
Obstruction-free Authorization Enforcement:
Aligning Security and Business Objectives

David Basin⇤
⇤ ETH Zurich

Information Security Group
E-Mail: basin@inf.ethz.ch

Samuel J. Burri⇤† and Günter Karjoth†
† IBM Research – Zurich

Security Group
E-Mail: {sbu, gka}@zurich.ibm.com

Abstract—Access control is fundamental in protecting in-
formation systems but it also poses an obstacle to achieving
business objectives. We analyze this tradeoff and its avoidance
in the context of systems modeled as workflows restricted by
authorization constraints including those specifying Separation
of Duty (SoD) and Binding of Duty (BoD).

To begin with, we present a novel approach to scoping
authorization constraints within workflows with loops and
conditional execution. Afterwards, we consider enforcement’s
effects on business objectives. We identify the notion of ob-

struction, which generalizes deadlock within a system where
access control is enforced, and we formulate the existence of an
obstruction-free enforcement mechanism as a decision problem.
We present lower and upper bounds for the complexity of
this problem and also give an approximation algorithm that
performs well when authorizations are equally distributed
among users.

To appear in:
Proc. of the 24th IEEE Computer Security Foundations Symposium (CSF ’11).
June 27–29, 2011, Domaine de l’Abbaye des Vaux de Cernay, France.

I. INTRODUCTION

As is well known, security often conflicts with other
system-design objectives. Take the case of a business system
where business objectives are modeled by workflows defin-
ing the tasks executed by users. Adding access control to this
system prevents unauthorized task executions, but may also
have unintended consequences. For example, the resulting
system may deadlock or be obstructed in that fewer options
are available to achieve the workflow’s business objectives
than were originally designed. A fundamental problem is
how this conflict can be resolved. Can authorizations be
enforced without obstructing system objectives?

In this paper, we investigate this question by modeling
workflow-based systems at two levels of abstraction. At the
control-flow level, a workflow models the temporal ordering
and causal dependencies of a set of tasks that together imple-
ment a business objective. The task-execution level refines
the control-flow level and also models who executes which
task. The above question can be formalized as whether
authorizations are enforceable at the task execution level
without changing the workflow at the control-flow level.

Consider as an example a simple workflow with three
tasks t1, t2, and t3, illustrated as a labelled transition
system W in the top half of Figure 1. At the control-flow

level, a successful workflow execution specifies the business
objective of executing t1 and afterwards either t2 or t3.
Now consider an authorization policy stating that user u1

may execute all three tasks and u2 may execute only t1.
Furthermore, t1 and t2 must not be executed by the same
user. The bottom half of Figure 1 shows two refinements,
W1 and W2, of W that respect this authorization policy,
where we write t.u to indicate that u executes t. In W1,
u1 may execute t1 but afterwards only t3 is executable
without violating the authorization policy. This, however,
corresponds to a restriction of the workflow at the control
flow level (indicated by the jagged arrow). We call this
situation an obstruction. In contrast, W2 avoids obstructions
by being more restrictive than W1 and not allowing u1 to
execute t1.

Figure 1. Enforcement with and without obstruction

This simple example illustrates the tension between secu-
rity and business objectives and suggests that authorization
enforcement should be designed in a way that aligns both
objectives. Our underlying assumption is that for achieving
business objectives, it does not matter who is executing a
task as long as every task can be executed by an authorized
user. As illustrated by the example, we thereby give the
preservation of a workflow at the control-flow level priority
over the choice of who can execute a task.

Concretely, we consider three classes of authorization
constraints: We call the workflow-independent permissions
of users to execute tasks, e.g. modeled in RBAC [4], static
authorizations. We augment them with dynamic Separation
of Duty (SoD) and dynamic Binding of Duty (BoD) con-

straints that are workflow-specific and depend on who has
executed previous tasks. SoD, also known as the four-eyes-
principle, aims at reducing fraud and errors by preventing
a user from executing tasks with conflicting interests. BoD
is dual to SoD and aims at reusing existing knowledge and
preventing widespread dissemination of sensitive informa-
tion by restricting the execution of two related tasks to a
single user. These classes of constraints are recommended as
best practice by frameworks like Cobit [9] and regulations
like SOX [1] and are commonplace in regulated business
environments, such as the financial industry.

We proceed as follows. First, we formalize workflows
and authorization constraints as CSP processes [14] and
model authorization enforcement as parallel, synchronized
composition. All our results are formulated in terms of
CSP. However, to bridge the gap to higher-level workflow
languages, we visualize workflows using the Business Pro-
cess Modeling Notation (BPMN) [11], a well-established
workflow modeling language, and we propose an extension
to BPMN to visualize our SoD and BoD constraints. We use
a running example and our BPMN visualization to illustrate
the applicability of our approach to realistic business cases.
Second, we formulate the existence of an obstruction-free
enforcement mechanism for a given set of authorization
constraints and a workflow as a decision problem, which
we call the enforcement process existence (EPE) problem.
Finally, we present algorithms both to solve and approximate
EPE and we analyze their runtime complexity.

Our first contribution is the formalization and analysis
of obstruction-free authorization enforcement in workflow
systems. We thereby generalize the notion of deadlock-
freedom of a process to also includes cases where progress
of the workflow execution is possible although with fewer
options than are specified at the control-flow level. We prove
that EPE is decidable, however NP-hard. Furthermore, we
show that our approximation algorithm has a polynomial
runtime complexity and provides good approximation results
when the set of users is large and the static authorizations
are equally distributed among them.

Our second contribution is a novel approach to modeling
SoD and BoD constraints that are scoped to subsets of
task instances. Our formalism imposes no restrictions on
the expressiveness of the underlying workflow modeling
language. In particular, workflows may contain loops and
conditional executions, which are usually omitted in existing
formalisms. The visualization of our constraints paves the
way to integrating our modeling approach in a graphical
workflow modeling tool. This enables business experts to
extend workflow models with authorization constraints that
are enforceable without introducing obstructions.

The remainder of this paper is organized as follows. In
Section II we provide background on both CSP and BPMN.
In Section III, we model workflows and authorization con-
straints using CSP and visualize them in BPMN. We define

obstruction-free authorization enforcement in Section IV.
Based on this definition, we introduce EPE and analyze
its complexity. In Section V, we present approximation
algorithms for EPE. We review related work in Section VI
and draw conclusions in Section VII. The appendix provides
proofs and additional background on CSP and graph color-
ing, which we use in our reductions.

II. BACKGROUND

A. CSP
We use a subset of Hoare’s process algebra CSP [14]

to model the specification and enforcement of authorization
constraints on workflows. CSP describes a system as a set
of communicating processes. A process is referred to by
a name; let N be the set of all process names. Processes
communicate with each other by concurrently engaging in
events. ⌃ is the set of all regular events. In addition, there are
two special events: ⌧ , a process-internal, hidden event, and
X that communicates successful termination. Let C ✓ ⌃.
We write C⌧ for C [{⌧}, CX for C [{X}, and C⌧,X for
C [{X, ⌧}. In particular, ⌃⌧,X is the set of all events.

A trace is a sequence of regular events, possibly end-
ing with the special event X. hi is the empty trace and
h�1, . . . ,�ni is the trace containing the events �1 to �n,
for n � 1. For two traces i1 and i2, their concatenation is
denoted i1 î2. C⇤ is the set of all finite traces over C and its
superset C⇤X

= C⇤ [{i ˆhXi | i 2 C⇤} includes all traces
ending with X. We abuse the set-membership operator 2 for
traces and write � 2 i for an event � and a trace i, if there
exist two traces i1 and i2 such that i = i1ˆh�î i2.

For an event � 2 ⌃ and a name n 2 N , the set
of processes P is inductively defined by the grammar
P ::= � ! P | SKIP | STOP | n | P ⇤ P | P u P |
P k P | P ||| P | P ; P .

There are different approaches to formally describing
the behavior of a process. CSP’s denotational semantics
describes a process P as a prefix-closed set of traces
T(P) ✓ ⌃

⇤X, called the traces model. The operational
semantics describes P as a labelled transition system (LTS).
We call a process finite if it corresponds to an LTS with
finitely many states and input symbols. The two semantics
are compatible. Because we mainly use the traces model, we
describe in the following the process composition operators,
introduced above, in terms of the denotational semantics.
We review the operational semantics, which we use in some
proofs, in Appendix A.

Let P, P1, P2 2 P be processes. The process � ! P
engages in the event � first and behaves like P afterward.
Formally, T(� ! P) = {h�î i | i 2 T(P)} [{hi}
This notation can be extended. For C ✓ ⌃, the expression
� : C ! P represents a process that engages in a � 2 C
first and behaves like P afterward. SKIP engages in X and
no further event afterward; T(SKIP) = {hi, hXi}. STOP
represents the process that does not engage in any event;

Figure 2. BPMN artifacts

T(STOP) = {hi}. In other words, SKIP represents suc-
cessful termination and STOP a deadlock. We write n = P
to assign P to the name n; the process n behaves like P . The
process P1 ⇤ P2 represents the external choice and P1 u P2

the internal choice between P1 and P2. With respect to the
traces model, P1 ⇤ P2 and P1 u P2 are indistinguishable,
namely T(P1 ⇤ P2) = T(P1 u P2) = T(P1) [T(P2).
The failures model explained below distinguishes between
the two processes. The process P1 k P2 represents the
parallel and (fully-)synchronized composition of P1 and P2.
It engages in an event � if both P1 and P2 synchronously
engage in �; T(P1 k P2) = T(P1) \ T(P2). Similarly, the
process P1 ||| P2 is the parallel, unsynchronized composition
of P1 and P2. It engages in � if either P1 or P2 engage
in �; T(P1 ||| P2) is the set of all interleavings of i1
and i2 for i1 2 T(P1) and i2 2 T(P2). The process
P1 ; P2 denotes the sequential composition of P1 and P2.
It first behaves like P1. Upon successful termination of P1,
the event X is hidden, which is denoted by the invisible
event ⌧ . Afterwards, the process behaves like P2. Formally,
T(P1 ; P2) = (T(P1)\⌃⇤

)[{i1 î2 | i1 ĥXi 2 T(P1), i2 2
T(P2)}. Note that the invisible event ⌧ does not appear in
traces, similar to "-transitions in nondeterministic automata.
For a trace i, P \ i represents the process P after engaging
in all events in i. If T(P1) ✓ T(P2), then P1 is a trace
refinement of P2, denoted P2 vT P1. If P2 vT P1 and
P1 vT P2, then P1 and P2 are trace equivalent, denoted
P1 =T P2.

The traces model is insensitive to nondeterminism. It
describes what a process can do but not what it may
refuse to do. The failures model F is a refinement of the
traces model that overcomes this shortcoming. Let P be
a process. P ’s refusal set is a set of events all of which
P can refuse to engage in and rs(P) ✓ 2

⌃X
is the set

of all refusal sets of P . The set of failures of P is then
F(P) = {(i, C) | i 2 T(P), C 2 rs(P \ i)}. For two
processes P1 and P2, P1 is a failure refinement of P2, written
P2 vF P1, if F(P1) ✓ F(P2). Furthermore, P1 is failure
equivalent to P2, written P1 =F P2, if P1 vF P2 and
P2 vF P1. A more detailed definition of refusal sets and

failures is given in Appendix A.
For a relation R ✓ ⌃⇥⌃ and a process P , P [R] denotes P

renamed by R. For every tuple (�1,�2) 2 R, P [R] engages
in �2 if P engages in �1.

B. BPMN
We introduce a subset of the Business Process Model-

ing Notation (BPMN) [11] that we later extend to model
authorization constraints for workflows. BPMN describes
workflows at a high level of abstraction using a graph-
like notation. We distinguish five kinds of BPMN artifacts,
illustrated in Figure 2. Tasks are modeled by rectangles with
rounded corners, labelled with the name of the task. A small
icon in the upper left corner may specify the task’s type.
In this paper, we consider only tasks executed by humans,
called user task in BPMN and denoted by an icon depicting
a person.

An event models the occurrence of a condition or an inter-
action with the environment. Events are circle-shaped. Their
exterior boundary indicates whether their occurrence triggers
a workflow instantiation, called a start event, whether they
occur during the workflow’s execution, called an inter-
mediate event, or whether their occurrence terminates a
workflow instance, called an end event. Furthermore, an
event’s interior may contain an icon, which determines the
event’s type. Examples are the arrival of a message or the
expiration of a deadline, illustrated by an envelope and a
clock, respectively.

Flows describe a workflow’s control-flow. A sequence
flow, illustrated by a solid line with an arrow, defines the
order in which tasks are executed and events occur. BPMN
has other flow artifacts, such as message flows, but we only
make use of sequence flows.

Merging and branching of the control-flow is modeled
by gateways. A gateway has n � 1 incoming and m � 1

outgoing sequence flows. Exclusive gateways are depicted
by an empty (or with an x labeled) diamond. Whenever the
control-flow reaches an exclusive gateway on an incoming
sequence flow, it passes the control-flow immediately on
to exactly one of the m outgoing sequence flows, based

on the evaluation of the condition c associated with the
gateway. Parallel gateways are illustrated by a diamond
labeled with the symbol “+”. They synchronize the control
flow on the n incoming sequence flows and spawn the
concurrent execution on the m outgoing sequence flows.

BPMN models can be annotated. For example, tasks may
have textual annotations as illustrated in Figure 2. Sets of
tasks are defined by placing them in a dot-dashed box.

III. AUTHORIZATION-CONSTRAINED WORKFLOWS

We use CSP to formalize workflows, authorization con-
straints, and their interplay. CSP’s notion of renaming fa-
cilitates a mapping between the control-flow and the task-
execution level. Furthermore, its notion of parallel, synchro-
nized process execution enables a concise description of
workflow systems that are composed from multiple sub-
processes, each modeling a separate system aspect. Con-
cretely, we first describe workflows and our three classes
of authorization constraints as individual processes. After-
wards, we describe the overall workflow system as the
parallel, synchronized composition of these processes. In
addition, we describe the visualization of our constraints
using an extension of BPMN.

A. Workflows
There are numerous translations from BPMN and similar

workflow modeling languages to process calculi such as
CSP [21] or the ⇡-calculus [12]. The technical differences
are unimportant for our work here and we use a straightfor-
ward translation to CSP, illustrated in our running example.

For the reminder of this paper, assume a set of tasks T
and a set of points O. Points are used to model BPMN
events. We now describe workflows at the control-flow level
using CSP.

Definition 1 (Workflow process) A workflow process is a
process W such that T(W) ✓ (T [O)

⇤X.

In other words, a workflow process may engage in tasks,
points, and finally the event X. We give below an example

workflow, modeled in BPMN, and a corresponding workflow
process. We will use this workflow as a running example to
illustrate the concepts presented in this paper.

Example 1 (Collateral Evaluation Workflow) The financial
industry distinguishes between secured and unsecured loans.
In a secured loan, the borrower pledges some asset, such as
a house or a car, as collateral for his debt. If the borrower
defaults, the creditor takes possession of the asset to mitigate
his financial loss.

Figure 3 shows a BPMN model of the collateral evalu-
ation workflow, which we adopted from IBM’s Information
FrameWork [8]. Ignore the grey BPMN elements for the
moment. This workflow is executed by a financial institution
to evaluate, accept, and prepare the safeguarding of the
collateral that a borrower pledges in return for a secured
loan.

For this example, let T = {t1, . . . , t5} where t1 refers to
Compute Market Value, t2 to Control Computation, etc.,
and O = {o1, o2, o3}, as shown in Figure 3. The workflow
process W models the collateral evaluation workflow in CSP.

W = (P1 ||| P2) ; (t5 ! ((o2 !W) u SKIP))

P1 = t1 ! t2 ! ((o1 ! P1) u SKIP)

P2 = o3 ! t3 ! ((t4 ! SKIP) u SKIP)

We do not model data-flow in our example and therefore
overapproximate gateway decisions with CSP’s operator u
(internal choice). ⇧

Next, we model the execution of tasks by users, workflow
instances, and workflows at the task-execution level. For the
reminder of this paper, let U be the set of users. For a task
t and a user u, we call an event of the form t.u a (task)
execution event and denote by X = {t.u | t 2 T , u 2 U}
the set of all execution events. We introduce the auxiliary
relation ⇡ = {(t.u, t) | t 2 T , u 2 U}, which maps every
execution event t.u to the task t. The process W [⇡�1

] then
models the workflow process W at the task-execution level.
It engages in the execution event t.u, for any u 2 U , if the
workflow process W engages in t. The application of ⇡�1,

Figure 3. Collateral Evaluation Workflow

i1 = ht1.Alice, t2.Bob, t4.Clairei
i2 = ht1.Alice, o3, t3.Bob, t2.Alice, o1, t1.Bob, t2.Claire, t5.Claire, Xi
i3 = ht1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Alice, t4.Dave, t2.Claire, t5.Claire, Xi
i4 = ht1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Bob, t4.Bob, t2.Claire, t5.Dave, Xi

Figure 4. Examples of workflow traces

the inverse of ⇡, to W has no effect on points and X; i.e.
if W engages in a point or X, then so does W [⇡�1

]. Note
that we will abuse the renaming notation to map a trace
i 2 T(W [⇡�1

]) to a trace i[⇡] 2 T(W).

Definition 2 (Workflow trace) A workflow trace is a trace
i 2 (X [O)

⇤X.

A workflow trace models a workflow instance. In partic-
ular, if i 2 T(W [⇡�1

]), then i models an instance of the
workflow modeled by W . We say the workflow instance
modeled by i has successfully terminated if X 2 i.

Example 2 (Workflow traces) Let U = {Alice, Bob, Claire,
Dave} for the collateral evaluation workflow. Consider the
workflow traces in Figure 4. The traces i2, i3, and i4
model successfully terminated workflow instances of the
collateral evaluation workflow, where the inner loop was
executed twice, i.e. i2, i3, i4 2 T(W [⇡�1

]). We discuss
the differences between these traces in later examples. The
trace i1, however, neither models a successfully terminated
workflow instance nor is it a workflow instance trace of
W [⇡�1

] because t4 can only be executed after t3 has been
executed. ⇧

Example 2 illustrates that successfully terminated work-
flow instances may contain multiple instances of a task.
For example, t2 and t4 are part of the collateral evaluation
workflow and i2 contains two execution events involving t2
but none involving t4.

B. Authorization processes

We now introduce a formalism to model authorization
policies for workflows at the granularity of task instances.
We support three classes of constraints.

• Static authorizations: The task execution is restricted
to users with the necessary qualifications and responsi-
bilities and does not change depending on the history
of executed tasks.

• Dynamic Separation of Duties: Authorizations to
execute tasks are restricted based on who has executed
previous tasks to ensure that tasks with conflicting in-
terests are not executed by the same user. For example,
consider two tasks t1 and t2 with conflicting interests.
A dynamic SoD constraint is used to prevent a user
from executing an instance of t2 after having executed
an instance of t1 and vice versa.

• Dynamic Binding of Duties: Authorizations to execute
tasks are restricted based on who has executed previous
tasks to limit the exposure of sensitive data and to reuse
knowledge that users have gained from previous task
executions. For example, consider two tasks t1 and
t2, both revealing the same sensitive information. A
dynamic BoD constraint forces a user to execute all
instance of t2 (and further instances of t1) after having
executed an instance of t1 and vice versa.

It is standard to distinguish between static and dynamic
authorization constraints [6]. In this paper, static SoD and
BoD constraints are subsumed by static authorizations and
are not discussed explicitly. We will therefore use SoD as
synonym for dynamic SoD and BoD for dynamic BoD,
respectively.

For each class of constraints, we now describe its visual-
ization in BPMN and define its semantics in terms of CSP.
For each constraint c, we define a process Ac and say that
a workflow trace i satisfies c if i 2 T(Ac).

Figure 5. Role-based static authorizations

1) Static Authorization Constraints: A policy for static
authorizations is basically a standard access control policy,
describing the assignment of permissions to users. In the
context of this paper, a permission is the right to execute
a task. There exists a wealth of models and formalisms for
describing static authorizations. For example, Figure 5 shows
a role-based model [4] describing the static authorizations
of Alice, Bob, Claire, and Dave with respect to the tasks of
the collateral evaluation workflow.

Static authorizations are not the main focus of this paper.
Often, they are not defined within the workflow model
but on the system on which the workflow is executed,

e.g. see [7]. In the interest of ecumenical neutrality and
supporting numerous access control languages, we model
static authorizations abstractly by a relation UT ✓ U ⇥ T ,
called a user-task assignment. Given a user-task assignment
UT , a user u, and a task t, we say u is statically authorized
to execute t with respect to UT if (u, t) 2 UT .

Definition 3 (Static Authorization Process) For a user-task
assignment UT , a static authorization process for UT is the
process

AUT = (t.u) : {t0.u0 | (u0, t0) 2 UT}! AUT

⇤ o : O ! AUT

⇤ SKIP .

The process AUT engages in every execution event t.u if
the user u is authorized to execute the task t with respect
to UT . Furthermore, AUT engages in every point o and can
terminate at any time. The static nature of UT is reflected
by the fact that AUT behaves again like AUT after engaging
in every event (except the final event X).

As previously mentioned, static authorizations are often
defined outside the workflow model. We therefore do not
discuss the graphical description of static authorizations as
part of workflow models in detail. BPMN has the concept
of lanes, which subdivide workflows and group tasks [11].
Lanes are often associated with a role or a business unit
and may therefore be interpreted as the role-permission
assignment of a role-based access control model. For ex-
ample, we could add a lane labeled Accountant, containing
the tasks t1 and t2, a lane Trustee, containing t3 and t4,
and a lane Manager for t5 to the BPMN model of the
collateral evaluation workflow (cf. Figure 5). However, the
specification of users and their assignment to lanes is outside
the scope of BPMN. Furthermore, if tasks can be executed
by multiple roles, a workflow may have exponentially many
lanes in the number of roles.

2) SoD Constraints: To separate duties between two
tasks, we must keep track of the users who execute them
in order to block users from executing both tasks. Thus, we
associate a user with the tasks he executes and determine his
authorizations to execute further tasks based on his associ-
ation to previously executed tasks. We now introduce the
concept of releasing, which removes associations between
users and their previously executed tasks and thereby scopes
SoD constraints to instances of tasks.

For two non-empty, disjoint sets of tasks T1 and T2, i.e.
|T1| � 1, |T2| � 1, and T1 \T2 = ?, and a set of points O,
an SoD constraint is a triple (T1, T2, O).

Definition 4 (SoD Process) For an SoD constraint s =

(T1, T2, O), the SoD process for s is the process As(U ,U)
where

As(UT1 , UT2) =

t : T1.u : UT1 ! As(UT1 , UT2 \ {u})
⇤ t : T2.u : UT2 ! As(UT1 \ {u}, UT2)

⇤ o : O ! As(U ,U)
⇤ t : T \ (T1 [T2).u : U ! As(UT1 , UT2)

⇤ o : O \O ! As(UT1 , UT2)

⇤ SKIP .

An SoD process As offers the external choice between
six kinds of events. (1) For a user u, As engages in the
execution event t1.u, for t1 2 T1, if u is not associated with
a task t2 2 T2, i.e. u has not executed a task in T2 that has
conflicting duties with t1. Afterward, As associates u with
T1 to block u from executing tasks in T2. (2) Symmetrically,
As blocks u from executing a task in T1 after executing a
task in T2. (3) By engaging in a point o 2 O, As releases all
users from their associations with T1 and T2. We therefore
call a point used in an SoD (or BoD) constraint a release
point. (4) As engages also in every execution event involving
tasks other than T1 and T2 and (5) points other than O
without changing its behavior. (6) Finally, As may behave
like SKIP and terminate at any time.

We may use the following shorthand notation to describe
SoD constraints and to avoid cluttering graphical workflow
models. Consider the SoD constraint (T1, T2, O). If T1, T2,
or O are singleton sets, we simply use the respective element
and omit the set notation. For example, if T1 = {t1}, T2 =

{t2}, and O = {o}, we write (t1, t2, o).
To visualize SoD constraints in BPMN, we introduce a

new class of internal (BPMN) events, called release events.
This facilitates the description of releasing as part of a
workflow’s control-flow. The release event icon is a user
who leaves a door, as shown in Figure 3 with o1, o2, and o3.
We use the dot-dashed BPMN notation for grouping tasks to
specify sets of tasks. For example, Figure 3 contains a group
denoting the set of tasks {t1, t2, t3, t4}. An SoD constraint
is graphically described by linking two disjoint, non-empty
sets of tasks and a set of release events with a dotted line,
joined by a node labeled with the symbol “6=”. This notation
is an adaptation of BPMN’s textual annotation of tasks. If
one of the sets of tasks is a singleton set, we may omit the
BPMN grouping and directly link the respective task and the
6=-node. For example, Figure 3 contains the SoD constraint
s2 = ({t1, t2, t3, t4}, t5, o1).

The effect of an SoD constraint is only fully defined with
respect to a workflow process. The workflow process defines
the order in which tasks are executed and release points are
reached. We illustrate the effect of different placements of
a release point with an example.

Example 3 (Release Point Placement) Figure 6 shows
a workflow with two tasks and three SoD constraints,
si = (t1, t2, oi) for i 2 {1, 2, 3}. Successfully terminated
instances of this workflow correspond to workflow instance
traces of the form
h o1, o2, o3, t1.u1,1, . . . , o3, t1.u1,n1 , t2.u1,n1+1,

o2, o3, t1.u2,1, . . . , o3, t1.u2,n2 , t2.u1,n2+1,

. . .

o2, o3, t1.um,1, . . . , o3, t1.um,nm , t2.um,nm+1,Xi
for nm,m � 1. The only difference between s1,
s2, and s3 is the position of the respective re-
lease point within the workflow. SoD constraint s1
is satisfied if {u1,1, u1,2, . . . , u1,n1 , u2,1, . . . , um,nm} \
{u1,n1+1, u2,n2+1, . . . , um,nm+1} = ?. In other words, s1
is satisfied if no user who executes t1 executes t2 and vice
versa. Because o1 is reached only once and before any
constrained task is executed, effectively no releasing takes
place. Reaching a release point that is placed at the very start
or end of a workflow has no effect and, hence, the constraint
separates duties over all instances of the respective tasks.
This illustrates that our policies are more expressive than
existing SoD formalisms that do not distinguish between
different instances of the same task.

Let k 2 {1, 2, . . . ,m}. The SoD constraint s2 is satisfied
if uk,n1+1 62 {uk,1, uk,2, . . . , uk,n1}. That is, for every
execution of the workflow’s outer loop, s2 separates the
duties between users who execute t1 and those who execute
t2. Finally, s3 is satisfied if uk,n1 6= uk,n1+1. Thus, in every
execution of the workflow’s outer loop, only the user who
executes the last instance of t1 must be different from the
user who executes t2. It follows that a workflow instance that
satisfies s1 also satisfies s2 and s3. Moreover, an instance
satisfying s2 also satisfies s3. ⇧

3) BoD Constraints: Assume we want to bind duties
between a set of tasks T . At first, every user is authorized
to execute all tasks. Once a user has executed an instance of
a task in T , no other user is authorized to execute instances
tasks in T anymore. Again we use release points to scope
BoD constraints to subsets of task instances.

For a non-empty set of tasks T , |T | � 1, and a set of
points O, a BoD constraint is a tuple (T,O).

Definition 5 (BoD Process) For a BoD constraint b =

(T,O), the BoD process for b is the process Ab(U) where

Ab(U) = t : T.u : U ! Ab({u})
⇤ o : O ! Ab(U)
⇤ t : T \ T.u : U ! Ab(U)

⇤ o : O \O ! Ab(U)

⇤ SKIP .

The BoD process Ab(U) offers the external choice be-
tween five kinds of events. (1) It engages in every execution
event t.u for t 2 T and u 2 U . Initially U = U . Once
a user u executes a task in T , U is updated to {u}. Only
after engaging in one of the release points in O are users
other than u authorized to execute tasks in T again. Thus,
for t 2 T , executing t.u “binds” u to T until (2) an o 2 O
is reached and u is released. In particular, for |T | = 1 the
respective BoD constraint binds the duties of all instances
of a single task. Similar to SoD processes, Ab(U) engages
(3) in every execution event involving tasks other than those
in T , (4) points other than the ones in O, and (5) may behave
like SKIP and terminate at any time.

As with SoD constraints, we visualize BoD constraints
in BPMN by linking a non-empty set of tasks and a set of
release event with a dotted line, joined by a node labeled
with the symbol “=”. We may also use the shorthand nota-
tion introduced for SoD constraints. For example, Figure 3
contains the BoD constraint b = ({t3, t4}, o3). Similar to
SoD processes, the placement of release points with respect
to a workflow process effects the semantics of a BoD
constraint.

4) Constraint Composition: For a user-task assignment
UT , a set of SoD constraints S, and a set of BoD constraints
B, we call the triple (UT , S,B) an authorization policy. We
define the semantics of authorization policies by composing
the respective static authorization process and the sets of
SoD and BoD processes.

Definition 6 (Authorization Process) For an authorization
policy � = (UT , S,B), the authorization process for � is
the process

A� = AUT k (k
s2S

As) k (k
b2B

Ab) .

Figure 6. Location matters: The placement of a release point effects the semantics of the respective SoD constraint

Given a workflow trace i and an authorization policy
� = (UT , S,B). We say i satisfies � if i 2 T(A�). By the
trace semantics of CSP, i satisfies � if and only if i satisfies
UT , all SoD constraints in S, and all BoD constraints in B.
We say � is an authorization policy for a workflow process
W if all tasks and points in � appear in W . Furthermore,
we call a workflow whose execution is constrained by an
authorization policy an authorization-constrained workflow.
In the following example, we provide an authorization policy
for the collateral evaluation workflow.

Example 4 (Authorization Policy) Consider the authoriza-
tion policy � = (UT , S,B), where UT is illustrated in
Figure 5 and S = {s1, s2} and B = {b} are illustrated in
Figure 3. Furthermore, consider the traces i2, i3, and i4 of
Example 2, which model successfully terminated instances
of the collateral evaluation workflow. Trace i2 does not
satisfy � because Alice executed t1 and t2 before reaching
o1, thereby violating s1. Trace i3 does not satisfy � for
several reasons: s2 is violated because Claire executed t2
and t5, b is violated because t3 and t4 are not executed by
the same user, and UT is violated because Claire is statically
not authorized to execute t5. However, i4 satisfies �. ⇧

IV. ENFORCING AUTHORIZATION POLICIES

We now explain how to enforce authorization policies at
the task-execution level without changing the workflow at
the control-flow level.

A. Obstruction
We link the control-flow and task-execution level by the

notion of obstruction.

Definition 7 (Obstruction) Let W be a workflow process,
� an authorization policy, and i 2 T(W [⇡�1

]) a workflow
trace of W . We say that i is obstructed if there exists a task
t such that i[⇡]̂ t 2 T(W) but there does not exist a user u
such that î ht.ui satisfies �.

An obstruction describes a state of a workflow instance
where the enforcement of the authorization policy conflicts
with the business objectives. At the control-flow level, the
business objectives can be achieved by executing a task t but
at the task-execution level there is no user who is authorized
to execute t without violating the authorization policy �.

Example 5 (Obstructed Workflow Trace) Consider the
workflow process W and the authorization policy � in-
troduced in Examples 1 and 4, respectively. Furthermore,
consider the workflow trace i = ht1.Alice, t2.Claire, t3.Dave,
t4.Davei, modeling an instance of the collateral evaluation
workflow, i.e. i 2 T(W [⇡�1

]). After executing the work-
flow instance corresponding to i, task t5 can be executed
according to the collateral evaluation workflow, i.e. i[⇡]̂ t5 2
T(W). However, the only users who are statically authorized
to execute t5 with respect to UT are Alice and Dave, but

neither î ht5.Alicei nor î ht5.Davei satisfy �. Hence, i is
obstructed. In this example, the workflow instance cannot
even successfully terminate without violating �. ⇧
B. Enforcement Processes

We describe the enforcement of an authorization policy on
a workflow process W in terms of a process E that executes
in parallel to W [⇡�1

], formally W [⇡�1
] k E.

Definition 8 (Enforcement Process) For a workflow process
W and an authorization policy � for W , an enforcement
process for � on W , written E�,W , is a process that satisfies
the conditions

1) A� vT E�,W and
2) (W [⇡�1

] k E�,W)[⇡] =F W .

Unlike the authorization process, the enforcement process
not only implements the authorization policy � but also takes
W into account. Condition 1 states that E�,W is at least as
restrictive as A�. The failure equivalence used in Condition 2
states that at the control-flow level the processes W and W
constrained by E�,W are indistinguishable.

Suppose E�,W is an enforcement process for � on W .
By CSP’s trace semantics, if i 2 T(W [⇡�1

] k E�,W)

then i 2 T(W [⇡�1
]) and i 2 T(E�,W). It follows that i

satisfies � by Condition 1. Due to the failure equivalence
of (W [⇡�1

] k E�,W)[⇡] and W , i.e. Condition 2, i is not
obstructed. Hence, E�,W is an obstruction-free enforcement
of � on W .

We now give an example of an enforcement process for
the authorization-constrained collateral evaluation workflow.

Example 6 (Enforcement Process) Consider W and � from
the previous examples and the following processes.

E = (E1 ||| E2) ; (t5.Dave! ((o2 ! E) u SKIP))

E1 = t1.Alice! t2.Claire! ((o1 ! E1) u SKIP)

E2 = o3 ! t3.Bob! ((t4.Bob! SKIP) u SKIP)

All traces of E satisfy � and therefore Condition 1 of
Definition 8 holds. By the laws of CSP and the structure of
E, (W [⇡�1

] k E)[⇡] = W [⇡�1
][⇡] k E[⇡] = W k W = W

and therefore Condition 2 holds too. Therefore, E is an
enforcement process for � on W . ⇧

For illustration purposes, this example is rather simple in
that all instances of the same task must be executed by the
same user, for example Alice is the only user who executes
instances of t1. Enforcement processes can, of course, be
much more complex and also authorize multiple users to
execute instances of the same task.

According to Definition 8, an authorization policy is only
enforceable if a workflow remains unchanged at the control-
flow level. This is a design decision and other options are
possible. For example, one could choose to give autho-
rizations precedence over an obstruction-free enforcement.

However, even if the policy must be enforced and obstructed
workflow instances are tolerated, our approach is helpful
because it reveals tasks that may not be executed. The
workflow can consequently be simplified without reducing
the set of possible workflow instances.

C. The Enforcement Process Existence Problem
We now formulate the existence of an enforcement pro-

cess as a decision problem and present complexity bounds.

Definition 9 (Enforcement Process Existence Problem EPE)
Given: A workflow process W and an authorization policy �.
Output: YES if there exists an enforcement process for � on
W and NO otherwise.

We first show that EPE is NP-hard by reducing the NP-
hard graph-coloring problem k-COLORING, summarized in
Appendix B, to EPE.

Lemma 1 EPE is NP-hard.

Proof: Given a k-COLORING instance consisting of
a graph G = (V,E) and an integer k, we describe a
polynomial reduction to EPE. We construct a workflow
process W and an authorization policy � = (UT , S,B)

and show that there exists a k-coloring for G if there
exists an enforcement process for � on W . Let T = V ,
for V = {v1, v2, . . . , vn}, and U = {1, 2, . . . , k}. Now
consider W = v1 ! v2 ! . . . ! vn ! SKIP ,
UT = U ⇥ T , B = ?, and for every edge (vl, vm) 2 E we
construct an SoD constraint (vl, vm,?). Figure 7 illustrates
this construction for a graph with n = 5 and k = 4.

Figure 7. Illustration of polynomial reduction from k-COLORING to EPE

By the construction of W , h = hv1, v2, . . . , vn,Xi 2
T(W). If an algorithm for EPE returns YES, then
an enforcement process E�,W exists by Definition 9
and h 2 T((W [⇡�1

] k E�,W)[⇡]) by Definition 8.
It follows that there exists a workflow trace i =

hv1.u1, v2.u2, . . . , vn.un,Xi 2 T(W [⇡�1
] k E�,W). By

our construction, uj 2 {1, . . . , k}, for j 2 {1, . . . , n}.
Therefore, every task (i.e. node) is executed exactly once
and thus associated with one of k users (i.e. colors). By
Definition 8, i 2 T(A�) and i satisfies every constraint in �.
Therefore, for every SoD constraint (vl, vm,?) in S, the
user ul who executes vl is different from the user um who
executes vm. Hence, i describes a k-coloring for G. Because
this reduction is in polynomial time, it follows that EPE is
NP-hard.

We do not know whether EPE is in NP. However, it is
decidable when U and W are finite.
Theorem 1 EPE is decidable if U and W are finite.

We sketch a proof here and give full details in Ap-
pendix C.

If U and W are finite, it follows that A� is finite too
by Definitions 3–5 and the operational semantics of CSP.
If there is an enforcement process E�,W , it must satisfy
the two conditions of Definition 8. Because A� is finite,
for every process C, such that A� vT C, there is a finite
labelled transition system that corresponds to C. We can
therefore construct all processes C that are candidates
to be E�,W with respect to Condition 1. Let C be one
of them. Because W and U are finite, so is W [⇡�1

].
Furthermore, (W [⇡�1

] k C)[⇡] is finite because ⇡ and C
are finite. Because failure-refinement is decidable for finite
processes [13], we can check if C satisfies Condition 2, i.e.
if (W [⇡�1

] k C)[⇡] =F W . If C satisfies Condition 2, then
C is an enforcement process for � on W . If none of the
finitely many candidate processes C satisfies Condition 2,
then there exists no enforcement process for � on W . ⇤

The runtime complexity of solving EPE as sketched
above is as follows. For an SoD constraint s, consider
the SoD process As. The number of states of a transition
system that corresponds to As is in O(2

|U|
) because As is

parametrized by two subsets of U and there is a state for
every possible subset. The number of states of a transition
system corresponding to Ab, for a BoD constraint b, is
linear in the size of U . The number of states of a transition
system corresponding to AUT , for an user-task assignment
UT , is constant. Let � = (UT , S,B). By Definition 6
and the operational semantics for the parallel, synchronized
composition of two processes (see Definition 12 in Ap-
pendix A), it follows that the number of states of a transition
system corresponding to A� is in O(|U||B|

2

|S||U|
). The set

of input symbols of a transition system corresponding to
A� is (X [O)

X. Therefore, the number of transitions is in
O((|O|+ |T ||U|)|U|2|B|

2

2|S||U|
).

The above decision procedure checks for each transition
system that has a subset of A�’s transitions whether it
satisfies Condition 2 of Definition 8. This requires decid-
ing failure equivalence which is PSPACE-complete [13].

Thus, this approach has a runtime complexity that is double
exponential in the number of users and constraints. Hence,
it is not applicable to workflows with large sets of users. We
therefore propose approximation algorithms for EPE in the
following section.

V. APPROXIMATIONS

We first present an approximation algorithm for EPE,
called EPEA, with an exponential runtime complexity. Af-
terwards, we show how to approximate EPE in polynomial
time, using bounds from graph-coloring.

EPEA, illustrated in Algorithm 1, takes an instance of
EPE as input and returns either a relation or NO. EPEA is
an approximation in that it may return NO even though an
enforcement process for the given input exists. However, if
EPEA returns a relation, this relation can be transformed to
an enforcement process for the given EPE instance.

Algorithm 1: EPEA(T,�)

Input: T and � = (UT, S,B)

Output: returns a relation R ✓ ⇡�1 or NO
1 if T = ? then
2 return ?
3 else
4 colL LCOL(CGRAPH(T,�))
5 if CGRAPH or LCOL return NO then
6 return NO

7 else
8 return {(t, t.u) | (T 7! u) 2 colL, t 2 T}

In more detail, EPEA composes CGRAPH and LCOL.
CGRAPH, given in Algorithm 2, transforms the tasks of a
workflow process W , i.e. T = {t 2 T | 9i 2 T(W), t 2 i},
and an authorization policy � = (UT , S,B) to an instance
of the LISTCOLORING problem. LISTCOLORING is a
generalization of the well-known k-COLORING problem.
A review of these problems and graph-coloring terminology
is given in Appendix B. CGRAPH returns either V , E, and
L, where (V,E) is a graph and L : V ! 2

U is a list-
coloring function for (V,E), or NO. The vertices in V are

Figure 8. Constraint graph of the collateral evaluation workflow

sets of tasks of W . Every task of W is contained in one
vertex. The BoD constraints B define which sets of tasks
form vertices, UT defines L, and the edges correspond to
the SoD constraints in S.

CGRAPH returns NO if W contains two tasks t1 and t2
whose execution is constrained by an SoD constraint in S
and if there is a subset of BoD constraints in B that bind
the duties between t1 and t2.

Algorithm 2: CGRAPH(T,�)

Input: T and � = (UT, S,B)

Output: returns a graph (V,E) and a list coloring
function L : V ! 2

U or NO
1 V,E, L ?
2 foreach t 2 T do
3 V V [{{t}}
4 L L [{({t} 7! {u | (u, t) 2 UT})}
5 foreach (T1, O) 2 B do
6 pick a t1 2 T1

7 let v1 2 V s.t. t1 2 v1
8 foreach t2 2 T1 \ {t} do
9 let v2 2 V s.t. t2 2 v2

10 V (V \ {v1, v2}) [{v1 [v2}
11 L (L \ {(v1 7! L(v1)), (v2 7! L(v2))}) [

{(v1 [v2 7! L(v1) \ L(v2))}
12 foreach (T1, T2, O) 2 S do
13 foreach t1 2 T1 do
14 let v1 2 V s.t. t1 2 v1
15 foreach t2 2 T2 do
16 let v2 2 V s.t. t2 2 v2
17 if v1 6= v2 then
18 E E [{(v1, v2)}
19 else
20 return NO

21 return V , E, L

Example 7 (Graph Returned by CGRAPH) Figure 8 illus-
trates the graph and the list coloring function L returned by
CGRAPH for the tasks of the collateral evaluation workflow
and our example authorization policy �. ⇧

LCOL is a standard algorithm for solving LISTCOLOR-
ING. In Appendix B, we described LCOL in detail and prove
its correctness and completeness. EPEA first transforms
its input to a LISTCOLORING instance using CGRAPH.
Afterwards, it solves the instance using LCOL. Finally, it
transforms the coloring returned by LCOL to a relation
between tasks and execution events and returns this relation.
If CGRAPH does not succeed in building a graph or LCOL
does not find a coloring, then EPEA returns NO.

Lemma 2 Let W be a workflow process, T = {t 2 T | 9i 2
T(W), t 2 i}, and � an authorization policy. If EPEA(T,�)
returns a relation R, then W [R] is an enforcement process
for � on W .

Proof: Assume a workflow process W , let T =

{t 2 T | 9i 2 T(W), t 2 i}, and � = (UT , S,B)

be an authorization policy. Assume EPEA(T,�) returns a
relation R. We refer to a line i of CGRAPH as CGi and to
line i of EPEA as EAi.

If T = ?, then W does not engage in any task and R = ?
by EA2. Because � is an authorization policy for W and
W contains no tasks, UT = ?, S = ?, and B = ?. It
follows that A� = AUT . Therefore, A� engages in every
point and X, by Definition 3. It follows that AUT vT W ,
i.e. Condition 1 of Definition 8 holds. By the trace se-
mantics of CSP and because W does not engage in tasks,
(W [⇡�1

] kW [?])[⇡] =F (W kW)[⇡] =F W [⇡] =F W , i.e.
Condition 2 of Definition 8 holds.

Assume T 6= ?. Because EPEA returns a relation and
T 6= ?, CGRAPH(T,�) returns a graph (V,E) and a func-
tion L by EA1, EA4, and EA5. Furthermore, LCOL(V,E, L)
returns a coloring colL by EA4 and EA5. Because T 6= ?
and by CG2, CG3, and CG10, V � 1. It follows from
Lemma 4 in Appendix 4 that colL is an L-coloring for
(V,E). Let t 2 T . By CG2, CG3, and CG10, there is exactly
one vertex v 2 V such that t 2 v. Therefore, there is exactly
one tuple (t, t.u) 2 R by EA8, for a user u.

Let i 2 T(W [R]). In the following, we show for every
constraint c 2 ({UT} [S [B) that i ˆht.ui 2 T(Ac). By
Definitions 3–5, also i ĥoi 2 T(Ac), for o 2 O, and i ĥXi 2
T(Ac). It follows that A� vT W [R], i.e. Condition 1 of
Definition 8 holds.

Case UT : Let v 2 V such that t 2 v. By EA8, u =

colL(v). By the definition of L-coloring, colL(v) 2 L(v).
By CG4 and CG11, L(v) ✓ {u0 | (u0, t) 2 UT}. Hence,
(u, t) 2 UT and iˆht.ui 2 T(AUT) by Definition 3.

Case s 2 S: Let s = (T1, T2, O). If t 62 (T1 [T2) then
i ˆht.ui 2 T(As) by Definition 4. Consider the case t 2
(T1 [T2). Because (T1 \ T2) = ? by the definition of SoD
constraints, assume without loss of generality that t 2 T1.
Let t2 2 T2 and (t2, t2.u2) 2 R, for a user u2. Furthermore,
let v1, v2 2 V such that t 2 v1 and t2 2 v2. By CG12–CG18,
(v1, v2) 2 E. By the definition of L-coloring, colL(v1) 6=
colL(v2) and therefore u 6= u2 by EA8. Because there is
only one execution event in R for every task, t2.u 62 i and
therefore iˆht.ui 2 T(As) by Definition 4.

Case b 2 B: Let b = (T1, O). If t 62 T1 then i ˆht.ui 2
T(Ab) by Definition 5. Consider the case t 2 T1. Let t2 2 T1

and (t2, t2.u2) 2 R for a user u2. Let v 2 V such that t 2 v.
By CG5–CG11 it holds that t2 2 v. By EA8 it follows that
u = u2. Therefore, no matter whether t2.u2 2 i or t2.u2 62 i,
iˆht.ui 2 T(Ab) by Definition 5.

It remains to be shown that W [R] satisfies Condition 2

of Definition 8. By CSP’s semantics and because R ✓ ⇡�1,
(W [⇡�1

] kW [R])[⇡] =F W [R][⇡] =F W .

A. Polynomial Approximation
By applying graph-coloring bounds to the graph returned

by CGRAPH, we can approximate EPE in polynomial time.

Corollary 1 For a workflow process W and an authoriza-
tion policy �, let T = {t 2 T | 9i 2 T(W), t 2 i} and
(V,E, L) = CGRAPH(T,�). If

max

v2V
|{v0 | (v, v0) 2 E}| < min

v2V
|L(v)|

then there exists an enforcement process for � on W .

Proof: Let W be a workflow process, � an authorization
policy, T = {t 2 T | 9i 2 T(W), t 2 i}, and (V,E, L) =
CGRAPH(T,�). Then maxv2V |{v0 | (v, v0) 2 E}| is the
maximal degree �(V,E) of (V,E). Furthermore, let k =

minv2V |L(v)|, i.e. L is a k-color-list function for (V,E).
Assume that �(V,E) < k. By Lemma 3 in Appendix B
it follows that �l(V,E) k. Therefore, there exists an L-
coloring for (V,E). Hence, EPEA(T,�) returns a relation
R and, by Lemma 2, W [R] is an enforcement process for
� on W .

Informally, Corollary 1 tells us the following. If the
maximal number of SoD constraints under which a task
is constrained is less than the minimal number of users
who are authorized both statically and with respect to the
BoD constraints to execute a task, then there exists an
enforcement process. Said more simply, there exists an
enforcement process if the set of users is large and their
static authorizations are well-distributed.

Assume a workflow process W and an authorization
policy �. The algorithm CGRAPH computes (V,E, L) in
polynomial time or returns NO. We can then check if the
condition of Corollary 1 holds for V , E, and L. If it holds,
we only know that an enforcement process for � on W exists
but E�,W is not constructed yet. However, by Lemma 3
and because the condition of Corollary 1 holds, a greedy
algorithm with polynomial runtime complexity finds an L-
coloring for (V,E). We can therefore replace the call to
LCOL in EPEA by a call to the greedy algorithm. It follows
that we can approximate EPE in polynomial time.

VI. RELATED WORK

Schneider formalized the concept of a security automa-
ton, which is an enforcement monitor that is composed
with an insecure system and checks whether commands
are authorized prior to their execution [16]. Security au-
tomata, however, are limited in that preventing unauthorized
commands either causes the target system to terminate
or requires exception handling to be part of the security
automaton as well as the target system. To overcome this
limitation, several extensions to security automata, such as
edit automata [10], have been proposed. We follow another

direction by incorporating knowledge about the system’s
control-flow, given by a workflow, into the enforcement
monitor. Our approach uses this additional information to
enforce authorization policies while preserving all of the
target system’s options as defined by the workflow.

An authorization policy is sometimes, e.g. [2,18], called
satisfiable with respect to a workflow if there exists an
assignment of users to tasks that does not violate the
policy. Our approximation algorithm determines such an
assignment for the enforcement process. In general, however,
enforcement processes are more expressive in terms of the
authorization policies they support than a static assignment
of users to tasks. This is also reflected in Solworth’s notion
of “unscheduled approvability” requiring that every work-
flow instance can be extended to a final state no matter
which path is taken [17]. The business process community
has gone one step further in defining what constitutes a
well-formed workflow model. Van der Aalst [19] calls a
workflow sound if it has no dead transitions and it does not
deadlock before completing its final task. Obstruction-free
authorization enforcement on sound workflows guarantees
that the workflow will always successfully terminate and
thus achieves its business objectives.

Early work on authorization constraints, such as the
Transaction Control Expressions proposed by Sandhu [15],
model workflows only as part of the constraints, for example
by stating how often a task must be executed. Bertino,
Ferrari and Atluri were the first to model workflows ex-
plicitly, defining workflows as sequences of tasks. In their
model, constraints on task executions are given by clauses
in a logic program [2]. Later Tan, Crampton and Gunter
refine a workflow to be a partially ordered set of tasks
and explicitly define workflow and task instances [18].
Authorization constraints are given for pairs of tasks in terms
of relations over users that must be satisfied when executed.

The above and most other work on the enforcement
of constraints ignore conditions, loops and parallelism in
workflows. A notable exception is Solworth [17], who
models a workflow as a directed graph. However, constraints
in the presence of loops are restricted such that the first
task (“consuming” a user) must always be executed by
the same person. Given a sufficient number of users per
task, these restriction ensure that a workflow can always
be completed when there are no conflicts between SoD and
BoD constraints. The graph transformation used in CGRAPH
is inspired by Solworth’s conflict graph [17].

We do not impose restrictions, either on workflows or
on constraints. Furthermore, to our knowledge, there is no
other work related to our concept of release. By introducing
release points into workflows, we support the fine-grained
control of constraints in the presence of loops, scoping
authorization constraints to subsets of task instances. Con-
straints with release points extend previous work on security-
annotated graphical workflow models [20]. In addition, we

give a formal semantics such that no workflow created by
parallel and conditional task execution introduces ambiguity.

VII. CONCLUSIONS

We have presented a new approach to aligning security
and business objectives for information systems. Using CSP,
we modeled a system at two levels of abstraction: the
control-flow level modeling the system’s business objectives,
and the task-execution level modeling who executes which
task. We bridged these levels by the notion of obstruction
which generalizes deadlocks. Furthermore, we presented
a novel approach to scope SoD and BoD constraints to
subsets of task instances using release points. Our formalism
thereby generalizes existing SoD and BoD specification
languages that separate and bind duties between all instances
of constrained tasks. We showed how to visualize our con-
straints by extending a well-established workflow modeling
language. We thus maintain the intuition and visual appeal of
graphical modeling languages, making it easier for business
process designers and security administrators to cooperate
in specifying and aligning security and business objectives.

Our work gives rise to many interesting questions. For
example, given a workflow process W and an authoriza-
tion policy �, many processes may meet the conditions
of an enforcement process for � on W as required by
Definition 8. This raises the question of what constitutes
a “good” enforcement process. One idea is to search for an
enforcement process E�,W such that T(A�) \ T(E�,W) is
minimal. In other words, one that maximizes the number
of authorized execution events and thereby minimizes the
restrictions enforced at the task-execution level.

With our enforcement process definition, we require
obstruction-freedom and allow the enforcement to be more
restrictive than specified by the respective authorization
process. The preservation of a workflow at the control-
flow level is therefore given priority over allowing every
authorized task execution. Other designs are possible and
remain to be investigated.

We would like to sharpen our complexity analysis for
EPE, ideally finding upper-bounds that match the lower-
bounds we have given.

Finally, we are currently building prototype tool support
for our approach by extending the BPMN meta-model with
our SoD and BoD constraint language and adapting an
existing BPMN modeling tool to support this extension
and our approximation algorithm. Through realistic case
studies, we hope to better understand the performance of
our approximation algorithm in practice.

Acknowledgments: We thank Vincent Jugé, Felix
Klaedtke, Dominik Rüegger, Mohammad Torabi Dashti, and
the anonymous reviewers for their helpful comments. The
research leading to these results has received funding from
the European Community’s Seventh Framework Programme

(FP7/2007-2013) under grant agreement N� 216917. This
work is partially supported by the EU FP7-ICT-2009.1.4
Project N� 256980, NESSoS: Network of Excellence on
Engineering Secure Future Internet Software Services and
Systems.

REFERENCES

[1] “Sarbanes-Oxley Act of 2002”. Public Law 107-204
(116 Statute 745), United States, 2002.

[2] E. Bertino, E. Ferrari, and V. Atluri, “The specification
and enforcement of authorization constraints in workflow
management systems,” ACM Transactions on Information and
System Security (TISSEC), vol. 2, no. 1, pp. 65–104, 1999.

[3] G. Chartrand and P. Zhang, Chromatic Graph Theory,
Ser. Discrete Mathematics and Its Applications. Chapman &
Hall, 2008.

[4] D.F. Ferraiolo, R.S. Sandhu, S.I. Gavrila, D.R. Kuhn, and
R. Chandramouli, “Proposed NIST Standard for Role-Based
Access Control,” ACM Transactions on Information and
System Security (TISSEC), vol. 4, no. 3, pp. 224–274, 2001.

[5] Formal Systems (Europe) Ltd, “Failures-Divergence Refine-
ment - FDR2 User Manual,” www.fsel.com, 2005.

[6] V.D. Gligor, S.I. Gavrila, and D. Ferraiolo, “On the Formal
Definition of Separation-of-Duty Policies and their Compo-
sition,” in 19th IEEE Symposium on Security and Privacy
(S&P ’98), 1998, pp. 172–183.

[7] IBM Corporation, “WebSphere Process Server v6.2,”
www.ibm.com/software/integration/wps/, 2009.

[8] ——, “IBM Information Framework (IFW),” www.ibm.com/
software/industry/banking, 2010.

[9] IT Governance Institute, “Control objectives for information
and related technology (Cobit) 4.1,” 2005.

[10] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: en-
forcement mechanisms for run-time security policies,” In-
ternational Journal of Information Security, vol. 4, no. 1-2,
pp. 2–16, 2005.

[11] Object Management Group (OMG), “Business Process
Model and Notation (BPMN), version 2.0,” OMG Standard,
http://www.omg.org/spec/BPMN/2.0/PDF, 2011.

[12] F. Puhlmann and M. Weske, “Using the ⇡-calculus
for formalizing workflow patterns,” in 3rd International
Conference on Business Process Management (BPM ’05),
2005, pp. 153–168.

[13] A.W. Roscoe, “Model-checking CSP,” A classical mind.
Prentice Hall, pp. 353–378, 1994.

[14] ——, The theory and practice of concurrency. Prentice
Hall, 2005.

[15] R.S. Sandhu, “Transaction control expressions for separation
of duties,” in 4th IEEE Aerospace Computer Security
Applications Conference, 1988, pp. 282–286.

[16] F.B. Schneider, “Enforceable security policies,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 3,
no. 1, pp. 30–50, 2000.

[17] J.A. Solworth, “Approvability,” in ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS
’06), 2006, pp. 231–242.

[18] K. Tan, J. Crampton, and C.A. Gunter, “The consistency of
task-based authorization constraints in workflow systems,” in
17th IEEE Computer Security Foundations Workshop (CSFW
’04), 2004, pp. 155–169.

[19] W.M.P. van der Aalst, “The application of Petri nets to
workflow management,” Journal of Circuits, Systems, and
Computers (JCSC), vol. 8, no. 1, pp. 21–66, 1998.

[20] C. Wolter, A. Schaad, and C. Meinel, “Task-based entailment
constraints for basic workflow patterns,” in 13th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT
’08), 2008, pp. 51–60.

[21] P.Y.H. Wong and J. Gibbons, “A process-algebraic approach
to workflow specification and refinement,” in 6th Interna-
tional Symposium on Software Composition (SC ’07), 2007,
pp. 51–65.

APPENDIX

A. CSP
A labelled transition system (LTS) is a quadruple

(Q,C, �, q0), where Q is a set of states, C is a set of input
symbols, � ✓ Q⇥C⇥Q is a nondeterministic state transition
relation, and q0 2 Q is a start state. For n � 1, q0, qn 2 Q,
and a sequence of events h�1, . . . ,�ni 2 C⇤, we write
q0

h�1,...,�ni�! qn if there exists a set of states {q1, . . . , qn�1}
such that (qk�1,�k, qk) 2 � for all k 2 {1, . . . , n}.

CSP’s operational semantics interprets a process as an
LTS where the input symbols correspond to the events
that the process engages in, i.e. C ✓ ⌃

⌧,X. Let L =

(Q,⌃⌧,X, �, q0). For q0, qn 2 Q and a trace i 2 ⌃

⇤X,
we write q1

i
=) q2 if there exists a sequence of events

h 2 (⌃

⌧
)

⇤X such that q1
h�! q2 and i is equal to h without

⌧ events.
Let q1 2 Q be a state and C ✓ ⌃

⇤X a set of events.
The set C is a refusal set of q1, written q1 ref C, if C ✓
{� 2 ⌃

X | ¬9q2 2 Q, (q1,�, q2) 2 �}. We say an LTS
L = (Q,⌃⌧,X, �, q0) corresponds1 to a process P if

F(P) = {(i, C) | 9q2 2 Q, q1
i

=) q2, q2 ref C} [
{(i, C) | 9q2 2 Q, q1

î hXi
=) q2, C ✓ ⌃

X} .
Note that there may be multiple LTSs that correspond to
the same process. We write LP for an LTS that corresponds
to P .

1The CSP-versed reader may have realized that we omit a discussion of
divergence. We implicitly assume that workflow processes are divergence
free. Our renaming relations and authorization processes do not introduce
divergence.

B. Graph Coloring
A graph G is a tuple (V,E) where V is a set of vertices

and E ✓ V ⇥V is a set of (undirected) edges. The maximal
degree of a graph G, denoted �(G), is maxv2V |{v0 2
V | (v, v0) 2 E}|, i.e. the maximal number edges linking a
vertex to other vertices.

Definition 10 (The k-COLORING problem)
Given: A graph G = (V,E) and an integer k 2 N.
Output: YES if there exists a function col : V ! {1, . . . , k}
such that for every edge (v1, v2) 2 E, col(v1) 6= col(v2)
and NO otherwise.

Let a graph G and an integer k be given. We call a
function col a k-coloring for G if col satisfies the condition
described in the k-COLORING problem for G and k. The
k-COLORING problem is NP-complete [3]. The following
problem generalizes of k-COLORING.

Definition 11 (The LISTCOLORING problem)
Given: A graph G = (V,E) and a function L : V ! 2

C ,
for a set C.
Output: YES if there exists a function colL : V ! C such
that for every vertex v 2 V , colL(v) 2 L(v) and for every
edge (v1, v2) 2 E, colL(v1) 6= colL(v2) and NO otherwise.

Unlike k-COLORING, LISTCOLORING does not offer
the same set of colors for every vertex; for each vertex v,
the colors must be chosen from a “list” of colors L(v) ✓ C.
Note, for historical reasons, what is called a list is actually
a set. For consistency with the literature, we stick to the
term list. Given a graph G and a color-list function L, we
call a function colL an L-coloring for G if colL satisfies the
condition described in Definition 11. We call L a k-color-
list function if |L(v)| � k, for all v 2 V . Given a graph G,
the smallest integer k, such that G is L-colorable for all
k-color-list functions L, is called G’s list-chromatic number
and is denoted �l(G). The maximal degree of a graph gives
us an upper bound for the list-chromatic number.

Lemma 3 For every graph G,

�l(G) 1 +�(G)

and a greedy algorithm for graph coloring with polynomial
runtime finds an L-coloring for G for every (1 + �(G))-
color-list function L.

The definition of greedy algorithms for graph coloring is
standard, e.g. see [3]. See also [3] for a proof of Lemma 3.

LISTCOLORING generalizes k-COLORING because a k-
COLORING instance can be translated to a LISTCOLOR-
ING instance by setting C = {1, . . . , k}, and L(v) = C,
for every v 2 V . Since a solution to the LISTCOLORING
problem can be checked in polynomial time, LISTCOLOR-
ING is also NP-complete. Algorithm 3, called LCOL, solves
LISTCOLORING in exponential time.

Algorithm 3: LCOL(V,E, L)

Input: |V | � 1, E ✓ V ⇥ V , and L : V ! 2

C , for a
set C

Output: returns an L-coloring for (V,E) if it exists,
NOotherwise

1 if V = {v} then
2 if |L(v)| � 1 and (v, v) 62 E then
3 let c 2 L(v)
4 return {v 7! c}
5 else
6 return NO

7 else
8 let v 2 V
9 if (v, v) 2 E then

10 return NO

11 foreach c 2 L(v) do
12 V 0 V \ {v}
13 E0 {(v1, v2) 2 E | v1 6= v, v2 6= v}
14 L0 ?
15 foreach v0 2 V 0 do
16 if (v, v0) 2 E then
17 L0 L0 [{(v0 7! L(v0) \ {c})}
18 else
19 L0 L0 [{(v0 7! L(v0))}
20 return r LCOL(V 0, E0, L0

)

21 if r 6= NO then
22 r [{(v 7! c)}
23 return NO

Lemma 4 Let a graph G = (V,E), with |V | � 1, and a
color-list function L : V ! 2

C , for a set C be given.
• Correctness: If LCOL(V,E, L) returns a coloring colL,

then colL is an L-coloring for G.
• Completeness: If there exists an L-coloring for G, then

LCOL(V,E, L) returns a coloring.

Proof: Let G = (V,E), with |V | � 1, and a color-
list function L : V ! 2

C , for a set C, be given. We
refer to a line i of Algorithm 3 as LCi. We first prove
the correctness property and afterwards the completeness
property of Lemma 4. We prove both cases by induction
over V .

Correctness: Base case: Assume V = {v} and let colL =

{v 7! c} = LCOL({v}, E, L). Therefore, |L(v)| � 1 and
(v, v) 62 E by LC1 and LC2. It follows that E = ? and
colL(v) 2 L(v) because of LC3. Hence, colL is an L-
coloring of G. Step case: Assume |V | � 2 and let v 2 V . Let
G0

= (V 0, E0
), for V 0

= V \{v} and E0 ✓ V 0⇥V 0, and let
L0

: V 0 ! 2

C . Induction hypothesis: if LCOL(V 0, E0, L0
)

returns a coloring colL0 , then colL0 is an L0-coloring for
G0. Assume colL = LCOL(V,E, L). Because |V | � 2,
Algorithm 3 returns at LC22. Let colL = r [{(v 7! c)}.
By LC20, LC21, and the induction hypothesis, r is an
L0-coloring for G0

= (V 0, E0
), for V 0, E0, and L0 as

defined in LC12–LC19. Therefore, colL(v0) 2 L0
(v0) for

all v0 2 V 0 and colL(v1) 6= colL(v2) for all (v1, v2) 2 E0.
Let E00

= E \E0. Because of LC9, (v, v) 62 E00. It follows
by LC13 that for every (v1, v2) 2 E00 either v1 = v or
v2 = v. Without loss of generality assume that v1 = v. It
follows that v2 2 V 0. By LC17, colL(v2) 6= c. Therefore,
colL(v1) 6= colL(v2). Furthermore, colL(v) 2 L(v) by
LC11. Hence, colL is an L-coloring of G. Hence, the
correctness property of Lemma 4 follows.

Completeness: Assume there exists an L-coloring colL
for G. Base case: Assume V = {v}. Because colL is
an L-coloring, colL(v) 2 L(v). Furthermore, colL(v1) 6=
colL(v2) for all (v1, v2) 2 E. Therefore, |L(v)| � 1

and (v, v) 62 E. It follows from LC1 and LC2 that
LCOL({v}, E, L) returns at LC4 with a coloring. Step case:
Assume |V | � 2 and let v 2 V . Let G0

= (V 0, E0
) for

V 0
= V \ {v} and E0 ✓ V 0 ⇥ V 0, and let L0

: V 0 ! 2

C .
Induction hypothesis: if there exists an L0-coloring for G0,
then LCOL(V 0, E0, L0

) returns a coloring. Because |V | � 2,
LCOL(V,E, L) passes through LC8. Let v be the vertex
chosen in LC8 and c = colL(v). Because colL is an L-
coloring for G, for all (v1, v2) 2 E, colL(v1) 6= colL(v2)
and therefore (v, v) 62 E. Hence, LCOL(V,E, L) executes
the for-loop LC11–LC22. Algorithm 3 cannot return NO
before c is chosen in LC11. Let V 0, E0, and L0 as defined
in LC12–LC19. The coloring colL0

= colL \ {(v 7! c)}
is an L0-coloring for (V 0, E0

). Therefore, LCOL(V 0, E0, L0
)

returns a coloring at LC20 by the induction hypothesis.
Hence, LCOL(V,E, L) returns a coloring at LC22. Hence,
the completeness property of Lemma 4 follows.

C. Proofs
1) Theorem 1: The proof of Theorem 1 requires a formal

definition of the parallel, (fully-)synchronized composition
of two processes in terms of the operational semantics of
CSP, which is a standard parallel composition of two non-
deterministic LTSs. Without loss of generality, we assume
now that the set of input symbols to an LTS that correspond
to a process is the set of all events ⌃

⌧,X.
Definition 12 (Operational Semantics of Parallel,
Synchronized Composition) Assume two processes
P1 and P2. Let LP1 = (QP1 ,⌃

⌧,X, �P1 , q
0
P1
) and

LP2 = (QP2 ,⌃
⌧,X, �P2 , q

0
P2
). An LTSs LP1 k P2

=

(QP12 ,⌃
⌧,X, �P12 , q

0
P12

) corresponding to the process
P1 k P2 can be constructed as follows:

• QP12 = QP1 ⇥QP2

• �P12 = {((qP1 , qP2),�, (q
0
P1
, q0P2

))|(qP1 ,�, q
0
P1
) 2 �P1 ,

(qP2 ,�, q
0
P2
) 2 �P2 ,� 2 ⌃

X} [{((qP1 , qP2), ⌧, (q
0
P1
, qP2)) | (qP1 , ⌧, q

0
P1
) 2 �P1 ,

qP2 2 QP2} [{((qP1 , qP2), ⌧, (qP1 , q
0
P2
)) |

(qP2 , ⌧, q
0
P2
) 2 �P2 , qP1 2 QP1}

• q0P12
= (q0P1

, q0P2
)

Proof of Theorem 1: Assume U is finite, let � =

(UT , S,B) be an authorization policy and W a finite work-
flow process. Let LW = (QW ,⌃⌧,X, �W , q0W). Because U
is finite, ⇡�1 maps the finite number of tasks T of W to a
finite number of execution events. We construct a finite LTS
LW [⇡�1] = (QW [⇡�1],⌃

⌧,X, �W [⇡�1], q
0
W [⇡�1]) as follows:

QW [⇡�1] = QW , �W [⇡�1] = {(q1, t.u, q2) | (q1, t, q2) 2
�W , t 2 T , u 2 U} [{(q1,�, q2) | (q1,�, q2) 2 �W ,� 2
(⌃

⌧,X
W \ T)}, and q0W [⇡�1] = q0W . In other words, LW [⇡�1]

is the same LTS as LW except for every transition q1
hti�! q2

in LW , for a task t, there is a set of transitions q1
ht.ui�! q2

in �W [⇡�1], for every user u 2 U .
Consider � = (UT , S,B). Because T and U are finite,

the static authorization process AUT is finite by Definition 3,
every SoD process As, for s 2 S, is finite by Definition 4,
and every BoD process Ab, for b 2 B, is finite by Defi-
nition 5. By Definition 6, A� is the parallel, synchronized
composition of AUT every As, for s 2 S, and every Ab, for
b 2 B. From Definition 12, it follows that A� is finite too.
Let LA� = (QA� ,⌃

⌧,X, �A� , q
0
A�

).
By Condition 1 of Definition 8, an enforcement process

E�,W for � on W must trace refine A�, i.e. A� vT E�,W .
Therefore, if E�,W exists, there exists an LTS LE�,W =

(QE�,W ,⌃⌧,X, �E�,W , q0E�,W
) for QE�,W = QA� , �E�,W ✓

�A� , and q0E�,W
= q0A�

. Because A� is finite, so is �A�

and there is a finite number of LTSs that are candidates
to be LE�,W . It is straightforward to construct a process
from an LTS. Because there are finitely many LTSs, there
is also a finite number of corresponding processes. For each
such process P , we can check if (W [⇡�1

] k P)[⇡] =F W .
Failure equivalence of finite processes is decidable [13], for
example using the CSP model-checker FDR [5]. If none
of the candidate processes P satisfies the check above,
i.e. satisfies Condition 2 of Definition 8, there exists no
enforcement process for � on W .

