
Cryptographically-sound Protocol-model Abstractions∗

Christoph Sprenger
ETH Zurich, Switzerland

sprenger@inf.ethz.ch

David Basin
ETH Zurich, Switzerland

basin@inf.ethz.ch

Abstract

We present a formal theory for cryptographically-sound
theorem proving. Our starting point is the Backes-
Pfitzmann-Waidner (BPW) model, which is a symbolic pro-
tocol model that is cryptographically sound in the sense of
blackbox reactive simulatability. To achieve cryptographic
soundness, this model is substantially more complex than
standard symbolic models and the main challenge in for-
malizing and using this model is overcoming this complex-
ity. We present a series of cryptographically-sound abstrac-
tions of the original BPW model that bring it much closer to
standard Dolev-Yao style models. We present a case study
showing that our abstractions enable proofs of complexity
comparable to those based on more standard models. Our
entire development has been formalized in Isabelle/HOL.

1. Introduction

Cryptographically-sound symbolic models. It is well-
known that security protocols are difficult to get right.
Cryptographic security proofs offer a potential remedy, but
they are long, complicated, and error-prone. Machine-
checked proofs are an alternative, but they are typically
based on the Dolev-Yao model [9], where messages are
algebraic terms and cryptography is assumed to be perfect.
However, in general, this model lacks a cryptographic jus-
tification. We would ideally like the best of both worlds:
cryptographically-sound, machine-checked proofs.

The first Dolev-Yao model with a cryptographic justi-
fication under arbitrary attacks was introduced by Backes,
Pfitzmann, and Waidner [3]. This model, called the BPW
model, can be implemented in the sense of blackbox re-
active simulatability (BRSIM) [15] by real cryptographic
systems that are secure under standard cryptographic defi-
nitions. As a result, we can replace an abstract system (here
the BPW model) by a concrete one (here its cryptographic

∗This work was partially supported by the Zurich Information Security
Center. It represents the views of the authors. David Basin acknowledges
the support of IBM Zurich Research Laboratory during his sabbatical.

realization) in arbitrary protocol contexts while preserving
its security properties [15, 5, 2]; BRSIM is also called UC
for its universal composition properties. Hence, after a one-
time BRSIM reduction proof, we can reason about proto-
cols in the substantially simpler symbolic setup, knowing
that properties we prove transfer to the cryptographic world.

Roughly speaking, the BPW model can be viewed as a
centralized cryptographic library component. It has an en-
capsulated state where it tracks which party (honest users
or the adversary) knows which messages and it provides in-
terface functions for constructing, decomposing, and send-
ing messages. For cryptographic soundness in the sense of
BRSIM, the BPW model has certain non-standard aspects
in comparison with other Dolev-Yao models. For exam-
ple, ciphertexts include randomness tags (modeling prob-
abilistic encryption) and leak the length of the underlying
cleartext and the adversary may generate invalid cipher-
texts. Moreover, protocol messages are DAG-structured and
are not manipulated directly, but rather are referred to indi-
rectly using handles (i.e., pointers).

Towards more abstract models. In this paper, we de-
scribe our formalization and use of increasingly abstract,
cryptographically-sound symbolic models. Our starting
point is the original BPW model, which provides crypto-
graphic soundness, but whose complexity raised the follow-
ing question: Is it possible to reason efficiently about pro-
tocols based on this model, using a theorem prover, without
sacrificing cryptographic soundness? The BPW model in-
troduces a number of complexities, including those listed
above, which are obstacles to efficient formal reasoning.
As a consequence, standard techniques for reasoning about
state-based systems, such as Hoare logics and weakest pre-
condition calculi, scale poorly to the complex state spaces
and pointer structures that arise. Indeed, after our initial
formalization of this model in Isabelle/HOL [13], the com-
plexity was such that we were not even able to prove the
relatively simple Needham-Schroeder-Lowe (NSL) proto-
col [11]. Given this, the focus of our work has shifted from
formalizing and using the BPW model to developing meth-
ods to simplify proofs by lifting the level of modeling ab-

Crypt. Impl. ≤ Original BPW Model
⊆ DAG-based BPW Model
≤ Term-based BPW Model

Figure 1. Protocol model abstractions

stractions. Given these methods, we can now answer the
above question affirmatively.

Figures 1 and 2 summarize the different models involved
and their relationships. In [3], the original BPW model was
shown to be a BRSIM (denoted by ≤) abstraction of the
cryptographic implementation. Our first formalization of
the BPW model is the DAG-based BPW model. This model
is a compositional, property-preserving over-approximation
(denoted by⊆) of the original BPW model. Our second for-
malization, the term-based BPW model, replaces the DAG-
structured messages in the machine’s state by inductively-
defined messages. We formally prove that the term-based
and the DAG-based models are bisimilar, which is a spe-
cial case of BRSIM. Finally, as depicted in Figure 2, we
define our abstract protocol model, which interprets a class
of role-based protocol specifications, using high-level oper-
ations for pattern matching and message construction. For
each protocol in our class, this model reactively simulates
the term-based model. As both ≤ and ⊆ are composi-
tional and preserve security properties (including integrity
and secrecy), it follows that such properties proved for role-
based protocols in the abstract protocol model also hold
for the cryptographic protocol implementation. Moreover,
these properties are preserved in all (protocol) contexts.

We describe in this paper our models and their relation-
ships, formalized in Isabelle/HOL. We also investigate the
effects of abstraction. Namely, each abstraction step brings
us closer to standard Dolev-Yao models and substantially
simplifies theorem proving. We expand on this below.

The abstraction step from the DAG-based to the term-
based model replaces operations that manipulate pointer-
structured messages by equivalent operations that manipu-
late terms over an inductively-defined data type. The use of
inductively-defined messages is more in-line with standard
models and it substantially simplifies reasoning by allowing
structural induction. Moreover, it enables concise property
specifications using functional closure operators, such as
Paulson’s analyze [14] which closes a set of messages under
cryptographically-accessible submessages. The equational
theories associated with these operators enable the efficient
use of Isabelle’s term rewriter for simplification. These en-
hancements allowed us to give a (cryptographically-sound)
proof of the NSL protocol.

Although the abstraction introduced by the term-based
model is substantial, there is still a significant “semantic
gap” between this model and standard Dolev-Yao models.

Figure 2. Overview of the last abstraction

This can largely be attributed to the different granularities
and side-effect behavior of the message-handling opera-
tions. In standard Dolev-Yao models, messages are ma-
nipulated directly and without side effects (e.g., matching
a message m against a pattern). In contrast, in the BPW
model, messages are manipulated constructor-wise by pass-
ing their handles to interface functions, which may produce
side effects (e.g., generating handles for m’s subterms). As
a result, protocols must be specified at a low level using the
BPW interface functions and the term-based model requires
fine-grained, lengthy security proofs. In particular, due to
interface functions’ side effects, the proof of each protocol
invariant must be decomposed into preservation results for
each of the 17 imperative BPW-model operations.

Moving to the abstract protocol model largely eliminates
the remaining semantic gap and brings the complexity of
theorem proving in-line with standard Dolev-Yao models.
Namely, we specify the abstract model (right-hand side of
Figure 2) as an instance of a generic security-protocol in-
terpreter. The interpreter executes security protocols, for-
malized as role-based protocol specifications built from se-
quences of patterns. We give a second operational seman-
tics to role-based descriptions, instantiating our generic in-
terpreter to interpret protocols using the operations of the
term-based model (left-hand side of Figure 2).

This last abstraction overcomes the problems of the
term-based model. First, role-based specifications allow us
to concisely and naturally specify protocols. Second, and
most importantly, when reasoning about protocols, we rea-
son in the abstract model about the interpretation of entire
protocol steps, where messages are manipulated directly.
We prove general logical characterizations of these high-
level protocol operations, which substantially simplify pro-
tocol proofs. Moreover, since these operations are side-
effect-free, invariant preservation comes for free. This al-
lows us to shift reasoning from Hoare logic to assertional
reasoning in HOL. Hence, reasoning in this model is at a
much higher abstraction level than in the term-based model.

Contributions. Our primary contribution is to close the
gap between the BPW model and standard Dolev-Yao
models. While our abstract model still has some non-
standard aspects, the level of abstraction and complexity is
comparable to standard Dolev-Yao models, such as Paul-

son’s [14]. In particular, the protocol interpreter operates
directly on messages and patterns from the protocol specifi-
cation and the adversary capabilities are defined in the stan-
dard Dolev-Yao-style using message-derivation operators.
A secondary contribution is an infrastructure for effective
reasoning about security protocols, namely a much simpler
model along with general protocol-independent theorems.
These theorems, formulated in Hoare logic, include invari-
ants (e.g., well-formedness of protocol threads) and logi-
cal characterizations of the operational protocol interpreta-
tion. We use the NSL protocol as a case study, documenting
that this infrastructure leads to substantially simpler proofs,
whose complexity is comparable to Paulson’s proofs.

Our entire development, including the three models and
all proofs, has been formalized in Isabelle/HOL. We provide
some statistics in Sections 6 and 7. Due to the technical de-
tail and intricacy of the proofs involved, we strongly believe
that formal theorem proving has a central role to play in re-
lating and reasoning about security protocol models. Our
work is unique in this area and shows that this is possible.

2. Background on Isabelle/HOL

Isabelle is a generic, tactic-based theorem prover. We
use Isabelle’s implementation of higher-order logic (HOL).
HOL can roughly be seen as logic on top of functional pro-
gramming. We will assume that the reader has basic famil-
iarity with both logic and typed functional programming.

In Isabelle/HOL, t :: T denotes a term t of type T. The
expression c x ≡ t defines the function constant c with
parameter x as the term t . Type variables are denoted by
lowercase Greek letters. Given types α and β, α⇒ β is
the type of (total) functions from α to β, α × β is the pro-
duct type, and α set is the type of sets with elements of
type α. Moreover, [α, β] ⇒ γ abbreviates α⇒ β ⇒ γ.
There are several mechanisms for defining new types, such
as the datatype declaration, which defines an inductive data
type. For example, the polymorphic option type is defined
as datatype α option = None | Some α. Functions of type
α⇒ β option model partial functions from α to β. The
declaration types T1= T2 merely introduces a new name for
the type T2, possibly with parameters, as in types α ⇀ β =
α⇒ β option. Isabelle/HOL includes a package support-

ing record types. For example, a type of points defined by
record point = x :: nat y :: nat contains records like r = (|
x=1, y=2|) as elements. Each field determines a projection,
like in x r = 1. Records are extensible: record cpoint =
point + c :: color extends points with a color field.

3. Monadic modeling and verification tools

We now briefly describe our monad-based component
model and associated logics. For further details see [18].

3.1. Monads and components

Monads are a category-theoretic notion used to ab-
stractly model different computational phenomena in a
functional setting. From a programming perspective, a
monad is a type constructor with a unit and a binding op-
eration, enjoying unit and associativity properties. In our
case, we work with a deterministic state-exception monad.

datatype α result = Exception | Value α
types (α, σ) S = σ ⇒ α result × σ

return :: α⇒ (α, σ) S
return a ≡ λs. (Value a, s)

bind :: (α, σ) S ⇒ (α⇒ (β, σ) S) ⇒ (β, σ) S
bind m k ≡ λs. let (a, t) = m s in

case a of Exception ⇒ (Exception , t)
| Value x ⇒ k x t

A term of type (α, σ) S is called a computation. Compu-
tations act on a state of type σ and return either a value of
type α or result in an exception. The monad unit, called
return , embeds a value into a computation. Binding acts as
sequential composition with value passing in the style of a
let-binding. We write do x ← m; k x for bind m k and omit
the ‘x ← ’ when the return value is ignored. Our monad
also provides functions for raising and catching exceptions.
To build more complex computations, we directly use con-
trol structures from Isabelle/HOL, such as pattern matching
(case) and recursive functions.

Our components consist of a state manipulated by a set
of interface functions. We model a state as an extensible
record whose fields are the state variables. We give com-
ponents an operational semantics in terms of a transition
system. A computation m gives rise to a transition relation
tr m ≡ {(s, t) | t = snd (m s)}. The transition relation
of a component is the union of the transition relations of its
interface functions. We obtain the transition system associ-
ated with a component by adding a set of initial states. We
define the runs of a transition system as infinite sequences
of states, starting in an initial state and where successive
states are related by transitions.

3.2. Program and temporal logics

We have implemented a weakest pre-condition (WP) cal-
culus, a Hoare logic, and a linear-time temporal logic (LTL).
All these logics use HOL sets (of states) as their basic as-
sertions and set operations as boolean connectives. Hence,
when we say that a state s satisfies a basic assertion P, we
mean s ∈ P. The WP calculus and the Hoare logic are both
tailored to our state-exception monad, whereas the tempo-
ral logic is interpreted over standard transition systems and
linked to the other logics via “gluing lemmas”.

Our weakest pre-condition calculus is inspired by Pitts’
evaluation logic [16], which generalizes dynamic logic by
interpreting it over monads. We formalize a shallow seman-
tic embedding of a variant of evaluation logic, instantiated
to the state-exception monad.

[x ← m]Q x ≡ {s | ∀ x t . (m s) = (Value x , t) −→ t ∈ Q x}
[@ m]Q ≡ {s | ∀ t . (m s) = (Exception , t) −→ t ∈ Q}

We have two box modalities: [x ← m]Q x for normal ter-
mination and [@ m]Q for exceptional termination. These
correspond to the weakest pre-condition of the computation
m with respect to post-condition Q. Note the dependence of
the assertion Q on the result value x in [x ← m]Q x.

We construct our Hoare logic on top of the WP calculus.

{P} m {> Q} ≡ P ⊆ [x← m](Q x)
{P} m {@ Q} ≡ P ⊆ [@ m]Q

We have one type of Hoare triple for each type of termi-
nation. We formalize and derive the rules for Hoare logic,
expressed in terms of this embedding. For example:

{P} p {> Q}
^

x. {Q x} q x {> R}
{P} do x← p; q x {> R}

bindN

Here,
∧

x denotes a universal (meta-logic) quantification
over all inputs x to q. A companion rule handles the case of
termination with an exception.

We formulate component properties as invariants in our
standard embedding of LTL in Isabelle/HOL. The proof of
each invariant I is reduced to a set of preservation results of
the form {I ∩ J} f x {> λ z . I} in monadic Hoare logic,
one triple for each interface function f of the component
under study. Here, J denotes a previously proved auxiliary
invariant. We decompose the monadic program constructs
using our Hoare logic, which may require user-supplied in-
termediate assertions (e.g. Q in the rule bindN). We deal
with the program control structures (e.g., pattern matching
and recursion) directly in HOL (e.g., using case analysis
and induction). Once this decomposition yields sufficiently
simple program parts, we may switch to the WP calculus by
unfolding the definition of the respective Hoare triple. We
then finish the proof using assertional reasoning in HOL.

3.3. Relational Hoare logic and bisimulation

To establish BRSIM relations between our models, we
must reason about bisimulation between components. We
define bisimilarity, bisim R m1 m2, in terms of the follow-
ing general notion of a relational Hoare tuple.

{R} m1 m2 {S, T} ≡ ∀ s t s’ t’ x y .
(s , t) ∈ R ∧ m1 s = (x, s’) ∧ m2 t = (y, t ’) −→

(∃ a b. x = Value a ∧ y = Value b ∧ (s ’, t ’) ∈ S a b)
| (x = Exception ∧ y = Exception ∧ (s ’, t ’) ∈ T)

bisim R m1 m2 ≡ {R} m1 m2 {(λ a b. {(s, t) | a = b} ∩ R), R}

Relational Hoare tuples have two postconditions. The first
postcondition is a parametrized relation S a b, required to
hold whenever the computation m1 returns the value a and
m2 returns the value b. The second postcondition T covers
the case where both computations terminate with an excep-
tion. Bisimulation is the special case where the bisimula-
tion relation appears in both the pre and post-relations and,
moreover, the result values are required to be identical.

To prove the bisimilarity of pairs of computations we
have derived a set of proof rules for relational Hoare logic
(see also [4]). An example is the following rule for sequen-
tial compositions, where Sn is the intermediate relation for
normal termination of m1 and m2.

{R} m1 m2 {Sn, Te}
^

a b. {Sn a b} (k1 a) (k2 b) {Tn, Te}
{R} (do a← m1; k1 a) (do b← m2; k2 b) {Tn, Te}

To prove that two components with identical interfaces
are bisimilar, we show that all pairs of identically named
interface functions are bisimilar, under a given bisimulation
relation R. Since the interface functions are deterministic,
this suffices to establish the two components’ bisimilarity.

Blackbox reactive simulatability. We define a version of
BRSIM for our deterministic setting. For the probabilistic
polynomial-time setting we refer the reader to [15, 5, 2].
The models we consider have separate interfaces for honest
users and for the adversary. We define properties that are
preserved from abstract models to concrete models in terms
of traces of user input/output events at the user interface.

Let C and D be two models (components) with identical
user interfaces, but possibly different adversary interfaces.
We say that D reactively simulates C in the sense of BRSIM,
written C≤D, if there is a simulator S such that C is bisimi-
lar to the component obtained by connecting S to D’s adver-
sary interface; the simulator maps C’s concrete adversary
interface to D’s abstract adversary interface. Hence, the I/O
traces at C’s user interface are also possible user I/O traces
of D. Moreover, security properties expressed in terms of
user I/O traces are preserved from D to C. Equivalently,
any attack on D translates to an attack on C.

It follows from the definition of BRSIM that BRSIM is
preserved in all contexts. Let Con[·] be a protocol context
that can be connected to the user interfaces of both C and D
and itself provides a user interface. Then we have Con[C]≤
Con[D]. Hence, the above statements about user I/O traces
and their properties also hold for Con[C] and Con[D].

4. Abstractions of the BPW model

We describe, in this and the next section, the models and
the relationships depicted in Figures 1 and 2. We omit, how-
ever, the BPW model’s cryptographic realization as this is
not necessary for understanding this paper’s contributions.

4.1. Original BPW model

The BPW model constitutes a library of cryptographic
operations, which tracks the messages known by each party.
The model provides local functions for manipulating mes-
sages and send functions for exchanging messages between
an arbitrary, but fixed, number N of users and the adver-
sary. Some of these functions implement extended capabil-
ities available only to the adversary. At the interface, mes-
sages are referred to by handles. This indirection is neces-
sary for cryptographic soundness (BRSIM), since the model
and its cryptographic realization work with vastly different
objects: abstract terms and bitstrings, respectively. Handles
uniformly present these objects to the users and hence avoid
that the two models can be trivially distinguished.

BPW model

. . .

Adv

user I/O

symbolic

1u Nu

NP1 P

Figure 3. Components and control flow

To model a security protocol within the BPW model, we
compose the model with a component Pi for each user ui,
which implements the protocol by invoking the BPW-model
functions. Each Pi maintains its own local state (e.g., to
store nonces it has generated) and provides interfaces for
communicating with ui and with the BPW model. Fig-
ure 3 depicts some typical control flows through the system,
which can be classified by whether they are initiated by a
user or the adversary. First, a user may give input to its pro-
tocol component, which then constructs the first protocol
message by invoking local BPW functions. This message
may then be sent to the network (i.e., the adversary). Sec-
ond, the adversary may decompose messages and construct
new ones using the local BPW-model functions. He may
also send a message to some user ui. The BPW model de-
livers such messages to the protocol component Pi, where
they are processed according to the protocol.

4.2. Modeling decisions and formalization

We now summarize the principal abstraction steps and
design choices that we have employed in our first formal-
ization of the BPW model. For more details, see [17].
The combination of these steps results in our over-
approximation relation ⊆, which is compositional and pre-
serves security properties, including integrity and secrecy.

Polynomial bounds. In the original BPW model, users
and the adversary constitute probabilistic, polynomially-
bounded machines. We model these by universal quantifi-
cation over all possible inputs, corresponding to a single un-
bounded machine that non-deterministically produces arbi-
trary input to the system. This safely over-approximates the
original setting, since the unbounded machine can (weakly)
simulate any combination of probabilistic, polynomially-
bounded users and the adversary. Moreover, we have for-
malized the enforcement of polynomial bounds on mes-
sage lengths using an uninterpreted function of the security
parameter as the bound. This subsumes all instances with
polynomially-bounded functions and thus constitutes a safe
over-approximation.

Components and communication. Each machine transi-
tion in the original BPW model can be seen as a function
call (with parameters passed at an input port) producing
either a return value (at an output port) or an exception. We
replace the BPW machine model by monadic components
(Section 3.1) and asynchronous communication by function
calls, thereby eliminating the message buffers in the origi-
nal model. As a consequence, we pass from a small-step
semantics, with its internal transitions such as communica-
tion via buffers, to a (weakly) bisimilar big-step semantics,
where such transitions are suppressed.

4.3. The DAG-based BPW model

Our first formalization follows the above modeling deci-
sions. This model (and subsequent ones) formalize different
parties and their knowledge, given by knowledge maps.

datatype party = User user | Adv
types µ kmap = party ⇒ hnd ⇀ µ

Here, user denotes the type of honest users, which is iso-
morphic to the set {1, . . . , N}, and hnd is the type of han-
dles, which is isomorphic to N. Knowledge maps track who
knows which messages (of generic type µ).

As in the original BPW model, the DAG-based model
uses a pointer-like structure to represent messages. The
state consists of a database storing messages, which are re-
ferred to by indices (of type ind, isomorphic to N), together
with a knowledge map instantiated to indices.

record δ iLibState =
db :: ind ⇒ δ entry −− the database
knowsI :: ind kmap −− knowledge map

The database models a heap where entries are allocated.
Database entries have a content and a length field. We have
also formalized signatures, which we omit here for brevity.

datatype δ content =
iNonce −− nonce

| iGarbage −− garbage

| iPke ind −− public encryption key
| iSke −− private encryption key
| iData δ −− payload data
| iPair ind ind −− pair
| iEncv ind ind −− valid ciphertext
| iEnci ind −− invalid ciphertext

record δ entry =
cont :: δ content −− content
len :: nat −− length of entry

Elements of the type δ content are messages (polymorphic
in the type δ of payload data), built from message construc-
tors. In a well-formed database, each index known by some
party determines a directed acyclic graph, the DAG-based
BPW-model representation of a message. Hence, construc-
tor arguments of type ind point to other database entries.
For example, in the term iEncv pki mi, representing a valid
encryption, the first argument points to the public key used
and the second to the plaintext message. In contrast to com-
monly used Dolev-Yao models, our adversary may create
garbage entries (iGarbage) or invalid ciphertexts (iEnci).
The length field in each entry enables the length to leak to
the adversary and the model to enforce length bounds.

The BPW-model interface functions manipulate DAG-
based messages. As examples of local interface functions,
the operations encryptI and decryptI for public key en-
cryption and decryption have the types [party , hnd, hnd]
⇒ (hnd, δ iLibState) S. The function encryptI takes a
public key and a cleartext and returns the ciphertext and
decryptI takes a secret key and a ciphertext and returns a
cleartext. Message arguments and results are referred to by
handles. If an argument is invalid, an exception is raised.

An important difference between this model and other
Dolev-Yao models is that encrypting a message with the
same key always results in a new ciphertext, i.e. a fresh
database entry. This reflects that secure encryption is prob-
abilistic and shows the role of indices in modeling idealized
randomness. In fact, all message constructors, except for
payload data and pairs, produce new database entries with
each invocation. Payload data and pairs are allocated only
once and shared between users. Another difference is that
the adversary may learn the length of the plaintext underly-
ing a ciphertext, modeling a length-revealing crypto system.

Although our formalization considerably simplifies the
original BPW model, the DAG-based model is still too com-
plex for a practically useful verification framework. We ad-
dress some of its problems, including the lack of an induc-
tive message structure, in the term-based BPW model.

4.4. The term-based BPW model

Our second model, the term-based BPW model, abstracts
messages to inductively defined terms. It is based on the ob-
servation that message sharing between users in the DAG-

based model is inessential and can be eliminated. We
thereby obtain a more abstract representation of messages
using an inductive data type. Moreover, Isabelle automati-
cally generates an induction scheme for each such type.

datatype δ msg =
mNonce tag −− nonce

| mGarbage tag len −− adversary garbage
| mPke key −− public key
| mSke key −− private key
| mData δ −− data item
| mPair (δ msg) (δ msg) −− pair of messages
| mEncv tag key (δ msg) −− valid ciphertext
| mEnci tag key len −− invalid ciphertext

This definition replaces indices previously in the content
fields of database entries with messages. Additionally, the
role of indices in allocating fresh database entries for cryp-
tographic messages is taken by the elements of a new, but
isomorphic, type tag, which can be thought of as an (ab-
straction of) random coins. The type key is an alias for
tag. Moreover, we now determine the length of messages
by a partially interpreted function len_ofM of type δ msg
⇒ len, which allows us to remove redundant length infor-
mation from the state. Length fields are still required for
garbage and invalid ciphertexts, as the adversary can choose
arbitrary lengths for these two message types.

This abstraction step substantially simplifies the struc-
ture of states by eliminating the database and (largely) the
length fields: a state of the term-based BPW model simply
consists of a knowledge map storing messages.

record δ mLibState = knowsM :: δ msg kmap

The second substantial improvement, leading to more
concise specifications and improved proof automation,
stems from adapting to our setting the closure operators
parts and analyze and their equational theories developed
by Paulson [14]. The term parts H denotes the closure
of the set of messages H under all submessages, whereas
analyze H closes H under all cryptographically-accessible
submessages. Hence, analyze (ran (knowsM s u)) denotes
the set of messages that the party u can derive from his
knowledge in state s (ran f denotes the range of the partial
function f). Using analyze and parts , we define secrecy of
an atomic message m as follows.

secret s m U ≡ ∀ u.
m ∈ analyze (ran (knowsM s u)) −→ u ∈ U

This states that in state s the message m is a secret shared
by (at most) the parties in the set U.

4.5. Bisimulation result

We have used our relational Hoare logic to establish:

Theorem 4.1. The DAG-based and term-based BPW mod-
els are bisimilar.

Thus these models are also BRSIM, since bisimulation is a
special case of BRSIM where the simulator is the identity.

Central to our bisimulation relation is the message
abstraction relation message s i2t :: (ind × δ msg) set .
This associates database indices to messages and is
parametrized by a state s of the DAG-based model and a
function i2t mapping indices to tags, which witnesses that
tags play the role of indices for message freshness. Note
that this relation is defined independently of the states of
the term-based model. The inductive definition of message
contains a rule for each constructor of the type δ content .
For example, the rule for valid ciphertexts is:

s ∈ contains i (iEncv pki mi) tg = i2t i
(pki, mPke k) ∈ message s i2t (mi, m) ∈ message s i2t

(i, mEncv tg k m) ∈ message s i2t

This rule states that, at some fixed state s, an index i ab-
stracts to the ciphertext message (mEncv tg k m) if the in-
dex i contains (iEncv pki mi), the index pki abstracts to
the public key message (mPke k), the index mi abstracts to
message m, and the tag tg is the image of i under i2t . The
main property proved for message s i2t is its functionality.

We define a family of bisimulation relations, consisting
of pairs of states for which the domains of the knowledge
maps are identical and the message at knowsM s u h (if de-
fined) is an abstraction of the index at knowsI s u h. More-
over, the parameter i2t is required to be bijective to map
different database entries to different messages.

I2M i2t ≡ {(s , t) | bij i2t ∧
(∀ u. dom (knowsI s u) = dom (knowsM t u)) ∧
(∀ u h i m.

knowsI s u h = Some i ∧ knowsM t u h = Some m
−→ (i , m) ∈ message s i2t) }

The bisimulation relation itself is the union over all fam-
ily members, i.e., a second-order property. Since indices
and tags are allocated dynamically, but not every index is
associated with a tag (e.g., payload data is untagged), the
parameter i2t cannot be determined statically.

4.6. Modeling protocols

We now construct a protocol context for our formaliza-
tions of the BPW model, cf. Figure 3, in the form of a
generic protocol component for each user. Afterwards we
instantiate these components to a concrete protocol. From
Theorem 4.1 and the compositionality of BRSIM, any pro-
tocol interpreted in the term-based model reactively simu-
lates its interpretation in the DAG-based model.

Protocol components. The global state extends the BPW
model state with the local state of each protocol component
and the trace observed at the user interface. The trace is a
list of pairs of a user name and an input or output event.

datatype (ι , o) uio = uIn ι | uOut o −− user i /o

record (ι , o , δ , σ) gState = δ mLibState +
loc :: user ⇒ σ −− local state
trace :: (user × (ι , o) uio) list −− user i /o trace

Our setup is polymorphic in the type δ of payload data (from
the BPW model), the type σ of local states, as well as ι and
o, the types of user input and output. Concrete protocols
later instantiate these type parameters to concrete types.

The protocol component interface consists of a user and
a network input handler, specifying how the component re-
acts to user and network input. Each handler may manip-
ulate the component’s local state to record session-specific
protocol data and may produce output for either the user or
the network (cf. Figure 3). A protocol is then defined as a
function from users to protocol components.

datatype o proto_out = pToUser o | pToNet party hnd

record (ι , o , δ , σ) proto_comp =
proto_user_handler :: ι ⇒

(o proto_out , (ι , o , δ , σ) gState) S
proto_net_handler :: [party , hnd] ⇒

(o proto_out , (ι , o , δ , σ) gState) S

types (ι , o , δ , σ) protocol =
user ⇒ (ι , o , δ , σ) proto_comp

Note that we do not explicitly represent protocol sessions.
We leave session handling to the protocol implementation.
Typically, each protocol session is initiated and terminated
by user interaction, possibly with additional user interaction
during the session. These user I/O events are recorded in the
history variable trace .

Complete system. We compose the BPW model with the
protocol components yielding the complete system. The
system has two kinds of interface functions: (1) the system
user and network handlers and (2) the 14 local adversary
functions of the BPW model. Here we only present the sys-
tem user and network handlers, whose types are:

sys_user_handler :: (ι , o , δ , σ) protocol ⇒
[user , ι] ⇒ (o sys_out , (ι , o , δ , σ) gState) S

sys_net_handler :: (ι , o , δ , σ) protocol ⇒
[party , user , hnd] ⇒ (o sys_out , (ι , o , δ , σ) gState) S

Both handlers produce a system output of type o sys_out,
the system-level version of type o proto_out. The user han-
dler takes an input from the user (of type ι), while the net-
work handler takes the presumed sender, the recipient, and
a handle to the message as an argument.

To illustrate the message flow through the system
(cf. Figure 3), let us consider the system network handler.

sys_net_handler proto v u h ≡
do hu ← adv_send_i v u h; −− u receives msg

do pout ← proto_net_handler (proto u) v hu;
case pout of

pToUser uom⇒
do log (u, uOut uom); −− log output
return (sToUser u uom) −− user output

| pToNet vd hd ⇒ −− send reply
do ha ← send_i u vd hd;
return (sToNet u vd ha)

This handler uses the BPW-model send functions for the
user (send_i) and the adversary (adv_send_i), which trans-
fer a message from a user’s to the adversary’s knowledge
map or vice versa. The handler’s input is a message h from
the adversary, sent to the user u (pretending to be party v)
using the adversary send function. The resulting handle hu
for u, is fed into u’s protocol network handler. The handler’s
output is either intended for user u, in which case the output
is logged by the observer and returned to u, or it is a reply
message handle hd intended for party vd that is sent back to
the network (adversary) using the user send function.

We specify a concrete protocol by providing its user and
network handlers. This determines concrete types for user
I/O, payload data, and the local state of protocol compo-
nents, instantiating the type variables ι, o, δ, and σ. After-
wards, we can specify and verify protocol properties.

Example 4.2 (NSL protocol). We model the well-known
three message version of the Needham-Schroeder-Lowe au-
thentication protocol [11].

NSL1. u→ v : {Nu, u}PK(v)

NSL2. v → u : {Nu, Nv, v}PK(u)

NSL3. u→ v : {Nv}PK(v)

We specify this protocol by defining a protocol component
for each user. Each such component Pu records the set of
nonces it generates in protocol sessions with the party v in
the local state variable nonces, under v’s name.

record ustate = nonces :: party ⇒ hnd set

We can initiate a protocol run by indicating the name of the
responder. The protocol is terminated by returning the name
of the initiator to the responder. Thus, both user input and
output are of type user. Moreover, the only payload data
used in the NSL protocol are user names. Therefore, we
use an abbreviation for the states of the protocol.

types NSLstate = (user , user , user , ustate) gState

We then specify the NSL protocol by instantiating the user
and network handlers.

NSL :: (user , user , user , ustate) protocol
NSL u ≡ (|

proto_user_handler = λv. −− initiate with v
do nh ← gen_add_nonce u v; −− fresh nonce
do uih ← store (User u) u;
do mh← pair (User u) (nh, uih)

do emh← encrypt (User u) (pke (User u) v) mh;
return (pToNet (u , v , emh)) −− send 1st msg

proto_net_handler = λv emh. −− reply to messages
do pm← parse_msg u v emh;
case pm of

msg1 vnh vid ⇒ mk_msg2 u v vnh −− 2nd msg
| msg2 unh vnh vid ⇒ mk_msg3 u v vnh −− 3rd msg
| msg3 vnh⇒ return (pToUser v) |) −− terminate

The user handler for user u initiates a protocol session with
party v by constructing the first protocol message. This can
be done any time and thus arbitrarily many sessions are pos-
sible. Here, pke (User u) v denotes the handle by which u
refers to v’s public key. The statement gen_add_nonce u v
generates a fresh nonce and adds it to nonces (loc s u) v,
i.e. the nonces used by u in sessions with v. The subsequent
calls incrementally construct the message.

The network handler takes the sender’s name v and a
message handle emh, and parses the message. Depending
on the result, it either produces a reply message or termi-
nates the protocol, returning the name of the (presumably)
authenticated user. Besides parsing messages, the function
parse_msg ensures correct message sequencing by verify-
ing that all prerequisites for replying to messages are satis-
fied (e.g., message NSL2 contains the nonce sent in NSL1).

5. Role-based protocol models

We will now focus on two models and their relationship:
the term-based protocol model from Section 4.6 and a more
high-level model that we call the abstract protocol model.
For the purpose of comparison we will refer to the former
as the concrete model and the latter as the abstract model.

We compare them on a particular class of protocols de-
fined using role-based protocol specifications. This not
only provides a basis for comparing the models, it also
facilitates the concise, high-level, specification of proto-
cols themselves. A protocol is specified by a set of roles
(e.g., initiator, responder, or key server), where each role is
a sequence of pairs of input and output patterns, describ-
ing which input messages are accepted by a user in the role
and the response. In our formalization, we simplify mat-
ters by considering the class of protocols using only public-
key encryption, a single set of pre-distributed asymmetric
key pairs, and no key generation. However, our framework
can accommodate signatures, key generation, and symmet-
ric cryptography.

5.1. Role-based protocol specifications

We declare a type role of roles and a type mvar of mes-
sage variables, each isomorphic to the natural numbers. Pat-
terns are described by an inductive data type.

datatype pat = pVar mvar | pRole role |
pPair pat pat | pEnc role pat

The constructors represent patterns for message variables,
protocol roles, pairs, and ciphertexts (where role refers to
the role’s public or private key). Patterns are used for pattern
matching and message construction.

A role script consists of a list of protocol steps, each
of which is described by a pair of input and output role
events. A role event is a pattern associated with either the
user or adversary interface, indicating whether a message is
exchanged with an honest user or the adversary, respectively
(cf. Figure 2). In rNet r p, the role r indicates the intended
source or destination role. A protocol specification maps a
protocol role to a role specification, which consist of a vari-
able typing context and a role script.

datatype roleEvent = rUsr pat | rNet role pat
types roleScript = (roleEvent × roleEvent) list

record roleSpec =
contxt :: mvar⇒ msgType
script :: roleScript

types protoSpec = role ⇀ roleSpec

A well-formedness condition ensures role executability and
restricts the messages exchanged at the user interface to
non-cryptographic messages, namely pairs and roles.

Example 5.1 (NSL protocol). Below is the role-based spec-
ification of the NSL protocol. We use the notation {|p|}R for
ciphertext patterns, where p is a non-empty list of patterns
constructed from pair patterns. We omit variable and role
constructors for the sake of readability.
[I 7→ (|contxt = ctxtAny (nI := mt_nonce, nR := mt_nonce),

script = [(rUsr R, rNet R {|nI , I|}R),
(rNet R {|nI , nR, R|}I , rNet R {|nR|}R)] |),

R 7→ (|contxt = ctxtAny (nI := mt_nonce, nR := mt_nonce),
script = [(rNet I {|nI , I|}R, rNet I {|nI , nR, R|}I),

(rNet I {|nR|}R, rUsr I)] |)]

Both initiator and responder roles declare two nonce vari-
ables, nI and nR, and are composed of two steps. Consider
the initiator role. First, the initiator requires the name of
the desired responder and sends an encrypted message con-
taining a fresh nonce nI and his own name to the respon-
der. Second, the initiator expects a ciphertext from the net-
work, which it decrypts and matches against nI, a responder
nonce nR, and the responder’s name. Finally, the initiator
re-encrypts the nonce nR for the responder and sends it back
to the network. The responder role R is analogous, but its
final output is the name of the presumed initiator.

5.2. Generic protocol interpretation

Our plan (recall Figure 2) is to interpret role-based pro-
tocol specifications within two different models and after-

wards to relate these interpretations. Therefore, we have
factored much of their operational semantics into a generic
protocol interpreter, which we introduce here. In Sec-
tions 5.3 and 5.4, we instantiate this interpreter twice to ob-
tain these two different models. This factorization makes it
much easier to relate the states and actions of the two mod-
els and thereby greatly facilitates the BRSIM proof in Sec-
tion 5.5. We first define threads and then how the generic
interpreter executes protocol steps.

Environments and threads. An environment is an inter-
pretation of the message variables and roles appearing in
role scripts by messages and party names, respectively. Let
aMsg = party msg be the type of messages carrying party
names as payload data. The polymorphic type µ of net-
work messages will be instantiated to handles, which refer
to messages of type aMsg, on the concrete side and directly
to messages of type aMsg on the abstract side.

record µ env =
imsg :: mvar ⇀ µ −− message interpretation
iusr :: role ⇀ party −− role interpretation

record µ thread =
rol :: role −− role executed by thread
scr :: roleScript −− remaining role script
env :: µ env −− interpretation

A thread is an executing role instance, represented as a
record with three fields: the executed role, a role script cor-
responding to the protocol script still to be executed, and an
environment assigning parties to roles and messages to the
variables instantiated so far.

Generic protocol interpreter. The protocol interpreter is
an event handler that, given an input event, executes a pro-
tocol step and produces an output event. Input/output events
associate messages with a (user/network) interface.

datatype µ ioEvent = tUsr aMsg | tNet party µ

Note that the type of messages exchanged with the honest
users is aMsg in both interpreter instantiations. Only the
type of network messages µ is variable. The party indicated
in a network event specifies the presumed source (intended
destination) of an input (or output) message. Next, let us
consider the definition of the protocol interpreter.

proto_interpreter par proto u tid iev ≡
do thd ← lookup_thread (get_thds par) u tid ;
do (thd ’, oev) ← proto_step proto (match par)

(compos par) u iev thd ;
do update_threads proto (upd_thds par) u tid thd ’;
return oev

The interpreter is parametrized by a static parameter
record (par) consisting of functions for pattern matching
(match par) and message composition (compos par) as well

as accessing (get_thds par) and updating (upd_thds par)
the threads of a given user. A protocol interpretation step
consists of three phases. First, the interpreter checks the
existence of u’s thread, identified by tid . Second, it exe-
cutes the protocol step itself, i.e., it processes the input event
iev and generates an output event oev according to the role
script of the scheduled thread thd. Finally, it updates the
state by replacing the executed thread identified by tid with
its updated version thd’ and returns the output event oev.

Let us now focus on the protocol step.

proto_step proto match compos u iev thd ≡
case scr thd of

[] ⇒ throw ()
| (ire , ore) # rs ⇒

do theta ← ev_match match (env thd) u iev ire ;
do (oev , rho) ← ev_compos compos theta u ore;
return (thd(| scr := rs , env := rho |), oev)

A terminated thread (one with an empty role script) throws
an exception. Otherwise the event pattern pair (ire , ore) at
the role script’s head is extracted and the input event iev is
matched against the input role event ire . If successful, this
results in an environment theta , which extends the thread’s
original environment (env thd) with bindings for messages
matching previously undefined variables in the input pat-
tern. The event composition algorithm takes theta and the
output role event ore and returns an output event and an up-
dated environment rho, where unassigned nonce variables
are bound to fresh nonces. Finally, the protocol step returns
a pair consisting of the updated thread and the generated
output event. In the updated thread, denoted by thd(| ... |),
the protocol step just executed is removed from the remain-
ing role script and rho becomes the new environment.

5.3. Term-based BPW as instance

We now present the term-based model as a concrete in-
stance. Here, as well as the forthcoming abstract instance,
we define the model’s state and the behavior of users and
the adversary. The users’ behavior is determined by instan-
tiating the generic protocol interpreter with an appropriate
static parameter record. The concrete instantiation inter-
prets role-based protocol specifications in the term-based
BPW model, while the abstract one interprets them directly
without BPW model. Both models embed the protocol in-
terpreter into two system-level interface functions, namely
the user and network event handlers. These add protocol-
independent processing steps such as logging events in a
trace or, in the case of the term-based model, sending mes-
sages from a user to the adversary and vice versa.

The behavior of the concrete adversary is determined by
the BPW model, while we define the abstract adversary in
terms of Dolev-Yao-style message-derivation operators.

State. In Section 4.6, we described the concrete model.
Here we instantiate the four type variables parametrizing its
state: the types of user input and output both become aMsg,
payload data becomes party and the local state of each pro-
tocol component becomes a partial map from thread identi-
fiers to threads. To simplify the presentation, we repeat here
the fully instantiated state, which we call cState .

datatype uio = uIn aMsg | uOut aMsg −− user I /O

record cState = party mLibState +
loc :: user ⇒ TID ⇀ hnd thread −− user’s threads
trace :: (user × uio) list −− user I /O trace

As protocol components refer to messages using handles,
the thread environments map variables to handles.

Message handling. The pattern matching and message
composition operations are built from BPW-model interface
functions. Here, we focus on the pattern-matching algo-
rithm and show the fragment dealing with decryption.

cl_match kt rho u eh (pEnc r p) =
do h ← decrypt (User u) (ske kt (iusr rho r)) eh;
cl_match kt rho u h p

We call the BPW-model decryption function with the pre-
sumed ciphertext at handle eh using the secret key for role r
at the handle (ske kt (iusr rho r)). When successful, we
get a cleartext handle h, which we recursively match against
the cleartext pattern p. The cases for roles (matched against
party names) and pair patterns use the BPW-model func-
tions in similar ways. When matching a message variable v
with a handle h, either the environment already maps v to h
or it is undefined at v and updated with such a mapping.

System interface and invariants. As described in Sec-
tion 4.6, the system-level user and network handlers call
the send functions of the term-based BPW model to trans-
mit messages from the protocol interpreter (i.e., some user
u’s knowledge map) to the adversary (i.e., the adversary’s
knowledge map) and vice versa. Moreover, these two han-
dlers log I/O with the users in the trace variable. The rest of
the interface is composed of the 14 BPW-model adversary
functions for message construction and access. The main
invariant of the concrete model, wf_cThreadEnv, states that
handles occurring in the thread environments correspond to
messages defined in the respective user’s knowledge map.

5.4. Abstract protocol model as instance

While the role-based specifications relieve the user from
specifying protocols as low-level imperative programs, the
fine granularity of the BPW-model interface functions is
still apparent (due to their side effects) when reasoning
about protocols in the concrete model. Hence, we define

an abstract protocol model, independent of the BPW model,
based on high-level message manipulation operations and a
concisely specified adversary.

State. In the abstract protocol model, the type variable µ
is instantiated to the type aMsg of messages carrying party
names as payload data. The abstract state contains for each
user a partial map from thread identifiers to threads and a
global event trace recording the system history.

datatype event = eLocal party aMsg
| eProtoInp user (aMsg ioEvent)
| eProtoOut user (aMsg ioEvent)

record aState =
threads :: user ⇒ TID ⇀ aMsg thread −− threads
trace :: event list −− execution trace

An abstract trace can contain input, output, and local events.
In contrast to the concrete model, it records I/O events at
both the user and the adversary interface. Local events are
currently used only by the adversary to record a message in
the trace. The adversary can observe the set of all messages
occurring in network I/O events and in his own local events,
denoted by (sees Adv (trace t)) for an abstract state t .
As we shall see, this set corresponds exactly to the set of
messages known to the concrete adversary.

Message handling. As in the concrete case, we focus
on pattern matching, which is done using Isabelle/HOL’s
matching primitives. Here is the case for decryption.

amatch kt rho (mEncv tg k m) (pEnc r p) =
do enforceb (kt (iusr rho r) = k); −− check key
amatch kt rho m p −− match plaintext

We simply check that the key k in the ciphertext corresponds
to the key assigned to the role r, i.e., (kt (iusr rho r)). If
so, we recursively match the plaintext m against the pattern
p. The cases for the other constructors are defined analo-
gously. Note that, unlike in the concrete model, abstract
message manipulation is direct (i.e., without using handles),
atomic (i.e., not composed of lower-level message opera-
tions), and free of side effects. This decisively simplifies
reasoning about protocols in the abstract model, e.g., be-
cause these operations trivially preserve all invariants.

System interface and invariants. The second important
simplification in our abstract protocol model concerns the
adversary. We collapse the 14 concrete adversary interface
functions for message manipulation into a single one.

adv_deriveA m ≡
do enforce (λt . m ∈ synth (analyze (sees Adv (trace t))));
logA (eLocal Adv m)

This function uses the standard operations analyze and
synth on sets of messages (see [14]). It ensures that the ad-
versary can derive the message m and logs it as a local event

in the event trace. Failure to derive m leads to an exception.
The system-level user and network handlers invoke the pro-
tocol interpreter. Before and after this call, the input and
output events are logged in the trace, respectively. More-
over, messages from the network are subject to the above
derivability check. The abstract adversary (unlike the con-
crete one) derives messages without producing side effects.

The main invariant of the abstract protocol model de-
scribes the well-formedness of the user threads. For exam-
ple, the thread environment defines exactly the set of vari-
ables occurring in the already executed portion of the role.

5.5. Blackbox reactive simulatability proof

Let A(p) (respectively C(p)) denote the abstract (re-
spectively concrete) model instantiated with a protocol p,
i.e., where the protocol interpreter proto_interpreter ex-
ecutes p. Our main result is that the concrete model is a
cryptographically-sound refinement of the abstract one.

Theorem 5.2. Let p be a well-formed, role-based protocol
specification of type protoSpec. Then C(p) ≤ A(p).

We now sketch some of the ideas behind our proof of the
theorem including the simulator and bisimulation relation.

The simulator. The simulator emulates the concrete
model’s adversary interface using the abstract adversary’s
interface functions. It is largely a replication of the adver-
sary part of the term-based BPW model. Thus, its state is a
knowledge map, associating handles with messages.

record simState = aState +
iknows :: hnd ⇀ aMsg −− adversary knowledge map

The simulator provides all local functions of the concrete
model adversary, which are almost identical to their original
versions. The main difference is that when the simulator
creates a new message m, it calls adv_derive m to ensure
its derivability and to log it as a local event in the trace.

The simulator also provides a user and an adversary
send function. These functions translate between handles
and messages using the adversary’s knowledge map iknows,
rather than between the handles of the honest users and
those of the adversary, as in the concrete model. We com-
pose abstract protocol system and the simulator by con-
necting these send functions to the user and network han-
dlers of the abstract protocol system. We call the result-
ing system AS(p). The main invariant of AS(p) states
that the set of messages observed by the adversary in the
trace equals the range of the knowledge map iknows and
is defined by iknowsTraced ≡ {t | ran (iknows t) = sees
Adv (trace t)}. The logging of local events for the mes-

sages derived by the simulator is essential for this invariant.

The bisimulation relation. The bisimulation relation
Rsim between the states of the concrete model and system
AS(p) consists of four conjuncts, of which we present three.

{(s , t) | ∀ u. abs ◦ (loc s u) = threads t u
where abs = c2aThread (knowsM s (User u))}

{(s , t) | knowsM s Adv = iknows t}
{(s , t) | cState . trace s = trace_proj (aState . trace t)}

The first conjunct relates threads. For each user u, compos-
ing the concrete thread map (of type TID ⇀ hnd thread)
with the thread abstraction function c2aThread (knowsM s
(User u)) (of type hnd thread ⇒ aMsg thread) yields the

abstract thread map (of type TID ⇀ aMsg thread). The
thread abstraction function composes the concrete thread
environment with user u’s knowledge map to yield an ab-
stract environment. The invariant wf_cThreadEnv (Sec-
tion 5.3) ensures that the handles in the concrete thread en-
vironments are defined in the user’s knowledge map. The
second conjunct relates intruder knowledge. The adver-
sary knowledge map in the simulator equals the one in the
concrete model. From invariant iknowsTraced, it then fol-
lows that the set of messages the concrete adversary knows
are the adversary-observable messages in the abstract trace.
The third conjunct relates traces. The projection of the ab-
stract trace to the user interface events (I/O events labeled
by tUsr), yields the observer trace in the concrete model.

With this relation at hand, we establish the following
lemma, from which our theorem immediately follows.

Lemma 5.3. For all well-formed p of type protoSpec, Rsim
is a bisimulation between C(p) and AS(p).

Our relational Hoare logic proof relies on two types of
auxiliary results for the two systems: (1) the invariants de-
scribed in Sections 5.3 and 5.4, and (2) logical properties
of pattern matching and message composition expressed in
monadic Hoare logic. These results about the abstract pro-
tocol system are not only needed for meta-level reasoning
about the models (i.e., the BRSIM abstraction proof), they
are also essential ingredients for reasoning within the ab-
stract protocol model, i.e., carrying out protocol security
proofs (cf. Section 6).

6. Case study: NSL protocol

In this section, we describe the verification of the NSL
protocol in our three formalized models. The term-based
and role-based specifications of this protocol have already
been presented in Examples 4.2 and 5.1. The DAG-based
specification is almost identical to the term-based one.
Rather than presenting proof details, we explain how the
increased abstraction of our models dramatically improves
our property specification and proof techniques.

6.1. DAG-based BPW model

Our attempt to verify the NSL protocol in the DAG-
based model failed. We abandoned the proof of nonce
secrecy when its length exceeded 80 pages of PDF doc-
umentation (ca. 4k lines of Isabelle/HOL source). There
were two main problems. First, the imperative representa-
tion of messages as DAGs complicated the proofs. Second,
our property specifications (e.g., of nonce secrecy) were ad
hoc and could not employ general notions and results, e.g.,
for the closure operators parts and analyze.

These two problems thwarted proof automation. The
WP calculus usually produced prohibitively large expres-
sions. Hence, proving even simple properties of the BPW-
model interface functions necessitated interactive Hoare
logic proofs and required complicated intermediate asser-
tions. As a result, the proof quickly became infeasible.

6.2. Term-based BPW model

Invariants. The main property we proved is that the re-
sponder authenticates the initiator. This is formulated as an
invariant of the observed user I/O trace and therefore trans-
fers to the cryptographic implementation.

authRI ≡ {s | ∀ u v . (v , uOut u) ∈ set (trace s)
−→ (u, uIn v) ∈ set (trace s)}

Here it is sufficient just to consider set (trace s), the un-
ordered set of I/O events at state s.

The proof of this invariant depends on the auxiliary in-
variants listed in Figure 4, along with their dependencies.
We focus our discussion on some higher-level invariants.
The invariants uniqueInitNonce and uniqueResponseNonce
express that the initiator nonce in message NSL1 and the
responder nonce in NSL2 uniquely determine all the other
fields of the respective message. Based on these invariants,
we prove that the protocol nonces remain secret (invariant
nonceSecrecy) between the protocol participants.

nonceSecrecy ≡ {s | ∀ u v n. n ∈ Nonces s u v
−→ secret s (mNonce n) {User u, User v}}

Here, Nonces returns the set of nonces denoted by handles
stored in the variable nonces (see Section 4.2) and secrecy
was already defined in Section 4.4. Nonce secrecy trans-
fers to the cryptographic implementation [2]. Finally, the
authentication property authRI is derived from the conjunc-
tion of four auxiliary invariants, beforeCommit, beforeM3,
beforeM2, and beforeM1, each of these going one message
back in the protocol (dashed line in Figure 4).

Verification. Our verification of the invariant authRI took
130 pages of PDF documentation (6.5k lines of source).
Much of this stems from the large number (17) of interface
functions in the model and the many auxiliary preservation

beforeM1

correctNonceOwner

uniqueNonceUse

uniqueInitNonce uniqueRespNonce

beforeCommit beforeM3

nonceSecrecy

authRI

beforeM2

Figure 4. NSL invariants (BPW version)

results that must be proved for each invariant for reuse in
later invariant proofs.

The term-based model dramatically improved proof
automation. We could use the WP calculus in most proofs at
the level of the BPW-model interface functions. For the pro-
tocol handlers, we could often automate Hoare logic proofs,
by pulling the precondition over all calls to the BPW-model
interface functions. Only when reasoning about the com-
plete system with the send functions did we need to resort
to interactive Hoare logic proofs, since reasoning about the
user send function required inventing an additional precon-
dition. This improved automation has two sources: (1) the
simplified BPW-model state using message terms, and (2)
the use of systematic property specifications based on the
message closure operators parts and analyze.

While the proof was manageable, it was still quite de-
tailed and 1-2 orders of magnitude longer than Paulson’s
proof (which fits on 3.5 PDF pages). This is mainly due
to the fine granularity and side-effect behavior of the BPW-
model interface functions and the lack of general protocol-
independent results supporting the proofs. Indeed, due to
the absence of high-level message manipulation operations,
it is hardly possible to obtain such results. We designed the
abstract protocol model to overcome these problems.

6.3. Abstract Protocol Model

Invariants. In this model, we express the user I/O-
interface property of responder authentication as follows.

respAuthInitUI ≡ {s | ∀ u v .
eProtoOut v (tUsr (mParty (User u))) ∈ set (trace s)
−→ eProtoInp u (tUsr (mParty (User v))) ∈ set (trace s)}

The main auxiliary invariants needed to prove that
respAuthInitUI is an invariant are depicted in Figure 5.

The principal invariant used in this proof is the following
authentication property, formulated in terms of the observa-
tions of the adversary and the thread state.

respAuthInit ≡ {s | ∀ u v ni nr tg2 tg3 .
(mEncv tg3 (aKt (User v)) (mNonce nr)
∈ parts (seesAdv s) ∧

initNonceSecrecy

uniqueRespNonce

respNonceSecrecy

respAuthInit

respAuthInitUI

noNonceConfusion

uniqueInitNonce

Figure 5. NSL invariants (APM version)

(eProtoOut v (tNet (User u)
(mEncv tg2 (aKt (User u))
{| mNonce ni, mNonce nr, mParty (User v) |})))

∈ set (trace s)) −→
∃ tid thd . threads s u tid = Some thd
∧ imsg (env thd) nI = Some (mNonce ni)
∧ iusr (env thd) R = Some (User v) ∧ rol thd = I }

Here {| ... |} denotes message tupling. This invariant states
that whenever a message of shape NSL3 appears on the net-
work and the responder v has sent a corresponding message
of shape NSL2 containing the nonce ni, then there is an ini-
tiator thread in a session with v that generated ni. Note that,
unlike respAuthInitUI , this invariant also specifies agree-
ment on the initiator nonce. However, its proof requires
three additional precedence invariants linking thread states
to related trace events. These are not shown in Figure 5, as
they are independent from all other invariants.

The invariant respAuthInit depends on the secrecy of
the nonces. In this model, a separate invariant specifies the
secrecy of each nonce. The one for the initiator nonce is:

initNonceSecrecy ≡ {s | ∀ u tg v ni .
eProtoOut u (tNet (User v)

(mEncv tg (aKt (User v))
{| mNonce ni, mParty (User u) |}))

∈ set (trace s)
−→ mNonce ni /∈ analyze (sees Adv (trace s)) }

The invariants uniqueInitNonce and uniqueRespNonce are
similar to the respective invariants of the concrete model.

Verification. Our verification of invariant respAuthInitUI
within the abstract protocol model still takes about 80 pages
of PDF documentation (4k lines of source). However, the
proof of each invariant is reduced to two core lemmas, one
for the protocol steps on the user side and one for the ad-
versary, which take up only about 10 pages or 13% of this
space. The remaining proofs are completely straightforward
and could be automated. In the following, we elaborate on
the reduction of the proofs to these core lemmas. We con-
sider the user and adversary sides in turn.

On the user side, we reduce preservation results (formu-
lated in Hoare logic) for the user and network handlers to
a HOL assertion about the protocol step, which is the user-

side core lemma. Here is a typical instance of such a lemma,
for the case of initiator nonce secrecy.

lemma initNonceSecrecy__protocol_step:
s ∈ proto_step_spec NSLproto u iev thda oev thdb
∧ s ∈ initNonceSecrecy ∧ wf_aThread NSLproto u thda
∧ eProtoInp u iev ∈ set (trace s)
−→ s(| trace := eProtoOut u oev # (trace s) |)
∈ initNonceSecrecy

The premises of this lemma are proved as post-conditions
of the protocol step and its conclusion is needed as a pre-
condition for logging the output event of the protocol step.

The first premise, proto_step_spec , specifies the proto-
col step where iev is the input event, thda is user u’s thread
to be executed, oev is the output event resulting from the
step, and thdb is the updated thread. This is a general, previ-
ously proved post-condition that characterizes the protocol
step. For instance, it states that the output event oev is an in-
stance of the current output role event of the thread’s script
and names the freshly generated nonces. The other premises
are: initiator nonce secrecy, which is trivially preserved by
the side-effect-free protocol step; a thread well-formedness
condition; and the statement that iev occurs in an input trace
event. The premises include three more auxiliary invariants,
which we have omitted above.

The proof of user-side core lemmas is based on another
lemma for the case analysis on the role and position in the
role script. We prove such a lemma once for each protocol.
Here is the one for NSL.

lemma NSLproto_step_casesD:
(s ∈ proto_step_spec NSLproto u iev thda oev thdb
∧ wf_aThread NSLproto u thda)
−→ s ∈ NSLproto_event_cases u iev thda oev thdb

Its conclusion is defined as a large disjunction with one dis-
junct for each role and script position, which specializes the
general information in the protocol step specification to the
concrete protocol step being taken. For example, the fol-
lowing case describes the first step in the NSL initiator role.

(∃ v tg ni . rol thdb = I
∧ iusr (env thdb) R = Some v
∧ imsg (env thdb) nI = Some (mNonce ni) (∗ after ∗)
∧ imsg (env thdb) nR = None
∧ imsg (env thda) = empty (∗ before ∗)
∧ iev = tUsr (mParty v)
∧ oev = tNet v (mEncv tg (aKt v)

{| mNonce ni, mParty (User u) |})
∧ mNonce ni /∈ parts (seesAdv s))

This fixes all the relevant bindings in the environment, de-
scribes the shapes of the input and output events, and states
that the nonce ni is freshly generated in this step.

The adversary-side core lemma for initiator nonce
secrecy is as follows.

lemma initNonceSecrecy__adversary_derivable:

(s ∈ initNonceSecrecy ∧ s ∈ adv_derivable m)
−→ s(| trace := eProtoInp u (tNet v m) # (trace s) |)
∈ initNonceSecrecy

This lemma states that adding a network input event to the
trace containing a message derived by the adversary pre-
serves the invariant. We prove this using standard results
from the theories of synth and analyze [14].

Discussion. By proving a number of strong, general re-
sults about protocol steps and the adversary, we reduce in-
variant proofs to two core lemmas, whose complexity is di-
rectly comparable to the inductive cases arising in Paulson’s
invariant proofs. For the adversary, it would be possible to
adapt Paulson’s specialized tactics to our setting. Moreover,
the other, completely straightforward parts of the invariant
proof, which we currently handle using an invariant proof
template, could be automatically proved. While the invari-
ants shown in Figure 5 closely reflect Paulson’s, one differ-
ence with his proof of this protocol is that we need three
additional precedence invariants (not shown in Figure 5)
that glue together the thread state and the trace. However,
these are local invariants about a single thread and should
be derivable from general results about the protocol model.

In conclusion, our results provide strong evidence that
cryptographically-sound reasoning about security protocols
is indeed possible with a complexity comparable to more
standard, not necessarily cryptographically-sound models.
This is one of the main results of our work.

7. Related work and conclusions

Related work. Understanding relationships between
cryptographically-sound models is an active research area.
There are two established techniques to show the crypto-
graphic soundness of a Dolev-Yao model: mapping-based
[12, 8] and simulatability-based [15, 5]. These notions pre-
serve trace properties and certain forms of secrecy from the
symbolic to the cryptographic world. Simulatability-based
soundness additionally provides composition guarantees.

Micciancio et al. [12] present a mapping-sound Dolev-
Yao model with public-key encryption, which is extended
in [8] with signatures and ciphertext forwarding. In this
context, Cortier et al. [7] show that randomness tags in ci-
phertexts can be safely omitted for a restricted class of prop-
erty specifications that cannot express the equality between
ciphertexts and includes secrecy and authentication proper-
ties. Although the setup is different, this work is closest to
ours. They also further abstract non-standard aspects of a
cryptographically-sound Dolev-Yao model to enable effec-
tive tool-supported protocol analysis.

Canetti and Herzog [6] consider mutual authentication
and key exchange protocols based on public-key encryp-
tion in the UC framework. They reduce the proof that such

Module Theories Pages Lines %
Modeling & verification tools 9 54 2.7k 7
DAG-based model + BRSIM 10 119 6k 16
Term-based model 17 96 4.8k 13
Term-based NSL 14 136 6.8k 18
APM + BRSIM 31 266 13.3k 35
APM-based NSL 9 83 4.2k 11
Total 90 754 37.8k 100

Table 1. Isabelle/HOL Statistics

a protocol is UC-secure to showing that a Dolev-Yao-style
symbolic abstraction of the protocol satisfies a certain sym-
bolic property. They then use the ProVerif tool to symboli-
cally analyze secrecy aspects of the NSL protocol. We share
with their work the simulatability-based setup, but our start-
ing point is not a computational model, but a very general
Dolev-Yao-style model (the BPW model), which we further
abstract and specialize to role-based protocols. The BPW
model also includes signatures, symmetric encryption, and
MACs, which can easily be added to our formal model.

Laud [10] has designed a type system for secrecy as-
pects of security protocols specified in a process calculus
tailored to the BPW model. He shows that typeable pro-
tocols keep their payload inputs cryptographically secret.
Backes and Laud [1] automate such secrecy proofs using
message flow analysis. While they only consider the pay-
load secrecy property, their language covers a large class of
protocols definable in the BPW model.

Conclusions and future work. Overall, we have shown
that it is possible to close the gap between a very gen-
eral, cryptographically-sound model and standard Dolev-
Yao models. Abstraction is the key and with the right mod-
eling tools one can formally justify the abstractions as well.
Of course this required some work as indicated in Table 1.

The gap has both semantic and deductive aspects. First,
through our work, we gain a better understanding of suffi-
cient semantic conditions for cryptographic soundness. Al-
though our abstractions are substantial, our abstract proto-
col model still contains some non-standard aspects, e.g.,
randomness tags, invalid ciphertexts, and message length
restrictions. Further investigation is needed to determine
which of these are essential, cf. Cortier et al. [7].

The second aspect concerns the complexity of deduc-
tion. By reducing the models’ complexity we have gained
the ability to formally verify protocols with proofs of com-
plexity directly comparable to those based on more standard
symbolic models, e.g., essentially the same creative steps
and reasoning are required as in Paulson’s proofs. More-
over, we believe we can overcome the remaining difference
in the proof length by extending our proof infrastructure to
automate the proofs of adversary core lemmas and of stan-
dard preservation lemmas needed in invariant proofs.

Acknowledgements. We thank Michael Backes and Bir-
git Pfitzmann for their past collaboration and support.

References

[1] M. Backes and P. Laud. Computationally sound secrecy
proofs by mechanized flow analysis. In Proc. 13th CCS,
pages 370–379. ACM, 2006.

[2] M. Backes and B. Pfitzmann. Relating symbolic and cryp-
tographic secrecy. IEEE Transactions on Dependable and
Secure Computing, 2(2):109–123, 2005.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A universally
composable cryptographic library. IACR Cryptology ePrint
Archive 2003/015, Jan. 2003.

[4] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In Proc. Principles
of Programming Languages (POPL), pages 14–25, 2004.

[5] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. 42nd IEEE
FOCS, pages 136–145, 2001.

[6] R. Canetti and J. Herzog. Universally composable sym-
bolic analysis of mutual authentication and key exchange
protocols. In Proc. 3rd Theory of Cryptography Conference
(TCC), volume 3876 of LNCS, pages 380–403, 2006.

[7] V. Cortier, H. Hördegen, and B. Warinschi. Explicit ran-
domness is not necessary when modeling probabilistic en-
cryption. ENTCS, 186:49–65, 2007.

[8] V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. In Proc. 14th European
Symposium on Programming (ESOP), pages 157–171, 2005.

[9] D. Dolev and A. C. Yao. On the security of public key pro-
tocols. IEEE Trans. on Inf. Theory, 29(2):198–208, 1983.

[10] P. Laud. Secrecy types for a simulatable cryptographic li-
brary. In Proc. 12th ACM Conference on Computer and
Communications Security, pages 26–35, 2005.

[11] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. Software — Concepts and
Tools, 17:93–102, 1996.

[12] D. Micciancio and B. Warinschi. Soundness of formal en-
cryption in the presence of active adversaries. In Proc. 1st
Theory of Cryptography Conference (TCC), volume 2951 of
LNCS, pages 133–151, 2004.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer-Verlag, 2002.

[14] L. Paulson. The inductive approach to verifying crypto-
graphic protocols. J. Computer Security, 6:85–128, 1998.

[15] B. Pfitzmann and M. Waidner. Composition and integrity
preservation of secure reactive systems. In Proc. 7th CCS,
pages 245–254, 2000.

[16] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth
Higher Order Workshop, Banff 1990, Workshops in Com-
puting, pages 162–189. Springer, Berlin, 1991.

[17] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner. Cryptographically sound theorem proving. In
19th IEEE CSFW, pages 153–166, July 2006.

[18] C. Sprenger and D. Basin. A monad-based modeling and
verification toolbox with application to security protocols. In
20th TPHOLs, LNCS Volume 4732, pages 302–318, 2007.

