new A(); } else {v1 = new B();}
if (v0 == 0) {v2 = new A(); } else {v2 = new B();}
if (v0 == 0) {v3 = new A(); } else {v3 = new B();} }

Figure 9. Method schema testing complexity based on the number of local variables

verification by model checking is polyvariant with respect to branches, all
different assignments must be checked and this requires exponential time
for both model checkers. Figure 9 shows an instance of our schema and
Figure 10 displays the results.

3.2.3. Class hierarchy depth
For this test we generated a linear hierarchy of 100 classes, C1, . . . , C100,
such that Ci+1 is a direct subclass of Ci. As shown in Figure 11, an
additional class contains 100 methods, m1, . . . ,m100, to be checked. Each
of these methods takes 100 arguments. The arguments all have the same
type in the first method. The second method has arguments of two dif-
ferent types and, in the general case, the ith method’s arguments are
of i different types. For each method, the method body consists of a
single assignment statement. Since these assignments are all identical,
the abstract transition system is the same for every method. However,
the state space grows as more types are present; moreover, the properties
checked also become more complex.

As Figure 12 shows, for SPIN, the depth of the class hierarchy has
no effect on the verification time as the set of reachable states does not
change as more types are added (the variation of 0.01 seconds is due
to inaccurate timing). However, for SMV, the verification time grows
linearly with the number of different types. Examining the graph, we can
identify four different groups of methods, where the ith group contains
methods using 2i to 2i+1 − 1 different class types. The reason for this
grouping is that for the ith group SMV requires i + 3 bits to represent
the types in this group and it appears that a small additional amount
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Figure 10. Verification time versus number of local variables

of time (corresponding to the small gap between the groups) is required
to manipulate the larger BDDs. Note that the 100 local variables do not
blow up the state space as only one of them, namely c1, is actually used.

public void m_1 (C_1 c_1, C_1 c_2, ..., C_1 c_100) {
c_1.field = 0;}

public void m_2 (C_1 c_1, C_2 c_2, ..., C_1 c_100) {
c_1.field = 0;}

...

public void m_100 (C_1 c_1, C_2 c_2, ..., C_100 c_100) {
c_1.field = 0;}

Figure 11. Method schema for testing complexity based on class hierarchy depth
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Figure 12. Verification time versus depth of class hierarchy

Hence, in this example, the BDDs succeed in exponentially compressing
the state space.

3.2.4. Depth of subroutine nesting
In our last test, depicted in Figure 13, we examined methods that contain
nested subroutines, where the nesting depth is increased in each method.
To ensure that all compiled methods have the same number of instruc-
tions, we add an appropriate number of x++ statements, which adjust the
lengths of the methods.

As explained in Section 2.1, verifying subroutines is one of the more
delicate issues in bytecode verification. The fact that verifying subroutines
using model checking is much simpler than verifying them convention-
ally comes at the price of exponential time consumption! As Figure 14
illustrates, both SPIN and SMV perform poorly when checking nested
subroutines. Since subroutines are polymorphic in the local variables that
are not used in the subroutine, the reachable state space is exponential
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public void m_1() {
int x = 0;

x++; // repeated 19*17 times
try {throw new Exception();}
catch (Exception e) {}
finally {}

}

public void m_2() {
int x = 0;

x++; // repeated 18*17 times
try {throw new Exception();}
catch (Exception e) {}
finally{

try{throw new Exception();}
catch (Exception e) {}
finally{}

}
}

Figure 13. Sample methods for testing complexity of subroutine nesting

in the depth of subroutine nesting. BDDs do not significantly reduce this
explosion.

3.3. Analysis

In the following, we compare the complexity of conventional bytecode
verification with model checking. Let ins be the number of program
points, T the number of types, max locals the number of local variables,
and max stack the maximal stack height. For conventional bytecode veri-
fication, where interfaces are treated as normal classes and correct typing
of interfaces is checked at runtime, as is done by Sun’s JVM, the size of
the state space is ins · Tmax locals+max stack .

Despite the exponential size of this search space, in conventional byte-
code verification only linearly many states ever need to be explored.
In particular, the method type that associates a state type with every
program point is computed by iterating an abstract interpretation of
the method. The algorithm starts with a method type that associates
the bottom type to each program point. In each iteration, the state
types belonging to different execution paths are merged by taking their
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Figure 14. Verification time versus depth of the subroutine nesting

supremum. This yields a new state type for each program point that
is larger or equal (under the subtyping order) than that of the previous
iteration. This process terminates when a fixpoint is reached or an error is
found. Structural restrictions placed on bytecode (e.g. no two subroutines
can be terminated by the same return instruction) guarantee that the
number of iterations required is linear in the number of storage locations
(local variables and operand stack). Since no iteration can decrease the
types associated with any program point, a fixpoint is reached in at most
ins · T · (max locals + max stack) iterations.

In the case of model checking, program points are also associated with
types and, as in the dataflow analysis performed by Sun’s verifier, the size
of the state space is also ins · Tmax locals+max stack . However, since model
checking is polyvariant with respect to branches, in the worst case all of
these states are reachable (see Section 3.2.2).

The feasibility of model checking bytecode in practice depends on
the algorithm used. Symbolic methods manipulate a representation of
the entire state space and, as we have seen, often require exponential
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resources to do so. However, in practice the nesting of subroutines has
a fixed upper bound (it is almost never greater than two) and, after a
branching instruction, variables are usually assigned values of the same
types in both branches. In these cases, only polynomially many states
are reachable, since there is only one state type possible for each program
point. Since the property to be model checked is also linear in the number
of instructions, it follows that an on-the-fly model checker like SPIN can
validate correct bytecode in acceptable time and space.

This tractability result only holds for type-correct bytecode. For in-
correct bytecode there can indeed be exponentially many reachable states
since any type can be associated with any local variable or stack position
at each program point. Preliminary experiments with incorrect bytecode
confirm that finding errors is considerably more resource intensive than
validating correct bytecode. Even for small methods consisting of less
than 100 instructions, both SPIN and SMV are incapable of finding
errors; typically SPIN fails to terminate and SMV runs out of memory.
This is not a problem in practice; when too many resources are used, one
may either time-out (giving a conservative answer) or use an alternative
approach to detect an error.

For detecting errors in incorrect code we have found the following
“property simplification” approach useful, which works for on-the-fly model
checking. Instead of checking the correctness properties for all instructions
simultaneously (e.g., the large conjunct in Figure 5), the properties to
be checked are split (divide-and-conquer) into subproperties, which are
individually checked in separate model-checking runs. In the extreme
case, we can individually check the safety of each transition from each
possible program point (e.g., perform a model-checking run for each con-
junct in Figure 5). This trades off space for time, reducing the size of
the overall transition system for each run, which is the product of the
transition system modeling the method and the transition system repre-
senting the properties. This approach has proved adequate for finding type
flaws in our tests. Bounded model checking [5] is an interesting possible
alternative, as normally the paths to errors are small.

4. Formalizing correctness

In the second half of this paper, we present a formal explanation of the
correctness of our approach. Our formalization is within Isabelle/HOL
and builds heavily upon the work of Pusch, Nipkow, and Klein. As their
formalization is central to ours, we begin by discussing their work and
highlight the differences involved in our verification.
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Nipkow presents in [17] a framework for the formal verification of
bytecode verification based on dataflow algorithms. This framework for-
malizes an operational semantics of the JVM and introduces the notion
of a well-typing for bytecode programs. Based on the work of Pusch [23],
he presents a proof that every program possessing a well-typing is type
safe, i.e., the JVM will not reach a state where instructions operate on ill-
typed data during the program’s execution. In particular, Nipkow verifies
an instance of a bytecode verifier that is based on Kildall’s algorithm and
formalizes the approach taken by Sun’s bytecode verifier. He shows that
the program types computed by the algorithm, which do not contain the
Err element, are well-typings.

The work of Pusch and Nipkow focuses on the main concepts of the
JVM; the formalization of the type system is restricted to integers and
booleans as primitive types and references to classes that are not in-
terfaces or array types. They also omit subroutines, exception handling,
and object initialization from their formalization. Despite these omis-
sions, their theory is substantial and encompasses more than 8000 lines
of definition and proof.

In our work, we build directly on this formalization. This provides a
good basis for validating the concept of static analysis by model check-
ing, albeit under the same omissions. Although there is no conceptual
difficulty in adding the missing features, doing so would be a large under-
taking.2 Note that Nipkow’s notation, carried over in our formalization,
differs slightly from the notation of [15] that we used in the first part
of this paper. These differences are minor (e.g. INT versus integer) and
self-explanatory.

The relationship between our development and Nipkow’s can be seen
under three different aspects: instantiation, modification, and extension.
First, we instantiate Nipkow’s abstract framework in that we reuse his
foundational theories on semilattices, most of his formalization of the
JVM and its type system, and his results on type safety. This allows us
to substantially simplify our task: we can reduce the correctness of our
approach (successfully model-checked code is type safe) to showing that
when a program passes our bytecode verifier, then it possesses a well-
typing. In doing so, we instantiate Nipkow’s framework with a modified
formalization of the notion of a state type (cf. Section 6.1). This particular
instantiation is motivated by the fact that model checking is less restric-
tive than dataflow analysis and allows multiple state types per program
point, depending on the control-flow paths leading to the program point
(cf. Section 2.1).

2 Recently these omissions have been lifted and the formalization comprises almost
all the features of the Java Virtual Machine (see [12, 13]).
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Second, to build the above instance, we modify the notion of the stack
type to allow stack elements of incompatible types, thus generalizing
the notion of the JVM state type. Of course, making such modifications
requires reestablishing some of Nipkow’s results. For example, given our
change to the JVM state type, we needed to reprove Nipkow’s type-safety
theorem; however, we could reuse almost all of his proofs, with only minor
modifications.

Finally, to support model checking, new extensions are required. For
example, we must develop a theory that formalizes the syntax and se-
mantics of linear temporal logic (LTL). This allows us to characterize
abstractly, i.e. independent of the model-checking algorithm used, the
properties that are checked.

The above describes the changes and extensions we made to Nipkow’s
theories to formalize our approach. There is one point, however, where our
formalization deviates from our implemented system. Namely, to allow
the computation of the supremum of two stacks at a program point,
our formalization requires the stack size to be constant. As a result, our
current formalization constitutes a midpoint, in terms of the set of pro-
grams accepted, between Nipkow’s formalization and our implementation.
By further generalizing the state type, it should be possible to lift this
restriction. Alternatively, we could eliminate this difference between our
system and our formalization by simply having the model checkers enforce
this restriction. The downside of this is that the model checker would then
reject some additional programs. But these are also rejected by bytecode
verifiers based on dataflow analysis, like Sun’s.

We can summarize our development, which is subdivided into six ar-
eas, as shown in Table I. Based on (1) preliminary definitions and (2)
semilattice-theoretic foundations, we define (3) the JVM model, which
includes the JVM type system, the JVM abstract semantics, and the
definition of the JVM state type. In (4), the model-checking framework,
we define Kripke structures and traces, which we later use to formalize
model checking. Afterwards, we define the translation of bytecode pro-
grams into (5) finite transition systems. We use the abstract semantics
of JVM programs to define the transition relations and the JVM type
system to build LTL formulae for model checking. Finally, we state and
prove in (6) our main theorem.

5. Foundational background

We now present background concepts necessary for our formalization. The
subsections 5.1, 5.2, and 5.4–5.6 describe (unmodified) parts of Nipkow’s
formalization and are summarized here for the sake of completeness.
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Table I. Overview of the theories constituting our formalization

Theories Status

JBasis (1), Type (1), Decl (1), unchanged

TypeRel (1), State (1),WellType (1),

Conform (1), Value(1), Semilat (2),

Err (2), Opt (2), Product(2),

JType (3), BVSpec (3)

Listn (2) the stack model is changed

JVMInstructions (1), JVMExecInstr (1), modified due to the

JVMExec (1), JVMType (3), Step (3), changes in the stack model

Semilat2 (2), Kripke (4), LTL (4), new

ModelChecker (5), JVM MC (6)

5.1. Basic types

We employ basic types and definitions of Isabelle/HOL. Types include
bool , nat , int , the polymorphic types α set and α list , and the product
type α × β. Note that × is used both on the type and on the set level.
We employ a number of standard functions on (cons) lists including a
conversion function set from lists to sets, infix operators # and @ to
build and concatenate lists, and a function size to denote the length of
a list. xs!i denotes the i-th element of a list xs and xs[i := x] overwrites
the i-th element of xs with x. Finally, we use records to build tuples and
functional images over sets: (| a :: α, b :: β |) denotes the record type
containing the components a and b of types α and β respectively and f ‘A
denotes the image of the function f over the set A.

5.2. Partial orders and semilattices

A partial order is a binary predicate of type α ord = α→ α→ bool . We
write x ≤r y for r x y and x <r y for x ≤r y∧x 6= y. We say that r :: α ord
is a partial order iff r is reflexive, antisymmetric, and transitive. We
formalize this using the predicate order :: α ord → bool . The top element
of a set T with respect to the partial order r is characterized by the
predicate top :: α ord → α → bool , which is defined by top r T ≡
∀x. x ≤r T . Given the types α binop = α → α → α and α sl =
α set × α ord × α binop and the supremum notation x+f y = f x y, we
say that (A, r, f) :: α sl is a (supremum) semilattice iff the predicate
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semilat :: α sl → bool holds, where

semilat(A, r, f) ≡
order r ∧ closed A f ∧
(∀x y ∈ A. x ≤r x+f y) ∧ (∀x y ∈ A. y ≤r x+f y) ∧
(∀x y z ∈ A. x ≤r z ∧ y ≤r z −→ x+f y ≤r z)

and closed A f ≡ ∀x y ∈ A. x+f y ∈ A .

5.3. Least upper bounds of sets

The above definitions are for reasoning about the supremum of two ele-
ments using a binary operator. We define an additional theory Semilat2
to reason about the supremum of sets.

To build suprema over sets, we define the function lift sup :: α sl →
α → α → α → α, written lift sup (A, r, f) T x y = x ](A,r,f),T y, that
lifts the binary operator f :: α binop over the type α.

x ](A,r,f), T y ≡ if (semilat (A, r, f) ∧ top r T ) then
if (x ∈ A ∧ y ∈ A) then (x +f y) else T

else arbitrary

To reason about the least upper bounds of sets, we introduce the bottom
element B :: α, defined by bottom r B ≡ ∀x.B ≤r x. We use the
Isabelle/HOL function fold :: (β → α → α) → α → β set → α to
build the least upper bounds of sets and we write

⊔
(A,r,f), T, B A′ for

fold (λx y. x ](A,r,f), T y) B A′. We observe that
⊔

(A,r,f), T, B A′ is a
least upper bound of A′.

The following lemma states (1) the monotonicity of the supremum
over sets and extends (2) the semi-homomorphism property g x+f y ≤r

g (x) +f g (y) to sets. (3) combines (1) and (2) and will be used later in
our correctness proof.

LEMMA 1. Let (A, r, f) be a finite semilattice with top element T ∈ A,
bottom element B ∈ A, and subsets A′ ⊆ A and A′′ ⊆ A. Furthermore
let g :: α → α, where α is the element type of the semilattice, be a strict
function that is closed on A and that satisfies the semi-homomorphism
property, i.e., g B = B, ∀x ∈ A. g x ∈ A, and ∀x y ∈ A. g(x +f y) ≤r

g(x) +f g(y). Then it holds that:

A′′ ⊆ A′ −→
(⊔

(A,r,f), T, B A′′
)
≤r

(⊔
(A,r,f), T, B A′

)
(1)

g
(⊔

(A,r,f), T, B A′
)
≤r

⊔
(A,r,f), T, B (g ‘A′) (2)

(g ‘A′′) ⊆ A′ −→ g
(⊔

(A,r,f), T, B A′′
)
≤r

(⊔
(A,r,f), T, B A′

)
. (3)
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5.4. The error type and err-semilattices

The theory Err defines an error element, which we will use to model
the situation where the supremum of two elements does not exist. We
introduce both a datatype and a corresponding construction on sets.

datatype α err ≡ Err | OK α
err A ≡ {Err} ∪ {OK a | a ∈ A}

Orderings r on α can be lifted to α err by making Err the top element.

le r Err = True
le r Err (OK y) = False
le r (OK x) (OK y) = x ≤r y

We now employ the following lifting function

lift2 :: (α→ β → γ err) → α err → β err → γ err
lift2 f (OK x) (OK y) = f x y
lift2 f = Err

and a function that lifts supremum functions f on α to supremum func-
tions on α err

sup :: (α→ β → γ) → (α err → β err → γ err)
sup f ≡ lift2 (λx y. OK (x +f y))

to define a new notion of an err -semilattice, which is a variation of a
semilattice with a top element. It suffices to say how the ordering and the
supremum are defined over non-top elements and hence we represent a
semilattice with top element Err as a triple of type esl : α esl = α set ×
α ord × α ebinop, where α ebinop = α → α → α err . We also define
conversion functions between the types sl and esl.

esl :: α sl → α esl
esl (A, r, f) = (A, r, λ x y. OK (f x y))

sl :: α esl → α err sl
sl (A, r, f) = (err A, le r, lift2 f)

Finally we define L :: α esl to be an err -semilattice iff sl L is a
semilattice. It follows that esl L is an err -semilattice if L is a semilattice.
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5.5. The option type

Theory Opt introduces the type option and the set opt as duals to the
type err and the set err.

datatype α option ≡ None | Some α

opt A ≡ {None} ∪ {Some a | a ∈ A}

The theory also defines a function that lifts orderings r on α to orderings
on α option by making None the bottom element.

le r None = True
le r (Some x) None = False
le r (Some x) (Some y) = x ≤r y

Additionally it defines a function that lifts binary operators f of type
α ebinop to binary operators of type α option ebinop.

sup f None z = OK z
sup f z None = OK z
sup f (Some x) (Some y) = case (f x y) of

Err ⇒ Err
| OK s ⇒ OK(Some s)

Note that the function esl (A, r, f) = (opt A, le r, sup f) maps err -
semilattices to err -semilattices.

5.6. Products

Theory Product provides what is known as coalesced products, where the
top elements of both components are identified.

esl :: α esl → β esl → (α × β) esl
esl (A, rA, fA) (B, rB, fB) = (A × B, le rA rB, sup fA fB)
sup :: α ebinop → β ebinop → (α × β) ebinop
sup f g = λ (a1, b1) (a2, b2). Err.sup (λx y. (x, y)) (a1 +f a2) (b1 +g b2)

The ordering function le :: α ord → β ord → (α × β) ord is defined as
expected. If both L1 and L2 are err -semilattices, then so is eslL1 L2.

5.7. Lists of fixed length

For our application, we model the JVM stack differently from Nipkow.
In particular, to support polyvariant analysis, we must associate multiple
stack types to each program point within the program. This modification
takes place in the theory Listn in which lists of fixed length over a given
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set are defined. In Isabelle/HOL this is formalized as a set rather than a
type, namely

list n A ≡ {xs | size xs = n ∧ set xs ⊆ A} .

This set can be turned into a semilattice in a componentwise manner,
essentially by viewing it as an n-fold Cartesian product.

sl :: nat → α sl → α list sl
sl n (A, r, f) = (list n A, le r, map2 f)

le :: α ord → α list ord
le r = list all2 (λx y. x ≤r y)

Here the auxiliary functions map2 :: (α → β → γ) → α list → β list →
γ list and list all2 :: (α → β → bool) → α list → β list → bool pointwise
extend binary functions and predicates on elements to binary functions
and binary predicates on lists. We write xs ≤[r] ys for xs ≤(le r) ys and
xs+[f ] ys for xs+(map2 f) ys. If L is a semilattice, then so is sl n L.

To combine lists of different lengths, we define the function

sup :: (α→ β → γ err) → α list → β list → γ list err
sup f xs ys = if (size xs = size ys)

then OK (map2 f xs ys)
else Err.

Note that in our JVM formalization, the supremum of two lists xs and
ys of equal length returns a result of the form OK zs with zs!i = Err,
when the supremum of two corresponding elements xs!i and ys!i equals
Err. This differs from sup in Nipkow’s formalization, which returns Err
in this case. Below we present the function upto esl that maps a natural
number n and a semi-lattice L to an err -semilattice of all lists over L of
length up to n.

upto esl :: nat → α sl → α list esl
upto esl n = λ (A, r, f). (∪i≤n list i A, le r, sup f)

6. The JVM model

We now show how the JVM can be formalized for the purpose of polyvari-
ant dataflow analysis. In Section 6.1, our formalization adopts unchanged
Nipkow’s formalization of the JVM and the JVM type system. Using this,
we define our modified program state type and construct a semilattice
whose carrier set consists of elements of this type. Based on this modified
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program state type, we redefine in Section 6.2 the syntax and abstract
semantics of JVM programs and consequently also redefine the JVM
abstract execution function and the notion of a well-typed method in
Section 6.3.

6.1. Type system and well-formedness

The theory Types defines the types of our JVM. Our machine supports
operations over elements of the type ty: the void type, integers, booleans,
null references, and class types (based on the type cname of class names).

datatype ty ≡ Void | Integer | Boolean | NullT | Class cname

The theory Decl defines class declarations and programs. Based on the
type mname of method names and vname of variable names, we model a
JVM program P :: γ prog as a list of class files, where

γ prog = γ cdecl list
γ cdecl = cname × γ class
γ class = cname × (vname × ty) list × γ mdecl list
γ mdecl = (mname × ty list)× ty × γ.

Each class file records its class name, the name of its super class, a list of
field declarations, and a list of method declarations. The type cname is
assumed to have a distinguished element Object.

Our program formalization gives rise to a subclass relation subcls1
and subclasses induce a subtype relation subtype :: γ prog → ty → ty →
bool . Based on the subtype P relation, we define the supremum on types
sup :: ty → ty → ty err as is standard. As abbreviations, we define
types P = {τ | is type P τ} and τ1 vP τ2 = τ1 ≤subtype P τ2. Below,
we use the predicate is class P C to express that the class C is in the
program P .

Well-formedness of JVM programs is defined by context conditions
that can be checked statically prior to bytecode verification. We for-
malize this using a predicate wf prog :: γ wf mb → γ prog → bool ,
where γ wf mb = γ prog → cname → γ mdecl → bool . Infor-
mally, wf prog wf mb P means that all methods of the program are
well-formed with respect to the predicate wf mb (given as the first param-
eter), subcls1 P is univalent (i.e. subcls1 P represents a single inheritance
hierarchy) and acyclic, and both (subcls1 P )−1 and (subtype P )−1 are
well-founded. The definition of wf prog is given in [17].

The following lemma holds for all programs P and predicates wf mb.

LEMMA 2.
wf prog wf mb P −→
semilat (sl (types P, subtype P, sup P )) ∧ finite (types P )

bcvjar.tex; 21/02/2003; 15:04; p.32



33

We will use the semilattice sl (types P, subtype P, sup P ) to construct a
semilattice with the carrier set of program states.

The JVM is a stack machine where each activation record consists
of a stack for expression evaluation and a list of local variables (called
registers). The abstract semantics, which operates with types as opposed
to values, records the type of each stack element and each register. At
different program points, a register may hold incompatible types, e.g. an
integer or a reference, depending on the computation path that leads to
that point. This facilitates the reuse of registers and is modeled by the
HOL type ty err , where OK τ represents the type τ and Err represents
the inconsistent type. In our JVM formalization, the elements of the stack
can also be reused. Thus a state type of our abstract JVM is a pair of
lists,

state type = ty err list × ty err list ,
which model an expression stack and a list of registers. Note that this
type differs from the type ty list × ty err list presented in [17], where
the stack only holds the values that can actually be used.

We now define the type of the program state as state type option err ,
where OK None indicates an unreachable program point (dead code),
OK (Some s) is a normal state type s, and Err is an error. In the following,
we use the type association state = state type option err . Turning state
into a semilattice structure is easy because all of its constituent types are
(err -)semilattices. The set of operand stacks forms the carrier set of an
err -semilattice because the supremum of stacks of different size is Err; the
set of lists of registers forms the carrier set of a semilattice because the
number of registers is fixed.

stk esl :: γ prog → nat → ty err list esl
stk esl P maxs ≡ upto esl maxs (sl (types P, subtype P, sup P ))

reg sl :: γ prog → nat → ty err list sl
reg sl P maxr ≡ Listn.sl maxr (sl (types P, subtype P, sup P ))

Since any error on the stack must be propagated, the stack and registers
are combined in a coalesced product using Product.esl and then are em-
bedded into option and err to form a semilattice. This is accomplished
by the function sl.

sl :: γ prog → nat → nat → state sl
sl P maxs maxr ≡ Err.sl (Opt.esl (Product.esl

(stk esl P maxs)
(Err.esl reg sl P maxr)))

In the following we abbreviate sl P maxs maxr as sl, states P maxs maxr
as states, le P maxs maxr as le, and sup P maxs maxr as sup. Using
properties about semilattices, it is easy to prove the following lemma:
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LEMMA 3.

∀P maxs maxr . sl = (states, le, sup),
∀wf mb P maxs maxr . (wf prog wf mb P ) −→ semilat (states, le, sup),
∀wf mb P maxs maxr . (wf prog wf mb P ) −→ finite (states),
∀P maxs maxr . Err ∈ states,
∀P maxs maxr . top le Err,
∀P maxs maxr . (OK None) ∈ states, and
∀P maxs maxr . bottom le (OK None).

6.2. Program syntax and abstract semantics

The theory JVMInstructions defines the JVM instruction set. In our JVM
formalization, the polymorphic instructions Load, Store, and CmpEq are
replaced with instructions that have their counterparts in the Sun JVM
instruction set, i.e. one such instruction for each base type (see the ex-
planation at the end of Section 6.3).

datatype instr = iLoad nat | bLoad nat | aLoad nat
| Invoke cname mname | iStore nat | bStore nat | aStore nat
| Getfield vname cname | iIfcmpeq nat | LitPush val | Dup
| Putfield vname cname | bIfcmpeq nat | New cname | Dup x1
| Checkcast cname | aIfcmpeq nat | Return | Dup x2
| Pop | Swap | IAdd | Goto int

We instantiate the polymorphic type of programs γ prog using the type
nat×nat× instr list , which reflects that bytecode methods contain infor-
mation about the class file attributes max stack and max locals, and the
instructions of the method body. We model the type-level execution of a
single instruction with step′ :: instr × jvm prog × state type → state type,
where jvm prog = (nat × nat × instr list) prog . Below we show the
definition of step′ for selected instructions. For instance, the abstract
Getfield instruction puts the type of the referenced field on the operand
stack (the type is the second component of the field declaration obtained
by the(field(P,C) fn)).

step′ (iLoad n, P, (st , reg)) = ((reg !n)#st , reg)
step′ (iStore n, P, (τ1#st1, reg)) = (st1, reg [n := τ1])
step′ (iAdd, P, ((OK Integer)#(OK Integer)#st1, reg)) =

((OK Integer)#st1, reg)
step′ (Getfield fn C, P, (τo#st1, reg)) =

(OK(snd(the(field(P,C) fn)))#st1, reg)
step′ (iIfcmpeq b, P, (τ1#τ2#st1, reg)) = (st1, reg)
step′ (Return, P, (st , reg)) = (st , reg)
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Note that the execution of the Return instruction is modeled by a self-
loop. This will be useful when we model traces as infinite sequences of
program states. Finite sequences can occur only in ill-formed programs,
where an instruction has no successors.

6.3. Bytecode verifier specification

We now define a predicate app′ :: instr×jvm prog×nat×ty×state type →
bool , which expresses the applicability of the function step′ to a state type
(st, reg); again we show only a few cases.

app′ (i, P, maxs, rT , (st , reg)) ≡ case i of
iLoad n ⇒ n < size reg ∧ reg !n = (OK Integer)∧

size st < maxs
| iStore n ⇒ ∃ τ st1. n < size reg ∧ st = τ#st1 ∧

τ = (OK Integer)
| iAdd ⇒ ∃ st1. st = (OK Integer)#(OK Integer)#st1

| Getfield fn C ⇒ ∃ τo τf st2. st = (OK τo)#st2 ∧ is class P C ∧
field (P,C) fn = Some (C, τf ) ∧ τo vP Class C

| iIfcmpeq b ⇒ ∃ st1. st = (OK Integer)#(OK Integer)#st1

| Return ⇒ ∃ τ st1. st = τ#st1 ∧ τ vP rT

Furthermore, we introduce a successor function succs :: instr → nat →
nat list , which computes the possible successor instructions of a program
point with respect to a given instruction.

succs i p ≡ case i of
Return ⇒ [p]

| Goto b ⇒ [p+ b]
| aIfcmpeq b ⇒ [p+ 1, p+ b]
| bIfcmpeq b ⇒ [p+ 1, p+ b]
| iIfcmpeq b ⇒ [p+ 1, p+ b]
| ⇒ [p+ 1]

We use succs to construct the transition function of a finite transition
system. To reason about the boundedness of succs, we define the predicate
bounded :: (nat → nat list) → nat → bool , where bounded f n ≡ ∀ p <
n. ∀ q ∈ set (f p). q < n.

Let method type = state type option list . We now define a well-
typedness condition for bytecode methods. The predicate wt method for-
malizes that given a program P , class C, method parameter list pTs,
method return type rT , maximal stack size maxs, and the number of
uninitialized registers maxl, a bytecode instruction sequence ins is well-
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typed with respect to a given method type φ.

wt method :: jvm prog → cname → ty list → ty → nat → nat →
instr list → method type → bool

wt method P C pTs rT maxs maxl ins φ ≡
0 < size ins ∧
(Some ([], (OK (Class C))#(map OK pTs)@(replicate maxl Err)))

≤le state opt φ!0∧
(∀ pc. pc < size ins −→

(app (ins!pc) P maxs rT (φ!pc))∧
(∀ pc′ ∈ set (succs (ins!pc) pc). (pc′ < size ins)∧

(step (ins!pc) P (φ!pc) ≤le state opt φ!pc′))

Here, step and app are liftings of their primed counterparts from state type
to state type option. Furthermore ≤le state opt lifts the order on state type
to state type option. Note that this definition of a well-typed method is
in the style of Pusch [23].

The last element of our JVM model is the definition of the abstract
execution function exec.

exec :: jvm prog → nat → ty → instr list → nat → state → state
exec P maxs rT ins pc ≡ λ s. case s of

Err ⇒ Err
| OK s′ ⇒ if app (ins!pc) P maxs rT s′

then OK (step (ins!pc) P s′)
else Err

Abbreviating exec P maxs rT ins pc as exec, we now have

LEMMA 4.

∀wf mb P maxs maxr ins pc.∀ s1 s2 ∈ states.
(wf prog wf mb P ∧ semilat sl)

−→ exec (s1 +sup s2) ≤le (exec s1) +sup (exec s2).

This lemma states a “semi-homomorphism” property of the exec func-
tion with respect to the le relation. To prove it we must show for our
formalization of the JVM that if an instruction at a given program point
is well-typed with respect to two arbitrary state types x, y ∈ A, then
it is also well-typed with respect to the supremum x +f y of the two
state types. This would have been impossible to prove using Nipkow’s
formalization of the JVM with polymorphic instructions; hence we have
replaced the polymorphic instructions in the JVM instruction set with
collections of monomorphic ones.
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7. Model checking and correctness

We now verify the correctness of our approach. We first show how the
abstract transition system of a bytecode method M is formalized as a
Kripke structure K and how the applicability conditions are formalized
as an LTL formula ψ. Second we show what it means for ψ to globally
hold for K, i.e. K |= 2ψ. Namely, we constructively show that when
model checking succeeds, then there exists a type φ that is a well-typing
for the method M .

7.1. Kripke structures and method abstraction

7.1.1. Kripke structures
A Kripke structure K consists of a non-empty set of states, a set of initial
states, and a transition relation. A trace of K is an infinite sequence of
states such that the first state is an initial state and pairs of successive
states are in the transition relation. A state is reachable in K if it is
contained in a trace of K. We also define a suffix function on traces, which
is needed to define the semantics of LTL-formulae. These definitions are
standard and their formalization in Isabelle/HOL is straightforward.

α kripke = (| states :: α set , init :: α set , next :: (α× α) set |)
is kripke :: α kripke → bool
is kripke K ≡ states K 6= ∅ ∧ init K ⊆ states K ∧

next K ⊆ states K × states K
α trace = nat → α

is trace :: α kripke → α trace → bool
is trace K t ≡ t 0 ∈ init K ∧ ∀ i. (t i, t (Suc i)) ∈ next K

traces :: α kripke → α trace set
traces K ≡ {t | is trace K t}
reachable :: α kripke → α→ bool
reachable K q ≡ ∃ t i. is trace K t ∧ q = t i

suffix :: α trace → nat → α trace
suffix t i ≡ λ j. t (i+ j)

7.1.2. Method abstraction
Using the above definitions, we formalize the abstraction of bytecode
methods as a finite Kripke structure over the type abs state = nat ×
state type. We generate the Kripke structure using the function abs method,
which given a program P , class name C, method parameter list pTs, re-
turn type rT , the number of uninitialized registers maxl, and a bytecode
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instruction sequence ins, yields a Kripke structure of type abs state kripke.

abs method :: jvm prog → cname → ty list → ty → nat →
instr list → abs state kripke

abs method P C pTs rT maxl ins ≡
(| states = UNIV,

init = abs init C pTs maxl ,
next = (

⋃
pc∈{p.p<(size ins)} abs instr (ins!pc) P pc) |)

The set of states is modeled by the set UNIV of all elements of type
abs state. The set of initial states abs init contains one element, which
models the method entry, where the program counter is set to 0 and the
stack is empty. At method entry, the list of local variables contains the
this reference OK (Class C), the method’s parameters map OK pTs, and
maxl uninitialized registers replicate maxl Err.

abs init :: cname → ty list → nat → abs state set
abs init C pTs maxl ≡

{ (0, ([], (OK (Class C))#(map OK pTs)@(replicate maxl Err))) }

The relation next is generated by the function abs instr, which uses step′

and succs, which together make up the transition relation. Note that the
next relation is finite because both the type system and the number of
storage locations (stack and local variables) of the abstracted method are
finite.

abs instr :: instr → jvm prog → nat → (abs state × abs state) set
abs instr i P pc ≡ {((pc′, q), (pc′′, q′)) | pc′′ ∈ set (succs i pc′) ∧

(q′ = step′ (i, P, q)) ∧
pc = pc′}

7.2. Temporal logic and applicability conditions

7.2.1. Temporal logic
The syntax of LTL formulae is given by the datatype α ltl .

datatype α ltl ≡ Tr | Atom (α → bool) | Neg (α ltl)
| Conj (α ltl) (α ltl) | Next (α ltl)
| Until (α ltl) (α ltl)

As is standard, the modalities eventually, 3 :: α ltl → α ltl , and globally,
2 :: α ltl → α ltl , can be defined as syntactic sugar.

3 ϕ ≡ Until Tr ϕ 2 ϕ ≡ Neg (3 (Neg ϕ))
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We now define the semantics of LTL using a satisfiability predicate

|= :: α trace → α ltl → bool ,

where

t |= Tr = True
t |= Atom p = p (t 0)
t |= Neg ϕ = ¬ (t |= ϕ)
t |= Conj ϕ ψ = (t |= ϕ) ∧ (t |= ψ)
t |= Next ϕ = suffix t 1 |= ϕ
t |= Until ϕ ψ = ∃ j. (suffix t j |= ψ)∧

(∀ i. i < j −→ suffix t i |= ϕ) .

Furthermore, we say that a property ϕ is globally satisfied in the Kripke
structure K if it is satisfied for all traces of K.

|= :: α kripke → α ltl → bool
K |= ϕ ≡ ∀ t ∈ traces K. t |= ϕ

7.2.2. Applicability conditions
The applicability conditions are expressed by an LTL formula of the
form 2 Atom ϕ.3 We extract the formula ϕ from the bytecode, using
the functions app instr and app method.

app instr :: instr → jvm prog → nat → nat → nat → ty →
abs state → bool

app instr i P pc h maxs rT ≡ λ (p, q).
p = pc −→ ((size (fst q)) = h) ∧ (app′ (i, P, maxs, rT, q))

app method :: jvm prog → nat list → ty → nat → instr list →
abs state → bool

app method P hs rT maxs ins ≡ λ (p, q).
∀ pc < (size ins). (app instr (ins!pc) P pc (hs!pc) maxs rT (p, q))

The function app instr expresses the applicability condition for an
instruction at the program point pc. Note that besides the conditions
formalized in app′, which correspond to the type correctness properties
given in Section 2.3, we also require that the stack has a fixed predefined
size h in all state types associated with this program point. We employ
this requirement to fit the polyvariant model-checking approach into the

3 This is trivially equivalent to establishing AG Atom ϕ in a branching-time tem-
poral logic formalization. In other words, as our applicability properties are global
invariance properties, our correctness proof holds for both linear and branching-time
model checking.
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monovariant framework. In order to prove that there is a state type, we
must show that the supremum of all possible stack types associated with
the program point is different from the error element Err, and hence we
impose this restriction.

The function app method builds ϕ as the conjunction of the applica-
bility conditions of all program points in the bytecode ins (the list hs
contains, for each instruction in ins, a number that specifies the stack
size at that program point). The resulting formula expresses the well-
typedness condition for a given program state and hence K |= 2 Atom ϕ
formalizes, for a Kripke structure K resulting from a method abstrac-
tion, the global type safety of the method. This formula, together with
the additional constraints explained below, makes up the definition of a
bytecode model-checked method, which is formalized using the predicate
bcm method.

bcm method :: jvm prog → cname → ty list → ty → nat → nat →
instr list → bool

bcm method P C pTs rT maxl maxs ins ≡
∃hs. let

K = abs method P C pTs rT maxl ins;
ϕ = app method P hs rT maxs ins

in
K |= 2 Atom ϕ ∧
size hs = size ins ∧
traces (K) 6= {} ∧
∀ (q, q′) ∈ (next K). reachable K q −→ reachable K q′) ∧
0 < (size ins) ∧
bounded (λn. succs (ins!n) n) (size ins)

The first conjunct in bcm method expresses that the global applicabil-
ity conditions for the given bytecode ins are checked; in the Promela
code generated by our system, these properties are expressed in the assert
statement (cf. Section 2.4). The second conjunct requires that a stack size
is specified for every program point. The third conjunct states that there
exists at least one non-trivial model for 2 Atom ϕ. The fourth conjunct
characterizes a progress property of the abstract interpreter. Recall that
reachable K q means that q lies on an infinite trace. Hence this conjunct
says that all branches from infinite traces also lead to infinite traces. The
fifth conjunct guarantees that the list of instructions is not empty and
the final conjunct states that all instructions have a successor within the
method. The properties represented by the first four conjuncts are verified
by the model checker, whereas the last two conjuncts, which express static
well-formedness properties of the bytecode, are validated by the parser of
our bytecode verification system.
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7.3. Main theorem and proof

Our main theorem, stating the correctness of bytecode verification by
model checking can now be given.

THEOREM 1.

(wf prog wf mb P ) ∧ (is class P C) ∧ (∀x ∈ set pTs. is type P x)∧
(bcm method P C pTs rT maxl maxs ins)

−→ ∃φ. wt method P C pTs rT maxs maxl ins φ

This theorem states the correctness only for the bytecode ins for a
single method, of a single class C, of a program P ; however, it can easily be
extended to a more general statement for the entire program P . We have
proved in Isabelle the more general statement but to avoid uninteresting
complications, we present the proof of this simpler statement.

The theorem has four assumptions: (A1) the program P is well-formed;
(A2) the class C belongs to the program P ; (A3) the method signature
is well-formed (i.e., all method parameters have declared types); and
(A4) the bytecode ins has been successfully model checked. Under these
assumptions, the conclusion states that ins has a well-typing given by the
method type φ.

More precisely, the conclusion means that the method is not empty
and that the start of the method with the method parameters as well as
each instruction of the code ins is well-typed with respect to φ.

To increase readability, in the following we abbreviate abs method P
C pTs rT maxl ins as abs method and bcm method P C pTs rT maxl
maxs ins as bcm method.

7.3.1. Proof intuition
Our proof of the existence of a method type φ is constructive and builds
φ from the Kripke structure K pointwise for each program point pc as
follows. First, we define a function at :: (α × β) kripke → α → β set ,
where K at pc ≡ { a | reachable K (pc, a) } denotes the program state
types that belong to the program point pc reachable on any trace. Second,
we build the supremum suppc of the set K at pc. Third, we use the fact
(which must be proved) that each supremum suppc is of the form OK xpc

(i.e., it is not Err) and hence xpc is the method type at the program point
pc. In essence, we perform a dataflow analysis here in our proof to build
a method type.

The bulk of our proof establishes that this method type is actually
a well-typing for the model-checked bytecode. The main challenge here
is to show that each method instruction is well-typed with respect to
the instruction’s state type (applicability) and that the successors of an
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instruction are well-typed with respect to the state type resulting from
the execution of the instruction (stability). We establish this by induction
on the set K at pc; this corresponds to an induction over all traces that
contribute to the set of state types associated with the pcth program
point. Since model checking enforces applicability and thus stability for
every trace, and since exec is a semi-homomorphism in the sense that

exec (
⊔

sl (OK ‘Some ‘ (abs method at pc)))
≤le

⊔
sl (exec ‘ (OK ‘Some ‘ (abs method at pc))) ,

it follows that the pointwise supremum of the state types gives rise to a
method type that is a well-typing.

7.3.2. Some proof details
We now describe the construction of the method type more formally and
afterwards the proof that it is a well-typing.

The first two steps of the construction are formalized using the function
ok state type :: jvm prog → cname → ty list → ty → nat → nat →
instr list → nat → state, where we abbreviate

⊔
sl,Err,OK(None) as

⊔
sl.

ok state type P C pTs rT maxl maxs ins pc ≡⊔
sl OK ‘Some ‘ (abs method at pc)

Here, the supremum function over sets,
⊔

sl, builds from K at pc the
supremum suppc in the semilattice sl. To increase readability, we will use
ok state type as an abbreviation for ok state type P C pTs rT maxl maxs ins.

For the third step, we extract the state type using the function ok val ::
α err → α, where ok val e = case e of (OK x) ⇒ x | ⇒ arbitrary. Thus
the method type at program point pc can be computed by the function
opt state type ≡ ok val ◦ ok state type and we chose as the overall method
type

φ = map (opt state typeP C pTs rT maxl maxs ins) [0, . . . , size ins − 1] .

Before explaining why φ is a well-typing, we state two lemmata central
to the proof. As mentioned above, the correctness of our construction
requires that for each program point pc, there is a state type x such that
ok state type pc = OK x. The following lemma states this, and moreover
that the instruction at the program point pc is applicable to data of this
type.
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LEMMA 5. Well-typed supremum

0 < size ins ∧ pc < size ins ∧ wf prog wf mb P ∧ is class P C ∧
(∀x ∈ set pTs. is type P x) ∧ bounded (λn. succs (ins!n) n) (size ins) ∧
(size hs = size ins) ∧ (abs method |= 2 Atom app method)

−→ ∃x. (ok state type pc = OK x) ∧
(x = None ∨ (∃ st reg . x = Some (st , reg)∧
app′ (ins!pc, P, maxs, rT , (st , reg)) ∧ (size st = hs!pc)))

We prove this lemma by induction on the set of program states that
belong to the program point pc. This proof uses the fact that if a property
holds globally in a Kripke structure then it holds for every reachable state
of the structure. The step case requires the following lemma, which states
that when two state types (st1, reg1) and (st2, reg2) satisfy the predicate
app′ for the instruction ins!pc and the sizes of their stacks are equal,
then the supremum of these state types also satisfies the applicability
condition for this instruction and the size of supremum’s stack is the size
of the state types’ stacks. Here we abbreviate lift JType.sup P as sup′.

LEMMA 6. Well-typed induction step

pc < (size ins) ∧ semilat sl ∧ size hs = size ins ∧
size st1 = hs!pc ∧ app′ (ins!pc, P, maxs, rT , (st1, reg1))∧
size st2 = hs!pc ∧ app′ (ins!pc, P, maxs, rT , (st2, reg2))
−→ size (st1 +[sup′] st2) = hs!pc ∧

app′ (ins!pc, P, maxs, rT , (st1 +[sup′] st2, reg1 +[sup′] reg2))

We now sketch the proof that φ is a well-typing. To simplify notation,
we write (st0, reg0) as an abbreviation of the initial state type

([], (OK (Class C))#(map OK pTs)@(replicate maxl Err)) .

Following the definition of wt method, we must show under the as-
sumptions (A1)–(A4), that three properties hold: First, the method body
must contain at least one instruction, i.e. 0 < size ins. This follows directly
from the definition of bcm method.

Second, the start of the method must be well-typed, that is

Some (st0, reg0) ≤le state opt φ!0 .

Since the set of traces is not empty, the initial state type (st0, reg0) is
contained in the set abs method at 0 and hence it follows that

OK (Some (st0, reg0)) ≤le
⊔

sl (OK ‘Some ‘ (abs method at 0)) ,
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which is (by the definition of ok state type) the same as

OK (Some (st0, reg0)) ≤le ok state type 0.

By Lemma 5 we know that the right-hand side of the above inequality
is an OK value and thus we can strip off OK yielding Some (st0, reg0) ≤le state opt

ok val(ok state type 0), which is (by the choice of φ and the definition of
ok state type) the desired result.

Finally, we must show that all instructions of the method ins are well-
typed, i.e.,

∀(pc < size ins). ∀ pc′ ∈ set (succs (ins!pc) pc).
pc′ < size ins ∧ (boundedness)
app (ins!pc) P maxs rT (φ!pc) ∧ (applicability)
step (ins!pc) P (φ!pc) ≤le state opt (φ!pc′) . (stability)

This splits into three subgoals (boundedness, applicability, and stability).
For all three we fix a pc, where pc < size ins and a successor pc′ of pc.
Boundedness holds trivially, since from bcm method it follows that succs
is bounded.

To show the applicability of the instruction at the program point pc,
by the definition of opt state type, we must prove

app (ins!pc) P maxs rT (ok val (ok state type pc)) ,

which we establish by case analysis. The first case is when ok state type pc
is OK None, which in our formalization means that pc is not reachable
(i.e. there is dead code). Then applicability holds by the definition of
app. The second case is when the Kripke structure abs method generates
program state types that belong to the program point pc. We must then
prove

app′ (ins!pc, P, maxs, rT , (st , reg)) ,

which follows from Lemma 5. This lemma also guarantees that the third
case, where ok state type pc is Err, does not occur.

The majority of the work is in showing stability. Due to the choice of
φ and the definition of opt state type we must prove

step (ins!pc) P (ok val (ok state type pc))
≤le state opt (ok val (ok state type pc′)) .

By the definition of ≤le it suffices to show the inequality

OK(step (ins!pc) P (ok val (ok state type pc)))
≤le OK(ok val (ok state type pc′)) .
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Lemma 5 states the applicability of the instruction at program point
pc to the state type ok val (ok state type pc) on the left-hand side of the
inequality. Hence, by the definition of exec, we can reduce our problem to

exec(OK(ok val (ok state type pc)))
≤le OK(ok val (ok state type pc′)) .

Moreover, from Lemma 5 we can also conclude that ok state type deliv-
ers OK values for pc and pc′ and thus the argument of exec is equal
to ok state type pc and the right-hand side of the inequality is equal
to ok state type pc′. By expanding the definition of ok state type, the
inequality simplifies to

exec (
⊔

sl (OK ‘Some ‘ (abs method at pc)))
≤le

⊔
sl (OK ‘Some ‘ (abs method at pc′)) .

(4)

In inequality (3) of Lemma 1, we proved that if a function g is a semi-
homomorphism and g ‘A′′ ⊆ A′, then g (

⊔
sl A

′′) ≤le
⊔

sl A
′. Inequality

(4) is an instance of the conclusion of this lemma. We can prove that g,
here exec, is a semi-homomorphism using Lemma 4. Thus, it suffices to
prove that

(exec ‘ (OK ‘Some ‘ (abs method at pc)))
⊆ (OK ‘Some ‘ (abs method at pc′)) .

We prove for an arbitrary state type (st , reg) ∈ abs method at pc that

∃(st ′, reg ′) ∈ abs method at pc′.
exec(OK(Some(st , reg))) = OK(Some (st ′, reg ′)) .

From (st , reg) ∈ abs method at pc it follows that (pc, (st , reg)) is a
reachable state of abs method, which together with (A4) entails that the
applicability conditions hold for (st , reg). Hence, by the definition of exec,
we can reduce our goal to

∃(st ′, reg ′) ∈ abs method at pc′.
OK(step (ins!pc) P Some(st , reg)) = OK(Some (st ′, reg ′))

and further, by expanding the definition of step and stripping off OK, to

∃(st ′, reg ′) ∈ abs method at pc′. step′ (ins!pc, P, (st , reg)) = (st ′, reg ′) .

However, this is equivalent to

∃(st ′, reg ′) ∈ abs method at pc′. ((st , reg), (st ′, reg ′)) ∈ next(abs method) ,

which follows directly from the progress property that is part of (A4).
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8. Conclusion

We have given the first comprehensive account of the theory and practice
of bytecode verification based on model checking. Based on two different
developments we explained how the model-checking approach to bytecode
verification works, presented an experimental and theoretical analysis of
its complexity, and formally analyzed the correctness of the approach in
Isabelle/HOL.

Our experimental analysis constitutes the first, realistic, large-scale
study of bytecode verification by model checking. Moreover, to the best
of our knowledge, it is one of the larger case studies in using model check-
ing for static analysis. Our conclusion is that, despite being theoretically
intractable in the worst case, model checking is in fact practically viable.
The key insight is that for practical applications, correct code can be
efficiently validated since only polynomially many states are accessible,
provided subroutine nesting and the number of conditional instructions
with differently typed branches are limited, as it is in practice. Our tests
confirm that explicit-state, on-the-fly model checkers like SPIN can be
successfully employed for these kinds of problems; this is in contrast to
symbolic model checkers like SMV that must manipulate representations
of the entire state space. However, it is open, and an area for further
investigation, whether alternative encodings of the transition system and
the correctness requirements could result in competitive performance.

In the formal proof of the correctness of our model-checking approach,
we were fortunate in that we could build on the framework of Pusch and
Nipkow. As such, our work also constitutes a fairly large-scale example of
formal theory reuse, and the generality of their formalism, in particular
Nipkow’s verification framework, played a major role in this regard. As
mentioned in the introduction, the changes we made to the verification
framework appear generally useful; our approach supports polyvariant
analysis in that it admits bytecode with incompatible types at different
program points. However, as discussed in Section 4, for each program
point, our formalization requires the stack size to be constant. It would
be interesting to lift this requirement in our Isabelle model, for example,
by further generalizing the notion of a state type.

The system we have implemented can model check full JVM bytecode,
i.e., it models all 200 instructions of the JVM. Currently, the only feature
missing is code to model object initialization. This has been implemented,
but it is not yet fully tested and remains as future work. This issue is
rather subtle as explained in [9, 14]. As future work we would also like to
investigate the question of how such a general framework can be used to
go beyond model checking type-safety properties and validate other kinds
of security properties of bytecode.
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