Consensus Refined

Ognjen Marié, Christoph Sprenger, and David Basin
Institute of Information Security, Department of Computer Science
ETH Zurich, Switzerland

Abstract—Algorithms for solving the consensus problem are
fundamental to distributed computing. Despite their brevity, their
ability to operate in concurrent, asynchronous, and failure-prone
environments comes at the cost of complex and subtle behaviors.
Accordingly, understanding how they work and proving their cor-
rectness is a non-trivial endeavor where abstraction is immensely
helpful. Moreover, research on consensus has yielded a large
number of algorithms, many of which appear to share common
algorithmic ideas. A natural question is whether and how these
similarities can be distilled and described in a precise, unified
way. In this work, we combine stepwise refinement and lockstep
models to provide an abstract and unified view of a sizeable family
of consensus algorithms. Our models provide insights into the
design choices underlying the different algorithms, and classify
them based on those choices. All our results are formalized and
verified in the theorem prover Isabelle/HOL, yielding precision
and strong correctness guarantees.

I. INTRODUCTION

Distributed consensus is a fundamental problem in dis-
tributed computing: a fixed set of processes must agree on
a single value from a set of proposed ones. Algorithms that
solve this problem provide building blocks for many higher-
level tasks, such as distributed leases, group membership,
atomic broadcast (also known as total-order broadcast or
multi-consensus), and so forth. These in turn provide building
blocks for yet higher-level tasks like system replication. In this
paper, however, our focus is on consensus algorithms proper,
rather than their applications (such as Multi-Paxos [23] or
Zab [21]). Namely, we consider consensus algorithms for the
asynchronous message-passing setting with benign link and
process failures.

Although the setting we consider explicitly excludes mali-
cious behavior, the interplay of concurrency, asynchrony, and
failures can still drive the execution of any proposed consensus
algorithm in many different ways. This makes the consensus
problem not only difficult, but even impossible to solve deter-
ministically [15]. Partial synchrony [14] imposes just enough
constraints on the asynchrony to admit solutions, but still
retains the main features of the fully asynchronous model.
Hence the number of possible executions of an algorithm in
this setting is still immense, making the understanding of both
the algorithms and their correctness non-trivial. This under-
standing can be greatly aided by appropriate abstractions that
simplify the algorithms or the setting, making the development
of such abstractions an appealing research topic.

As examples of work on algorithm simplification, [5],
[6], [9], [26], [32] all provide more abstract descriptions of
Lamport’s seminal Paxos algorithm [22], [23]. Another line of
work [12], [16] provides an abstraction of the asynchronous
(or partially synchronous) setting for the class of algorithms
operating in communication-closed rounds. For this class, the

asynchronous setting is replaced by what is essentially a syn-
chronous model weakened by message loss (dual to strength-
ening the asynchronous model by failure detectors [33]). As
the resulting models provide the illusion that all the processes
operate in lockstep, we refer to them as lockstep models.

More than 30 years of research on consensus has also
yielded a large collection of consensus algorithms. Many of
them appear to share similar underlying algorithmic ideas,
although their presentation, structure, and details differ. A
natural question is whether their similarities can be distilled
and captured in a uniform and generic way, and this has led to
another substantial body of work [17]-[19], [29], [30], [34],
[35]. In the same vein, one may ask whether the algorithms
can be classified by some natural criteria.

Approach Taken

Given the situation outlined above, we see a clear need
for (i) abstraction and simplification and (ii) unification and
classification of consensus algorithms, in order to understand
their essence and relationships. Additionally, as the setting they
operate in is complex, it is necessary that both (i) and (ii) are
addressed in a precise and correct manner. We thus add to our
wish list (iii) precision and correctness guarantees.

We address these issues by combining three elements. First,
we describe consensus algorithms using stepwise refinement.
In this method, we derive an algorithm through a sequence
of models. The initial models in the sequence can describe
the algorithm in arbitrarily abstract terms. In our abstractions,
we describe the system using non-local steps that depend
on the states of multiple processes, removing the need for
communication. These abstractions allow us to focus on the
main algorithmic ideas, without getting bogged down in de-
tails, thereby providing simplicity. We then gradually introduce
details in successive, more concrete models that refine the
abstract ones. In order to be implementable in a distributed
setting, the final models must use strictly local steps, and
communicate only by message passing. The link between the
abstract and concrete models is precisely described and proved
using refinement relations. Furthermore, the same abstract
model can be implemented by different algorithms. This results
in a refinement tree of models, where branching corresponds
to different implementations as illustrated in Figure 1. This
tree captures the relationships between the different consensus
algorithms, found at its leaves, providing a natural classifica-
tion of the algorithms. The use of refinement thus addresses
the points (i) and (ii) raised above.

Second, since the distributed algorithms we derive operate
in communication-closed rounds, we employ lockstep models
to describe these algorithms in a synchronous fashion. This
not only simplifies our models of concrete algorithms, it also

Same Vote

1 2 — T3

Observing Quorums

|

OneThirdRule, Atg

‘ UniformVoting, Ben-Or

New Algorithm, Paxos, Chandra-Toueg

Figure 1.

further increases the abstraction level in our initial models. It
allows our non-local steps to not only depend on, but also
change the state of multiple processes. Hence, this choice
further helps with point (i). Yet our results translate to the
asynchronous setting of the real world, thanks to the preser-
vation result established in [11].

Finally, we have formalized [28] all the models we present
in the theorem prover Isabelle/HOL [31], using the Isabelle
formalization of the Heard-Of model by Debrat and Merz [13].
We used Isabelle to prove the desired properties of our mod-
els and establish refinement relations between them without
assuming any fixed bounds on either the number of processes
or rounds. This provides us with strong guarantees about the
precision and correctness of our results, addressing point (iii).

Related Work

The technique of stepwise refinement is well-known in
the distributed systems community, and has already been
successfully applied to consensus algorithms [8], [25], [26].
Lampson’s refinement-based descriptions [26] of the Paxos
algorithm were even used as blueprints for the consensus
portion of Zab [21]. Somewhat surprisingly, the application of
refinement has been limited to variants of single algorithms,
and there appears to be no work that derives entire families of
different algorithms, as we do here.! Moreover, there is also
no prior work that combines refinement with lockstep models.

The existing work on unifying consensus algorithms [17]—
[19], [29], [30], [34], [35] provides generic algorithms that
can be instantiated with different parameters and primitives.
However, with the exception of [18], these generic algorithms
do not abstract communication away, and thus are significantly
more detailed and complicated than our abstract models.
Furthermore, their scope is limited. They each cover at most
one of our three classes of algorithms (i.e., the leaf nodes in
Figure 1) with the exception of [35] and [34], which, when
limited to benign failures, each cover algorithms from two
classes. Another limitation of these generic algorithms is that
they have limited power to explain the relationships between
the different algorithms. The only classification of algorithms
is offered in [34]. However, it is more technical and less
focused on design choices than ours. Finally, none of these
works have been fully formalized, and they contain numerous
parts with missing proofs or just proof sketches.

Contributions

We see the contributions of our work as follows. First, in
contrast to previous work, our combined use of stepwise re-
finement, lockstep models, and formal modeling and reasoning

Note that van Renesse et al. [36] derive families of replication algorithms
at a higher abstraction layer.

The consensus family tree. Boxes contain models of concrete algorithms.

addresses all three of the above desiderata. The refinement
approach provides a natural framework for the abstraction,
unification, and classification of a variety of algorithms, the
lockstep model additionally increases the abstraction level, and
the formality of our approach provides the desired precision
and correctness guarantees.

Second, our abstract models provide insight into different
classes of consensus algorithms by laying bare the underlying
mechanisms in a clear, simple, and concise way. These models
consist of a single non-deterministic event modeling a round of
the algorithm. The enabling predicates of this event precisely
capture the safety conditions needed to preserve agreement.

Third, the branching points in our refinement tree directly
reflect the design choices behind the different types of al-
gorithms. We classify the algorithms (Figure 1) along three
main branches: (1) algorithms that allow multiple values per
round (OneThirdRule [12] and Ar g [4] are representatives),
(2) algorithms that allow only a single value per round and
depend on waiting and observations (Ben-Or’s algorithm [3]
and UniformVoting [12]) and (3) algorithms that allow only a
single value and require no additional information (Paxos [22]
and the {S-based algorithm of Chandra and Toueg [10]). For
the benign setting, this development includes more algorithms
and algorithm types than any other one presented in the
literature, testifying to the flexibility of our approach.

Finally, while we focus on existing algorithms, we also
derive a new one. Our development provided insights that
allowed us to affirmatively answer a question raised in [12],
asking whether there exists a leaderless consensus algorithm
that requires no waiting to provide safety, while tolerating up
to % process failures.

Outline: In Section II, we provide background on our mod-
eling languages, refinement, and assumptions about failures
and network behavior. We review the consensus problem in
Section III. Sections IV-VIII, which constitute the main part
of our paper, follow the path traced out by Figure 1; each
section covers a single abstract model, together with a sample
concrete algorithm, where applicable. We conclude in Section
IX, where we also discuss the limitations of our approach and
describe future work.

II. SYSTEM SPECIFICATIONS AND REFINEMENT

We introduce generic event-based system specifications and
a notion of refinement akin to [1], [2]. We then show how
we specialize them to model distributed systems, and how we
model failures and network behavior.

A. Event-based Systems

All of our specifications have a semantics in terms of
unlabeled state transition systems 7" = (.S, S°, —), henceforth

simply called systems, where S is a (possibly infinite) set
of states, S° is a (non-empty) subset of initial states, and
— C S x S is a transition relation. We write s — s’ for
transitions (s,s’) € —. For convenience, we specify system
states by a record containing the system’s variables and its
transitions by a set of parameterized events. An event is
specified by a guard and an action. The guard is a predicate
defining when the event is enabled in a state. The action
describes a relation between the source and the target state,
specified as a state update. Here is a prototypical event with
a vector of parameters @, a guard G, and an action that
simultaneously updates the state variables T using the update
functions g, one for each variable in Z:

Event evt(a):
Guard

G(T,a)
Action

T :=g(T,a)

An event evt(@) has a straightforward relational semantics,
denoted by —cq¢(q)- The system’s transition relation — is the
union over all relations induced by the events.

The semantics of a system 7' is given by its set of traces.
A trace is any finite sequence of states from S. We sometimes
view traces as partial functions ¢r : N — S, whose domain
dom(tr) is an initial segment of N. The traces of T, written
traces(T), are those obtained by starting from an initial state
and taking a finite number of steps based on the enabled events.

B. Properties and Refinement

A property is a set of traces. For example, the agreement
property specifies the traces in which no two processes decide
on different values. A system 1" satisfies a given property ¢ if
all its traces are included in the property, i.e., traces(T) C ¢.

Due to their trace semantics, we can also view systems
as properties and relate two systems by relating their sets of
traces. If traces(Tz) C traces(Ty), we say that Ty refines Ty
or conversely, that T} abstracts T>. We call T, the concrete
system and 7} the abstract system. So far, we assumed that
both the system and the property (or the abstract system)
use the same set of states. We can relax this assumption by
providing a relation between two different sets of states. A
system 7' with state set S satisfies a property ¢ over state
set S’ under the relation R C S’ x S if each of its traces
is an image of some trace in the property under R, i.e.,
traces(T) C R(¢), where R(¢) = {7 | 3o € ¢. dom(o) =
dom(t) AVi € dom(o).(0(i),7(i)) € R}. The meaning of
property satisfaction (or refinement) now also depends on the
relation R. It is easy to see that refinement is transitive: if
T5 refines 77 under R;, and T3 refines 75 under Ry, then T3
refines 77 under Ry o Ry. Furthermore, if 7} satisfies some
property ¢, then so do 75 and 73 under the suitable relations.
This allows us to carry out stepwise refinement, producing a
sequence (or a tree) of models. The concrete systems then
immediately satisfy all the properties of the systems they
refine, under suitable relations.

To prove that 75 refines 77 under a relation R C S7 X So,
we employ the standard technique of forward simulation. This
obliges us to prove two things. First, every initial state tY € SY

of the concrete system has a related abstract state s € S such
that (s°,") € R. Second, for every step of the concrete system
T5, that is, any of its events evty(@), the abstract system can
take a related step, i.e., for all s € S; and ¢,t' € Sy such that
(s,t) € Rand t —>evt2@ t’, there exists a state s’ € Sy such
that s —1 s’ and (s',¢') € R. Often, the concrete event will
refine a particular abstract one, and the second proof obligation
will decompose into two parts: (1) guard strengthening, i.e.,
the concrete guard implies the abstract one and (2) action
refinement, i.e., the updated states are also related by R.

Liveness properties are often conditioned on fairness as-
sumptions, that is, they are not required to hold on all traces
but only on those satisfying the fairness assumptions. Such
conditional properties are not preserved by the notion of
refinement introduced. However, we still need to handle them
in our development. For example, termination of consensus,
meaning that every process eventually decides on a value,
often relies on the fairness assumption that each process,
when repeatedly offered the possibility to make a decision,
eventually does so. For simplicity, we avoid extending the
framework and prove termination directly on the concrete
models of our refinement tree (Figure 1).

C. Distributed System Models

The system specifications and refinements described so far
are standard and not specific to distributed systems. We now
specialize them to the distributed setting. In the rest of the
paper, we assume a fixed set II of N processes, and adopt the
convention that p and ¢ range over II, and r over N. In this
section we also assume a set of messages M.

In all our models, the set of states S is the product of local
state sets S, for each process p, and the computation is struc-
tured into rounds where all processes make their transitions
simultaneously, proceeding to the next round. Hence, these
models are lockstep. Since we derive algorithms by stepwise
refinement, we take the liberty of working with two types of
lockstep models with different communication mechanisms,
which give rise to two abstraction levels and associated views:

(1) global view: lockstep models with direct access to all
processes’ states. These models clearly exhibit the central
ideas underlying the algorithms and simplify reasoning
about them, but implementing such models in a distributed
fashion requires further refinement.

(2) local view: lockstep models with message passing commu-
nication, including the possibility of message loss. Note
that this possibility means that they do not correspond to
synchronous distributed system models with known upper
bounds on message delays. These models can directly
serve as a basis for a distributed implementation.

We specify the first type of models directly as event-based
specifications introduced in Section II-A. Guards can refer to
the state variables of any process. Likewise, a state update may
affect any process. This type of systems is used in all non-leaf
models of the tree in Figure 1.

For the local view, we adopt the Heard-Of (HO)
model [12], which we use to represent the concrete algorithms,
i.e., the (boxed) leaf models in Figure 1. In this model, in every
round, each process sends a message to every other process,

Process | HO,, Messages received: p?
P1 {p17p27p3} {(pl,m1)7(p2,m2)7(p37m3)}
D2 {p1>p2} {(p17m1)7(p23m2)}
P3 {p1,p3} {(p1,m1), (p3,m3) }
Figure 2. An example of filtering by HO sets within a round, for N = 3.

For simplicity, we assume that the process broadcast messages in this round,
ie., sendy (sp;,") =m;

receives messages from a specified set of processes, and then
performs a local computation step. Hence, the behavior of
process p in round r is specified by a function send,, a set of
processes HO?, called a heard-of set, and a function next?”,
which we now explain in turn.

The function sendy, : S, X I — M determines the mes-
sages sent by process p to the other processes. For uniformity,
we assume that p sends a message to every other process. If
nothing needs to be sent, p sends some predefined dummy
message from M. The messages received by process p in
round r are described by a partial function p, : II — M
defined as follows: y;(q) = sendg(sy,p) if ¢ € HO, and
is undefined otherwise (s, is the projection of the global
system state s to process ¢’s local state). This means that p
receives only the messages from the processes in the heard-of
set HO;, while the other messages are lost. Figure 2 gives
an example. This filtering of messages captures various kinds
of failures, including link failures and timeouts. Importantly,
it also captures process failures, removing the need for an
explicit notion of such failures in the HO model. The function
nextl : S, x (I = M) — 2% takes process p’s state s,
and the messages p,, that p receives in round 7 and returns
a set of states nextj (s,). The successor state is chosen
non-deterministically from this set. This is performed simulta-
neously for all processes and yields a new global system state
s’ for the next round. This determines the transition system
semantics of heard-of models. Since each transition includes
an instantaneous exchange of messages, this semantics does
not require an explicit representation of the network. This
greatly simplifies reasoning about these models compared to
an asynchronous model.

Reality, of course, does not proceed in lockstep. Hence,
there is a second, asynchronous semantics of the HO
model [11]. Here, each process has its own view of the current
round number. All messages carry the sender’s round number
and are explicitly transmitted over a network. Each process
only accepts messages carrying its round number. Hence,
rounds are communication-closed. A process receives only the
messages from processes in its HO set. Once it has received
all such messages, it can take a next, transition to move on
to the next round. Each process does this independently. This
asynchronous semantics thus closely corresponds to the real
world, where the sequence of HO sets is, however, generated
dynamically, depending on when the processes decide to move
on to the next round.

The theorem of [11] tells us that a certain class of so-called
local properties, when proved under the lockstep semantics
also hold in the asynchronous one. We exploit this result
to simplify our correctness proofs, since consensus can be
specified as a set of such local properties.

D. Assumptions on Failures and the Network

The result in [15] rules out a deterministic solution to the
consensus problem in a completely asynchronous setting when
even just a single process fails. However, there are solutions
provided we are willing to either give up determinacy [3]
or assume partial synchrony, where asynchronous behavior is
interspersed with “good” periods of predictable behavior [14].
Moreover, we also need a bound on the number f of processes
that can fail. This bound measures the fault tolerance of a
distributed algorithm and is usually expressed as a fraction of
the total number of processes V.

In the HO model, the assumptions on network behavior
and fault tolerance are reflected in communication predicates.
These predicates play a role similar to failure detectors and
their properties (e.g. eventual perfect accuracy) in the more
traditional asynchronous models [16]. A communication pred-
icate P : (IT x N — 2M) — bool is a predicate on heard-of
sets, viewed as functions HO : II x N — 21, For example, we
will often use predicates 3r. Py (r) and Vr. P,,q; (1), where:

Pum'f (T) £ vP) q. HO; = HO;, (szif)

(Pmaj)

The first predicate ensures the existence of a round in which
every process sees the same messages; the second one ensures
that every process sees at least % messages in each round.

. N
Prnaj (1) £ Vp. |H0p| >3-

Given assumptions on the network and failures, an algo-
rithm’s implementation must guarantee both that all processes
eventually advance their rounds and that any sequence of HO
sets generated in this way satisfies the appropriate predicate.
For example, the predicate 3r. P,,;s(r) can be implemented
(e.g., using timeouts [20]) under the partial synchrony assump-
tion of a global stabilization time, after which no failures occur
and process speeds and message delays respect known bounds.
The predicate Vr. Pp,q;(r) can be implemented by waiting on
messages and using retransmission, assuming fair-lossy links
and f < % In fact, since the HO model has no notion
of explicit process failure, our assumptions on f (and thus
an algorithm’s fault tolerance) will only be visible implicitly,
through such communication predicates.

III. CONSENSUS PROPERTIES
A system solves the consensus problem if it guarantees:

Uniform agreement No two processes ever decide on two
different values.

Termination Every process eventually decides on a value.

Non-triviality Any value decided upon has been proposed by
some process.

Stability Once a process has made a decision, it never reverts
to an undecided state.

Since non-triviality and stability are usually straightfor-
ward, we do not discuss them further in this paper. The
difficult part is achieving both agreement and termination.
Typically, the termination requirement is limited only to non-
failed processes. As there is no notion of process failure in the
HO model, this is not necessary for our models.

Ideally, we would like to show that our abstract models al-
ready guarantee both termination and agreement, and conclude

from the refinement proof that the implementations inherit
these guarantees. As discussed in Section II-B, this works
for unconditional properties like agreement, but not for ter-
mination, which usually requires fairness assumptions. While
we will consider termination conditions informally for all of
our models, we take the easy way out and prove termination
individually for each concrete algorithm formulated in the
HO model. Fortunately, assuming a suitable communication
predicate such as Py, this is fairly simple.

IV. VOTING, QUORUMS, AND DEFECTION

All the consensus algorithms we consider share a few basic
ideas. These ideas are captured by our most abstract model,
which we call Voting and describe in this section. To motivate
these ideas, let us first consider some other, more obvious
candidate solutions to the consensus problem, and see what
their shortcomings are.

The first candidate is to have all processes mutually ex-
change their proposals, and pick the result deterministically,
for example, by taking the smallest proposal. Unfortunately, in
the presence of even a single failure, this scheme can violate
agreement. Any failure could cause two processes to end up
with different sets of proposals, as the example from Figure 2
shows, and thus pick different values.

Another obvious candidate is to have one distinguished pro-
cess, the leader, collect the proposals, pick one, and announce
its decision to the others. Two-phase commit protocols are
based on this idea. This guarantees agreement, but the leader
is a single point of failure for termination. If it fails, there is
no way of proceeding; we do not know if it decided anything,
and whether it announced its decision to the other processes.
Trying again, with a different leader, could violate agreement.

We thus need to revert to a decentralized approach. All
the algorithms we consider achieve this by voting, based on
simple counting. Each process picks a value to vote for, and
announces the vote to all other processes. Processes then count
the votes: if a process sees that some value received an absolute
majority (more than %) of the votes, it decides on that value.
Clearly, two different values cannot both get a majority of
votes, ensuring agreement. We take a slightly more abstract
view, which will be useful later, and require a value to receive
votes from a quorum of processes instead of a majority. A set
of processes is a quorum if it is a member of a quorum system
QS C 211 where, to ensure agreement, we require:

VQ,Q' € Q5. QnQ #0. (02))

In contrast to the leader-based approach, voting has no sin-
gle point of failure. However, while it is possible to terminate
and reach a decision even when any non-quorum of processes
fails, there are no guarantees. For example, if all the processes
vote for different values, no value will receive a quorum of
votes. Furthermore, even if a value does receive a quorum
of votes, message loss can prevent processes from learning
this. To address these problems, we iterate voting in multiple
rounds, and allow processes to switch their votes between the
rounds. Switching allows us to eventually form a quorum of
votes for the same value within a round. Voting is iterated until
such a quorum is formed, and until all the processes become
aware of the quorum and decide; to simplify, we assume that
it is iterated forever.

A. Formalizing Voting

We now have the basic ingredients of our most abstract
model. Its system state is represented by the record:
record v_state =
next_round : N
votes : N— (Il = V)

decisions : II =V

where V' is the set of possible proposed values. The fields’
names suggest their purpose:

e next_round is the next round to be run. It is a natural
number, initially 0.

e votes is a (curried) function that, given a round
number and a process, tells us which vote, if any, the
process cast in that round. In other words, votes is
the system’s voting history. Initially, no votes are cast.

e decisions records the current decision, if any, of the
given process. Initially, no decisions are made.

We overload the notation for curried functions in the usual
way, writing g(p, q) for g(p)(q). We also treat partial functions
g: A — B as total and write g(x) = L if z ¢ dom(g),
where 1 is a distinguished value that is not in any of the
sets we use. In particular, 1 ¢ V. Moreover, we write g[S] to
denote the image of a set under g and we define the range of g
by ran(g) = g[A]. Note that L € ran(g) unless dom(g) = A.

With this, we formalize the voting principle for decisions
in a single round, where r_decisions and r_votes are partial
functions of type I — V:

d_guard(r_decisions, r_votes) = Vp.Yv € V.
r_decisions(p) = v = 3Q € QS. r_votes[Q] = {v}.

A process can decide on any value v that receives a quorum
of votes. We always allow the processes not to decide, even
if such a v exists, to anticipate the possibility of message loss
in the implementations.

The voting principle ensures agreement within a single
round, but the rounds are iterated. This, together with vote
switching, gives us some hope of achieving termination, but
we must now also ensure agreement across the rounds. The
basic property we must establish is that if a value receives
a quorum of votes in some round, then no other value ever
receives a quorum of votes in any other round. Formally:

vr,r'. Yo, 0" € V. VQ, Q' € QS.
votes(r)[Q] = {v} Avotes(r)[Q'] = {v'} = v="1'".

This formulation of the property, however, leaves open how
to implement it. We thus replace it by a slightly stronger
and more operational property: forbidding defection. That is,
once a quorum for a value is formed, no process from that
quorum may ever vote for any other value. To anticipate
the unreliability of the distributed setting, we always allow
a process not to vote, modeled as a vote for L. We formalize
this as the following predicate, where v_hist : N — (IT — V)
is a voting history:

no_defection(v_hist, r_votes,) £
vr' <r. Yo e V.VQ € QS.

v_hist(r")[Q] = {v} = r_votes[Q] C {L,v}.

We can now clearly see the tension between agreement and
termination present in all voting-based consensus algorithms.
To achieve termination, processes may need to switch their
votes between the rounds; but in doing so, they must not defect,
if agreement is to be preserved.

We now have all the ingredients for the sole event of this
model: a round of voting. Its parameters are the current round
r and the round votes and decisions, both of type II — V.

Event v_round(r, r_votes, r_decisions):
Guard
r = next_round
no_defection(votes, r_votes,r)
d_guard(r_decisions, r_votes)
Action
next_round :=7r + 1
votes := votes(r := r_uvotes)
decisions := decisions > r_decisions

Here, g > h denotes the update of the partial function g with
the partial function h. The event’s guards and actions directly
formalize the previous discussion. There must be no defection
in the round votes, and the decisions are made by the voting
principle. The next state is obtained by increasing the round,
and updating the voting history and decisions.

B. Formalizing Agreement

We now formalize the agreement property of consensus. A
trace T over states of type v_state satisfies agreement if:

Yi,j € dom(T). Vp,q. Vo,w € V.
7(i).decisions(p) = v A 7(j).decisions(q) = w =
v =w.

Here s.decisions denotes the value of the field decisions
in the state s.

Proving agreement for the Voting model is straightforward.
The d_guard predicate, combined with the quorum property
(Q1), ensures that agreement is preserved within a round. The
no_defection guard ensures it across the different rounds.

The agreement property will be inherited by all the subse-
quent models, since we will prove that they refine Voting. As
discussed in Section III, this is not the case for termination,
and we impose no termination conditions on the Voting model.
We do, however, informally discuss termination next.

C. Towards an Implementation

The Voting model uses a global view of the system. To
make the model implementable, we must reconstruct this view
using a combination of strictly local process actions and com-
munication. More concretely, the processes need to exchange
their votes and voting histories using messages. However,
due to failures, the view that a process can reconstruct this
way might be only partial, reflected in the filtering by HO
sets (Figure 2). As an intermediate informal step towards an
implementation, we now consider what happens if we try to
perform the steps globally, but based on a partial view.

Consider the scenario shown in Figure 3 where, after one
round of voting, the votes of processes p;—p, are visible to us,

Process | p1 | p2 | p3 | P4 | D5
Vote 0 0 1

Figure 3. A possible partial view of histories after 1 round of voting

but the vote of process ps is not. The example demonstrates
a vote split, with p;—p, voting 0, and ps—p4 voting 1. Define
quorums to be simple majorities. As neither 0 nor 1 receives a
quorum of visible votes, we cannot make a decision based on
these votes. We could make one in the next round by changing
some of the votes. However, we cannot distinguish between the
following three possibilities:

1) The process ps voted 0, forming a quorum of three
votes for 0. Although this quorum is not visible to us,
it does exist, and we must not change the votes of the
processes voting for 0 if we are to preserve the no
defection property. Hence we should change the votes of
the processes voting for 1 (to 0).

2) This case is the same as the last, but swapping 0 and 1.

3) The process ps did not vote at all, or it voted for some
value other than 0 or 1; we may freely change the votes
of the other processes.

The partial information we receive is thus ambiguous and
prevents us from achieving termination while preserving safety.
We have two options: either (1) remove the ambiguity so that
we can change the votes of some of the processes or (2)
prevent the situation from occurring in the first place. These
options represent the next design choice (after using voting),
and correspond to the two branches from the root in Figure 1.

V. FAST CONSENSUS: ENLARGING QUORUMS

The failed example from Figure 3 is suggestive. Both the
votes for 0 and the votes for 1 could be extended to a quorum
of three votes by including the vote of the fifth process. But
there is an easy way to prevent the confusion: require four
votes to reach a decision instead of three. In other words, we
change the definition of a quorum to mean all sets of size four
or larger, instead of simple majorities. It is not hard to see
that, for any split of the four visible votes, this enables us to
determine at least one vote that we can safely change.

This solution works for the concrete problem above, but
how do we generalize it? First, note that this solution does
not work when our partial view includes only three or fewer
processes. Thus, we assume a lower bound on the number of
visible processes. More precisely, we assume a set of guaran-
teed visible sets of processes. The assumption is that eventually
at least one such set will be visible. In the implementations,
the guaranteed visible sets will be realized by guaranteed
HO sets, where the guarantee comes from the communication
predicates (such as 3r. Py,,;(r)) and relies on network and
failure assumptions (Section II-D). Once such a set is visible,
we should be able to change the votes and make progress.

What was blocking this progress in Figure 3 was a par-
titioning of the visible set S = {pi,...ps} into two sets
of processes So = {p1,p2} and S1 = {ps,ps}, respectively
voting for 0 and 1, such that:

SoUSeQSAS, US€eQS,

where S is S’s complement and QS is the quorum system.
Set theory gives us:

SoUSeEQRSAS USeQRS

= 3Q0, Q1 €QS. QNQ1 C S
= 3Q0, Q1 €QS. QoNQ1NS =0.

This leads to an obvious strengthening of (Q1), requiring that
for all quorums @ and Q’, and all guaranteed visible sets S:

QNQ' NS #0. (Q2)

This ensures that, in case of a vote split, only one subset
of votes from a guaranteed visible set can be extended to a
quorum. Thus, we can switch all the other ones. To ensure that
we can also decide based on any guaranteed visible set, we
also stipulate that for every such set S, there exists a quorum
@ such that:

QCcs (Q3)

Interestingly, conditions (Q2) and (Q3) define a dissemination
quorum if we interpret S as a set of Byzantine processes [27].
As these conditions strengthen (Q1), the Voting model will
still guarantee agreement under them. They also allow us to
achieve termination, but the termination guarantees might not
be inherited by refinement, and hence we do not formalize
this discussion in an abstract model. We will explain how it is
reflected in the concrete algorithms later. Moreover, all these
algorithms employ an optimization to the Voting model that
avoids exchanging the entire voting histories. We formalize
and describe this optimization next.

A. Optimizing Voting

This optimization is based on two observations. First, a
process can clearly never defect by repeating its last non- L
vote. Second, when changing its vote, it is enough to check for
defection against the last non-_L votes of the other processes,
rather than checking against their entire voting histories. That
is, if a process is not defecting with respect to the last votes
of the other processes, it will not defect with respect to the
votes in any previous round. To see why, assume that in round
r a quorum (of processes all voted for a value v. By the no
defection property, in rounds between r and the current round,
no process p in) can change its vote to one different from v.
Therefore, p’s last non-L vote must remain v. So if Q) was a
quorum of processes voting for v in round r, after this round,
all members of @) will always retain v as their last vote.

The state of the system is thus changed to record just the
last non-_L vote of each process instead of the entire voting
history. We still use L to denote that a process never voted.

record opt_v_state =
next_round : N
last vote : II =V
decisions : II =V

The guard for checking defection now looks at just the last
votes [vs : II — V instead of the entire voting history:
opt_no_defection(lvs, r_votes) = Vv € V. YQ € QS.
wsQ] = {v} = r_votes|Q] C {L,v}.
The voting round uses this modified defection guard and

replaces the update of votes(r) with the update of last_vote
to last_vote > r_votes, but otherwise remains the same.

1: Initially: last_vote, is p’s proposed value

2: decision, is L

3: send;:

4: send last_vote, to all

5:

6: nextl’;:

7: if received some vote w > % times then

8: decision, = w

9. if [HO}| > 2 then

10: last_vote, := smallest most often received vote

Figure 4. The HO model of OneThirdRule

B. Implementations: Fast Consensus

The optimized model abstracts several variants of consen-
sus algorithms found in the literature. We prove that it is
refined by OneThirdRule from [12] and its generalization A g
from [4] (assuming no Byzantine processes). Moreover, it also
describes the algorithms used in the first round of the protocol
from [7] and in the fast rounds of Fast Paxos [24]. As an
example, Figure 4 shows the HO model of the OneThirdRule
algorithm, presented in pseudocode for simplicity.

In OneThirdRule, quorums are sets of more than %
processes. Hence, the decision rule in lines 7-8 ensures
the d_guard from the (optimized) Voting model, where the
refinement relation relates the state variables of each process
p to the p-values of the fields with same names in the abstract
model. Given the new quorum size, defining guaranteed visible
sets to also be of size greater than 2;)\’ ensures conditions (Q2)
and (Q3). As OneThirdRule is a concrete, fully distributed
algorithm, we replace guaranteed visible sets by guaranteed
HO sets, reflected in the communication predicate required

for termination:

2N
>7

r. Pansg () A3 > 7.0 € {r,1}.p. ‘HO;” .

The most interesting part of the algorithm is lines 9-10,
which guarantees no defection and at the same time directs the
votes such that they eventually converge to a common value.
By (Q2) and the HO set condition in line 9, we know that only
one received value could have been voted for by a quorum; the
greater than % requirement on quorums and HO sets ensures
that it is the one that received the most votes. If there is a tie
in the number of votes, no value could have received a quorum
of votes, and processes may switch their votes freely. Either
way, no process will defect by choosing a value that received
the most votes. Choosing the smallest such value provides
the required vote convergence. The communication predicate
ensures the existence of a round in which all processes adopt
the same vote, and of a later round in which the processes
receive enough votes to decide and terminate.

In OneThirdRule, a round of voting requires one round
of communication. This also applies to the other algorithms
of this type, earning them the name Fast Consensus. If all
the processes start with the same value v, the algorithm
can terminate within a single failure-free round. Otherwise,
the algorithm still terminates within two rounds that satisfy
the above communication predicate. The speed comes at a
price though. From the communication predicate, we see that

OneThirdRule requires the HO sets to contain more than
% processes. Hence f < %, where f is, as before, the
number of tolerated failures. It is not difficult to see that this
is optimal, given conditions (Q2) and (Q3). It is, however,
possible to implement the Voting model without the additional
requirements on quorum sets; this will only require f < %
We will show how to do this in the next section. The price paid
is that the algorithms become more complicated and require

multiple communication steps to perform one round of voting.

VI. SAME VOTE

Fast Consensus resolved the situation from Figure 3 by
disambiguating the vote split. In this section, we take the other
approach, corresponding to the other branch from Figure 1:
we prevent the split from ever happening, thus eliminating the
problematic example completely. For this, all the votes cast
within a round must be the same. We allow the possibility that
some processes do not cast a vote. Formally, we will replace
the Voting round event v_round(r, r_votes, r_decisions) by
a Same Vote round sv_round(r, S, v, r_decisions), where the
processes in .S vote for a value v € V, and the others vote L.

This requires vote agreement: all processes must agree on
the value of v. But this seems like a paradoxical, circular way
to solve consensus: having all processes agree on a single
value is exactly what consensus is about! There is, however,
a subtle difference between vote agreement and consensus.
Because we allow processes to vote L, unlike for consensus,
it is not necessary that every process gets an (non-_l) output
from vote agreement. Thus, vote agreement does not share
the termination requirement of consensus. However, to make
progress, we cannot drop this requirement completely, but we
instead relax it: we require that enough processes get an output
in some round. The relaxed termination requirement is now
collective. Each voting round contains one instance of vote
agreement; it is not necessary that all instances terminate, but
at least one must do so. Moreover, the outcomes of the different
vote agreement instances are independent; we do not require
that they match.

The consequence of the laxer termination requirements
is that some of the ideas that we described at the start of
Section IV, and which failed to solve consensus because of
their weak termination properties, can now be recycled to suc-
cessfully solve the vote agreement problem. The two ideas are
non-iterated voting, which we will henceforth refer to as simple
voting, and the leader-based approach. Before we put either of
them to use in the implementations, we must ensure (and this
is the tricky part of the algorithms) that any agreed upon vote
preserves the no defection property of the Voting model.

A. Formalizing Same Vote

The system state remains the same as in the Voting model.
As before, we require that there is no defection in the votes.
Since each process will now vote for either v or L, voting for
v must not cause any process to defect; we say that v must
be safe. If there previously existed a quorum for a value w,
we must have v = w. Otherwise, the processes that previously
voted for w could defect by voting for v. Formally:

safe(v_hist,r,v) £ Vr' < r.VYw € V. ¥Q € Q8.
v_hist(r")[Q] = {w} = v = w.

Process
Round P1 | P2 | P3| P4 | P5
0 0 o L] ? ?
1 1| L 1
2 L] L] L

Figure 5. Same Voting: a possible partial view of histories after three voting
rounds.

In a Same Vote round r, the processes in some set S receive an
output v from vote agreement and vote for v, while the others
vote for L. If S = () then v is unused and unconstrained,
otherwise it must be safe. Formally:

Event sv_round(r, S, v, r_decisions):
Guard
r = next_round
S #) = safe(votes,,v)
d_guard(r_decisions, [S +— v])

Action
next_round :=7r +1
votes := votes(r := [S — v])

decisions := decisions > r_decisions

Here [S — v] maps all processes from S to v, and the others
to L. The refinement relation between Voting and Same Vote
is just the identity. The refinement proof hinges on the fact
that safe implies no_defection with r_votes = [S — v].

B. Towards an Implementation

As a step towards an implementation of the Same Vote
model in a distributed setting, we again look at some possible
scenarios with only partial information. As we wish to improve
the fault tolerance to f < % process failures (over % for Fast
Consensus), we restrict our view to just over % processes.

It was the combination of partial information and vote splits
that prevented us from changing the votes without causing
defection in the example of Figure 3. That particular situation
is now eliminated, as vote agreement ensures that such vote
splits within a single round can no longer occur. However,
vote agreement prevents neither vote splits across multiple
rounds, nor hiding of quorums by a partial view. Consider
the example in Figure 5: it is not obvious which values are
safe for round 3. A priori, it may be that 0 received a quorum
of votes in round 0 (if process p4 or ps voted for 0), or that 1
received a quorum in round 1 (if p4 and p5 both voted for 1),
resembling the ambiguity present in the Voting model and
Figure 3. However, the situation can be resolved, and the next
two sections describe two ways to do so. They correspond to
the two branches from the Same Vote model in Figure 1.

VII. OBSERVING QUORUMS

Figure 5 demonstrates the difficulty of detecting vote
quorums and finding safe values based on a partial view
of the voting history. The main idea behind the solution
introduced in this section is that each process maintains a vote
candidate value v € V that is safe to vote for by construction.
Maintaining the candidates’ safety requires each process to
detect when a quorum of votes is formed for some value.

For this, each process must observe the votes of the other
processes. We now describe this scheme in more detail.

Initially, all values are safe. Thus, processes can initialize
their candidates to arbitrary values; in particular, they can use
their proposed values. Furthermore, all values will remain safe
until the first time a quorum is formed for some value, at which
point all processes must update their candidates to this value.
To ensure that this happens, we require each process p to try
to update its candidate in every round, based on the votes it
observes in the round. More precisely, consider an arbitrary
process p and a round r. Due to the Same Vote principle,
there is some value v € V such that each vote cast in r is
either for v or for L. We say that process p’s observation in
round r is v if p receives a vote for v from at least one process
in r and L if it receives only votes for L. If p observes v (i.e.,
not L) then it updates its candidate to v.

Assume now that r is in fact the first round in which
a quorum of votes (for v) is formed. If p observes v, it
will update its candidate to v, and safety will be guaranteed.
However, if p observes L, it fails to update the candidate,
which may violate safety. To avoid this possibility, we require
that p waits to receive votes from some quorum @) of processes
before it makes its observation and moves on to the next round.
By (Q1), @ intersects with the set of processes voting for
v, which ensures that p will receive at least one vote for v,
and thus update its candidate to v. Thus, after round 7, the
candidates of all processes will become v. Since we assume
that the votes are always selected from the set of candidates,
v is the only value that can be voted for, and hence observed
after this point. Further updates based on observations will thus
not change the candidates and therefore preserve safety.

As an example, interpret Figure 5 as if it were showing the
observations that the processes make in each round, instead of
the votes they cast. The candidates after round 2 are:

[pl — 0ap2 — 07p3 — 17]94 H?va) H?]a

that is, processes p; and p-’s candidate is 0 and ps’s candidate
is 1, while p4 and ps’s candidates are unknown. We immedi-
ately see that both 0 and 1 are safe for round 3, as they are
among the candidates. Moreover, we can even conclude that
all values are safe. Otherwise, the set of candidates would be
a singleton, containing only the unique value that has received
a vote quorum.

A. Formalizing Observing Quorums

First, we extend the state record v_state with following
field to record the processes’ candidates:

cand : II — V.

The safety of a new vote v is now determined based on the
candidates. With cs : II — V' we define this as follows:

cand_safe(cs,v) £ v € ran(cs).

We represent the observations made in each round by a partial
function obs : II — V. According to the discussion above,
obs is of the form [OS +— v], where v is the round vote,
and OS is the set of processes observing v. If v receives
a quorum of votes, we require OS = II. We can however
generalize this by allowing processes to observe not only

votes but also each other’s candidate values, i.e., we only
require ran(obs) C ran(cand). From the previous discussion
we know that all old candidate values remain safe if v does
not receive a quorum of votes. Otherwise, we still require
obs = [II — v]. This adoption of others’ candidates will prove
useful for termination. We formalize these considerations in
the following round event.

Event obsv_round(r, S, v, r_decisions, 0bs):
Guard
r = next_round
S # () = cand_safe(cand, v)
ran(obs) C ran(cand)
S € QS = obs =l = v
d_guard(r_decisions, [S +— v])
Action
next_round :=7r +1
cand := cand > obs
decisions := decisions > r_decisions

The guard S € QS = obs = [II — v] ensures that
quorums of votes are reflected in all processes’ observations.
Since no guard consults the voting history and only the current
round’s votes are needed to make decisions, there is, in contrast
to the Same Vote model, no need to record votes. We therefore
drop the field votes from the state.

The refinement relation between the Observing Quorums
and Same Vote models relates the fields votes in Same Vote
and cand in Observing Quorums by requiring that

votes(r)[Q] = {v} = cand = [II — v]

holds for all values v € V, quorums) € @S, and rounds r
preceding the current one. The common fields next_round
and decisions are related by the identity. Based on this
relation, we can prove that cand_safe(cand,v) implies
safe(votes,r,v).

B. Implementing Observing Quorums

The previous model captures several algorithms from the
literature. We prove that it is refined by Ben-Or’s algorithm [3]
and UniformVoting [12]. It also captures the generic algorithm
from [17], although we do not formally prove this. The model,
however, only tells us how to pick safe values in each round. In
the implementation, the processes must use a vote agreement
scheme to agree on one such value. We have already mentioned
two candidate schemes: the leader-based scheme and simple
voting. Either can be used here. As an example, we show the
UniformVoting algorithm (Figure 6), which uses simple voting.

In the algorithm, a round of voting requires two sub-rounds
of communication. Vote agreement takes place in the first
sub-round, while casting and observing votes take place in
the second sub-round. The inputs to vote agreement are the
candidates of each process (line 6); picking any one of them
will satisfy the cand_safe guard. The output, recorded in the
variable agreed_vote,,, is generated by simple voting, and
corresponds to the parameter v of the abstract model’s event
obsv_round. The voting principle of simple voting is encoded
in the combination of the check in line 10 and the assumed
communication predicate Vr. P4, (r), with Py,qj as defined in
(Ppnqj)- The same predicate is used in the second sub-round to

Initially: cand, is p’s proposed value
other fields are L

Sub-Round r = 2¢:
send;:
send cand,, to all

/] vote agreement

next,:
cand,, := smallest value received
if all the values received equal v then
agreed_vote, = v

—_ =
A B AR ey

12: else
13: agreed_votep =1

14: Sub-Round r = 2¢ + 1: // casting and observing votes
15: send,:
16: send (cand,, agreed_vote,) to all

18: nexty:

19: if at least one (_,v) with v # L received then
20: cand, := v

21: else

22: cand, := smallest w from (w, L) received

23: if all received equal (_,v) for v # L then
24: decision, :=v

Figure 6. The HO model of UniformVoting

ensure the guards S € QS = obs = [II — v] (lines 19-20)
and d_guard (lines 23-24).

Processes update their candidates either to the round vote
(line 20) or to a candidate of some other process (lines 9
and 22). This corresponds to making a non-L observation
and satisfies the guard ran(obs) C ran(cand). Moreover, the
adoption of other processes’ candidates helps the convergence
to a common vote candidate, necessary for termination of vote
agreement. This termination is guaranteed by the additional
communication predicate 3r. Pyp;f(r). In the round satisfying
Pynif (1), all processes will adopt the same candidate, and thus
agree on a vote (line 11) and decide (line 24).

The refinement relation relates, for each p, the value cand,,
to the value of cand(p) in the abstract model and the value of
decision, to decisions(p). The refinement proof follows
the above remarks.

The algorithms in this section tolerate f < % process
failures and thus exhibit better fault tolerance than the fast
consensus algorithms from Section V-B. Depending on the
scheme used for vote agreement, they can also terminate
within two fault-free communication rounds, as shown in [17].
However, the use of waiting (e.g., visible in the communication
predicate of UniformVoting) requires a more complicated
communication layer, since retransmission is necessary, and
it hides the fact that additional messages are required for
acknowledgments. The same level of fault tolerance can be
achieved without waiting, as the algorithms in the next section
show.

VIII.

In the algorithms of the previous section, processes main-
tain a safe vote candidate at every point in time. In this section,

MoOST RECENTLY USED (MRU) VOTE

we show how to generate such candidates only when they are
needed, based on just partial views of voting histories and
without resorting to waiting.

Going back to the definition of a Same Voting round, we
observe that any state of Same Voting satisfies the invariant:

votes(r,p) = v = safe(votes,r,v),

for any v € V. Moreover, such a v is the only value receiving
votes in round r. Hence, no other value can receive a quorum
of votes in 7, and v is also safe in round r + 1. Formally:

votes(r,p) = v = safe(votes,r + 1,v).

Returning to the example from Figure 5, by the above we
conclude that the value 1 is safe in round 2. Moreover, we see
a quorum of L votes in round 2. By the intersection property
(Q1), no value whatsoever could have received a quorum of
votes in that round; value 1 is therefore still safe in round 3,
and can be chosen as the next vote. In this way we have in fact
generated, on the fly, the same candidate that a hypothetical
process running the Observing Quorums scheme would do, if
its observations were based on the votes shown in Figure 5.

It is straightforward to generalize this solution. If we see
the voting history of a quorum () after multiple rounds, the
most recently used (MRU) vote will still be safe. This value
is unique, since all values cast within the same round are the
same. If nobody in @ ever voted, we define the MRU vote to
be L. In this case, by (Q1) no value ever received a quorum of
votes and all values are safe. Formally, given a voting history
v_hist and a quorum @, we define a function the_mru_vote
as above, and we say that @ is an MRU guard for v if:

mru_guard(v_hist, Q,v) =
Q € QS A the_mru_vote(v_hist,Q) € {L,v}.

Following the discussion above, we prove that:
mru_guard(votes, Q,v) = safe(votes,next_round, v),

forany Q € QS and v € V. Replacing safe with mru_guard
in the event sv_round thus yields a correct refinement of
Same Voting. As the MRU scheme works even with just
partial information, we are now ready to move to a distributed
implementation.

A. Optimizing MRU Vote

Like Fast Consensus, the MRU scheme can also be opti-
mized to avoid transmitting the entire voting histories of all the
processes. The histories were only used in the mru_guard, to
determine the MRU vote of a quorum of processes. This can
obviously also be done by just looking at the MRU vote of each
individual process in the quorum, together with its associated
round number. The optimized state of the system is thus:

record opt_v_state =
next_round : N
mru_vote : II = (N x V)
decisions : Il =V

The guard is changed in the obvious fashion. It now takes a
parameter mrus : II = (N x V):

opt_mru_guard(mrus, Q,v) =
Q € QS Aopt_mru_vote(mrus[Q]) € {L,v}.

For brevity we skip the definition of opt_mru_vote. The
voting round is changed as expected, and the refinement proof
is straightforward.

Event opt_mru_round(r, S, v, Q, r_decisions):
Guard
r = next_round
S # () = opt_mru_guard(mru_vote, Q,v)
d_guard(r_decisions, [S + v])

Action
next_round :=7r +1
mru_vote := mru_vote> [S — (r,v)]
decisions := decisions > r_decisions

This gives us a method of picking candidates. The processes
must also agree on exactly one such candidate, and, as in the
previous section, we must choose a vote agreement scheme.
The Paxos [22] and Chandra-Toueg [10] algorithms opt for a
leader-based scheme. We have derived both of these algorithms
in our formal development, but we do not discuss them here,
and instead present a new algorithm that we devised.

B. New Algorithm

In [12], Charron-Bost and Schiper posed the question
whether there exists a leaderless consensus algorithm tolerating
f< % failures, whose safety does not depend on waiting (and,
more generally, without invariant on the HO sets). Leaderless
algorithms are useful in settings with no stable leader and can
decrease latency [24], while the drawbacks of waiting were
already mentioned in Section VII-B.

The classification we propose in this paper provides us with
sufficient guidance to find such an algorithm. The requirement
to tolerate f < % failures disqualifies the Fast Consensus
algorithms (which handle only less than % failures). We
thus turn to the Same Vote mechanism. Since the Observing
Quorums model requires waiting in order to provide safety,
we are left with the MRU model as the only candidate in the
hierarchy. The only remaining question is whether we need a
leader to implement vote agreement. But we know already that
the answer is no: we can implement it using the simple voting

scheme.

The pseudocode of the HO model of the algorithm is shown
in Figure 7. One round of voting requires three sub-rounds of
communication. The first sub-round equips each process with
a safe value. Based on these values, vote agreement by simple
voting takes place in the second sub-round, and voting proper
takes place in the third one.

In the first sub-round, processes exchange their MRU votes,
along with prop values, explained shortly. Based on these
MRU votes, each process p tries to determine a safe candidate
value for the common round vote (variable cand,). If p
receives messages from a quorum of other processes, it looks at
the output of the opt_mru_vote function (lines 12—16). This
output is used as the safe candidate (line 14) unless it is L,
in which case any value is safe and the candidate is set to
the smallest prop value received (line 16). Either way, the
resulting cand,, satisfies the opt_mru_guard. If p does not
receive enough messages, it sets cand,, to L (line 18). In the
second sub-round, processes use their cand values as inputs
to vote agreement (line 21). This uses simple voting, with the

1: Initially: prop, is p’s proposed value, other fields are L
2:
3: Sub-Round r = 3¢: /I finding safe vote candidates
4: send:
5: send (mru_vote,, propp) to all
6:
7: nexty:
8: if HO,, # () then
9: prop,, := smallest w from (_, w) received.
10 if |HO;| > & then
11: let mrus = set of all tsv’s from (tsv,_) received
12: let mru = opt_mru_vote(mrus)
13: if mru # L then
14: cand, = mru
15: else
16: cand,, := prop,
17: else
18: cand, := L
19: Sub-Round r = 3¢ + 1: /I vote agreement
20: send):
21: send cand,, to all
22:
23: nexty:
24: if received some v # | more than % times then
25: mru_vote, := (¢,v)
26: agreed_votep =
27: else
28: agreed_votep =1
29: Sub-Round r = 3¢ + 2: /I voting proper
30: send;):
31: send agreed_vote, to all
32:
33: mext:
34: if received some v # | more than % times then
35: decision, =V
Figure 7. The HO model of the New Algorithm

voting principle reflected in the check in line 24, and requires
no leader. The output of vote agreement corresponds to the
parameter v of the abstract opt_mru_round event. If a process
accepts v as its round vote, it updates its MRU vote, reflecting
the update of the mru_vote field in the abstract event. The last
sub-round then deals with ordinary voting, with the decision
rule in lines 34-35 implementing the d_guard.

The refinement relation equates the decision, and
mru_vote, variables of each process to decision(p) and
mru_vote(p) in the abstract model, and the proof follows the
discussion above. The only part of the algorithm that we must
still explain is termination, which relies on the communication
predicate:

3. Punif (36) AVi € {0,1,2} . Pro; (36 +).

As in UniformVoting, the processes try to help convergence to
a common vote candidate by taking the smallest prop value
seen so far. The above predicate then ensures that all processes
hold the same (non-_1) cand after sub-round 3¢. In sub-rounds
3¢+ 1 and 3¢ + 2, the processes then adopt this cand first as
the round vote, and then also as the decision.

IX. CONCLUSION

We have presented a unified description of a number of
consensus algorithms found in the literature: OneThirdRule,
A7, g, Paxos, Chandra-Toueg, Ben-Or, UniformVoting, and the
generic algorithm of [17]. By using refinement, we could (1)
describe the main algorithmic ideas behind them in simple
terms and (2) create a taxonomy of the algorithms based on
these ideas. We hope that we have also shed light on why
the algorithms are constructed the way they are. Finally, the
insights gained from the taxonomy helped us develop a new
algorithm, which is leaderless, tolerates f < % failures, and
does not employ waiting to guarantee safety. This answers a
question posed in [12] asking whether such an algorithm exists.

The consensus problem has been thoroughly studied. Nev-
ertheless, we believe that our work provides both a useful
synthesis of existing knowledge about the algorithms we cover
and a novel way of understanding and relating them. In
particular, the Voting model and the no defection property
provide a simple basis for describing the different algorithms,
a basis we have not seen in the literature before.

Our work, of course, has its own limitations. The as-
sumption of communication-closedness puts some practical
algorithms, such as Disk Paxos, outside of our scope. Further-
more, algorithms such as Fast Paxos [24] essentially combine
several algorithms and as such they do not cleanly fit into our
hierarchy. Finally, our abstract models capture only the safety
guarantees of the target algorithms. It is unclear whether and
how this could be extended to termination in a simple fashion.

As future work, we plan to extend our development to
cover Byzantine failures. We are confident that this is possible,
as refinement has been used to adapt consensus algorithms
to the Byzantine setting before [25], [26]. We would also
like to extend the scope of our work to tasks that build
upon consensus, such as atomic broadcast. Stepwise refinement
has been used in this context already [36], but it may be
possible to soundly apply some form of lockstep abstraction
to these tasks as well. Finally, while the lockstep abstraction
is extremely useful for reasoning, the resulting models are
somewhat farther away from implementations than the more
standard asynchronous models with failure detectors, despite
the result in [11]. It would be interesting to see how to best
bridge this gap and develop formally verified implementations
of protocols specified in the HO and similar models.

REFERENCES

[1] M. Abadi and L. Lamport. The existence of refinement mappings.
Theor. Comput. Sci., 82(2):253-284, 1991.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[3] M. Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. In PODC, pages 27-30, 1983.

[4] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and
A. Schiper. Tolerating corrupted communication. In PODC, pages
244-253, 2007.

[5]1 R. Boichat, P. Dutta, S. Frglund, and R. Guerraoui. Deconstructing
Paxos. SIGACT News, 34(1):47-67, 2003.

[6] R. Boichat, P. Dutta, S. Frglund, and R. Guerraoui.
Paxos. SIGACT News, 34(2):42-57, 2003.

[71 F Brasileiro, F. Greve, A. Mostefaoui, and M. Raynal. Consensus in
one communication step. In PaCT, pages 42-50, 2001.

Reconstructing

(8]
(9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

J. W. Bryans. Developing a consensus algorithm using stepwise
refinement. In ICFEM, pages 553-568, 2011.

C. Cachin. Yet another visit to Paxos. Technical Report RZ 3754, IBM
Research, 2009. Revised April 7, 2011.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2):225-267, 1996.

M. Chaouch-Saad, B. Charron-Bost, and S. Merz. A reduction theorem
for the verification of round-based distributed algorithms. In Reacha-
bility Problems, pages 93—-106. 2009.

B. Charron-Bost and A. Schiper. The heard-of model: computing
in distributed systems with benign faults. Distributed Computing,
22(1):49-71, 2009.

H. Debrat and S. Merz. Verifying fault-tolerant distributed algorithms
in the heard-of model. Archive of Formal Proofs, 2012.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288-323, 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374-382,
1985.

E. Gafni. Round-by-round fault detectors: Unifying synchrony and
asynchrony. In PODC, pages 143-152, 1998.

R. Guerraoui and M. Raynal. The information structure of indulgent
consensus. IEEE Trans. Computers, 53(4):453-466, 2004.

R. Guerraoui and M. Raynal.
Comput. J., 50(1):53-67, 2007.

M. Hurfin, A. Mostéfaoui, and M. Raynal. A versatile family of con-
sensus protocols based on Chandra-Toueg’s unreliable failure detectors.
IEEE Trans. Computers, 51(4):395-408, 2002.

M. Hutle and A. Schiper. Communication predicates: A high-level
abstraction for coping with transient and dynamic faults. In DSN, pages
92-101, 2007.

F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In DSN, pages 245-256, 2011.

The alpha of indulgent consensus.

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, 1998.

L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):51-58,
2001.

L. Lamport. Fast Paxos. Distributed Computing, 19(2):79-103, 2006.

L. Lamport. Byzantizing Paxos by refinement. In Distributed Comput-
ing, pages 211-224. Springer, 2011.

B. Lampson. The ABCD’s of Paxos. In PODC, 2001.

D. Malkhi and M. K. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203-213, 1998.

O. Mari¢ and C. Sprenger. Consensus refined. Archive of Formal Proofs,
2015. http://afp.st.net/entries/Consensus_Refined.shtml.

A. Mostéfaoui, S. Rajsbaum, and M. Raynal. A versatile and modular
consensus protocol. In DSN, pages 364-373, 2002.

A. Mostéfaoui and M. Raynal. Solving consensus using Chandra-
Toueg’s unreliable failure detectors: A general quorum-based approach.
In DISC, pages 49-63, 1999.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283. Springer, 2002.

R. D. Prisco, B. W. Lampson, and N. A. Lynch. Revisiting the Paxos
algorithm. Theor. Comput. Sci., 243(1-2):35-91, 2000.

M. Raynal and J. Stainer. Synchrony weakened by message adversaries
vs asynchrony restricted by failure detectors. In PODC, pages 166-175,
2013.

O. Riitti, Z. Milosevic, and A. Schiper. Generic construction of
consensus algorithms for benign and byzantine faults. In DSN, pages
343-352, 2010.

Y. J. Song, R. van Renesse, F. B. Schneider, and D. Dolev. The building
blocks of consensus. In ICDCN, pages 54-72, 2008.

R. van Renesse, N. Schiper, and F. B. Schneider. Vive la différence:

Paxos vs. Viewstamped Replication vs. Zab. [EEE Transactions on
Dependable and Secure Computing, PP(99):1-1, 2014.

http://afp.sf.net/entries/Consensus_Refined.shtml

	I Introduction
	II System Specifications and Refinement
	II-A Event-based Systems
	II-B Properties and Refinement
	II-C Distributed System Models
	II-D Assumptions on Failures and the Network

	III Consensus Properties
	IV Voting, Quorums, and Defection
	IV-A Formalizing Voting
	IV-B Formalizing Agreement
	IV-C Towards an Implementation

	V Fast Consensus: Enlarging Quorums
	V-A Optimizing Voting
	V-B Implementations: Fast Consensus

	VI Same Vote
	VI-A Formalizing Same Vote
	VI-B Towards an Implementation

	VII Observing Quorums
	VII-A Formalizing Observing Quorums
	VII-B Implementing Observing Quorums

	VIII Most Recently Used (MRU) Vote
	VIII-A Optimizing MRU Vote
	VIII-B New Algorithm

	IX Conclusion
	References

