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Abstract. Separation of Duties (SoD) aims to prevent fraud and errors
by distributing tasks and associated privileges among multiple users. Li
and Wang proposed an algebra (SoDA) for specifying SoD requirements,
which is both expressive in the requirements it formalizes and abstract
in that it is not bound to any specific workflow model. In this paper,
we both generalize SoDA and map it to enforcement mechanisms. First,
we increase SoDA’s expressiveness by extending its semantics to mul-
tisets. This better suits policy enforcement over workflows, where users
may execute multiple tasks. Second, we further generalize SoDA to allow
for changing role assignments. This lifts the strong restriction that au-
thorizations do not change during workflow execution. Finally, we map
SoDA terms to CSP processes, taking advantage of CSP’s operational
semantics to provide the critical link between abstract specifications of
SoD requirements by SoDA terms and runtime-enforcement mechanisms.

1 Introduction

Most information-security mechanisms protect resources from external threats.
However, threats often reside within organizations where authorized users may
intentionally or accidentally misuse information systems. Examples are the scan-
dals [1] that led to regulations such as the Sarbanes-Oxley Act [2]. These reg-
ulations require companies to document their processes, to identify conflicts
of interests, to adopt countermeasures, and to audit and control those activi-
ties. Separation of Duties (SoD) is a well-established extension of access control
that aims to ensure data integrity, in particular the prevention of fraud and er-
rors [3,4]. The main idea behind SoD is to split critical processes into multiple
actions and to ensure that no single user can execute all actions. Therefore, at
least two users must be involved in the process and fraud requires their collusion.

Existing specification formalisms and enforcement mechanisms for SoD are
limited in the kinds of constraints they can handle. Moreover, they are typically
bound to specific workflow models. The SoD algebra (SoDA) of Li and Wang [5]
constitutes a notable exception. It allows the modeling of SoD constraints at
a high level of abstraction, combining quantification and qualification require-
ments. As an example, consider the SoD policy that requires a user other than

⋆
The research leading to these results has received funding from the European Community’s Sev-

enth Framework Programme (FP7/2007-2013) under grant agreement N◦ 216917.



Bob that acts in the role of a Manager and one or two additional users, acting as
Accountant and Clerk. Using SoDA, this policy can be modeled by the term

(Manager ⊓ ¬{Bob}) ⊗ (Accountant ⊙ Clerk) .

The term’s left side is satisfied by any Manager other than Bob. Under the se-
mantics of the ⊙-operator, the right side is satisfied by a single user that acts as
Accountant and Clerk or by two users, provided one of them acts as Accountant

and the other as Clerk. Finally, the ⊗-operator requires that the users in the
two parts are disjoint. It thereby separates their duties. As this example shows,
SoDA terms specify both the number and kinds of users who must take part
in the workflow, independent of the details of the workflow itself. Separating
concerns this way allows business processes and security requirements to be de-
veloped independently. Moreover, it permits the definition and enforcement of
SoD constraints on running business processes without changing the processes’
description or deployment.

Until now, no general mapping from SoDA terms onto workflows or to dy-
namic enforcement mechanisms existed. In particular, a link between the satis-
faction of subterms and the actions executed in workflows was missing. Moreover,
previous work did not address how changing role assignments affect the enforce-
ment of SoD constraints during workflow execution. We provide solutions to
these problems in this paper. Using the process algebra CSP, we construct for-
mal models of workflows, access-control enforcement, and SoD constraints, as
well as their combination.

We extend the original SoDA semantics [5] to multisets of users and interpret
SoDA terms over workflow traces, allowing for changing role assignments (or,
equivalently, sessions). The resulting semantics is well-suited for policy enforce-
ment over workflows, where users may execute multiple tasks and authorizations
may change during workflow execution. We further bridge the gap between the
specification of high-level SoD constraints and their enforcement in a workflow
environment by defining a mapping from SoDA terms to CSP processes. A cor-
rectness proof for this mapping establishes that every execution accepted by an
SoD-enforcement process complies with its corresponding SoD policy.

2 Background

CSP. We briefly describe CSP [7,8] and the notation used in this paper. Let Σ
be a set of events. Events can be structured using channels. Given a channel c
and a set A, we can define c to be of type A. This means that for all a ∈ A,
events of the form c.a belong to Σ and represent the communication of a on the
channel c. By {| c |}, we denote the set of all possible events involving channel c,
i.e., {| c |} := {c.a | a ∈ A}. For a tuple (a1, ..., an), we write c.a1. ... .an.

Let I be the set of process identifiers and i ∈ I. The set of processes P is
inductively defined by the grammar P ::= e → P | STOP | i | P � P | P ‖

E

P ,

where e ∈ Σ and E ⊆ Σ. Let P,Q ∈ P be two processes. The assignment of P



to i is denoted by i = P and can be parametrized. For example i(v) = P defines
a process parametrized by the variable v.

The process e→ P engages in the event e first and behaves like the process
P afterward. When using channels, this notation can be extended. For A′ ⊆ A,
the expression c?a : A′ → P represents a process that waits for an a ∈ A′ to
be received on channel c of type A and afterwards behaves like P . Similarly,
c!a→ P represents a process that sends a on channel c and afterwards behaves
like P . STOP represents the process that does not engage in any further events.
For an assignment i = P , the process i behaves like P . P � Q denotes a process
that lets the environment choose whether it behaves like P or Q.The process
P ‖

E

Q represents the parallel execution of the processes P and Q synchronized

on E ⊆ Σ. This means, whenever one of the two processes engages in an event
e ∈ E, the other process must also engage in e.

A trace, denoted 〈e1, ..., en〉, is a sequence of events. 〈〉 denotes the empty
trace and t̂ t′ denotes the concatenation of two finite traces t and t′. Moreover,
E∗ denotes the set of all finite traces over E and E+ denotes the set of all
finite traces over E that contain at least one event. A process is described as a
set T (P ) ⊆ Σ∗ of finite traces. When t ∈ T (P ), P accepts t; each such trace
t describes a sequence of events that P can engage in with the environment.
For example, T (STOP ) := {〈〉}, T (e → P ) := {〈〉} ∪ {〈e〉̂ t | t ∈ T (P )}, and
T (P � Q) := T (P ) ∪ T (Q). Q refines P , denoted P ⊑T Q, if and only if
T (Q) ⊆ T (P ).

Multisets. We will make extensive use of multisets in the paper and briefly re-
view their notation. A multiset, or bag, is a collection of objects where repetition
is allowed [9]. Formally, given a set A, a multiset M of A is a pair (A, f), where
the function f : A→ N0 (where N0 is the set of natural numbers, including zero)
defines how often each element a ∈ A occurs in M. We write M(a) as short-
hand for f(a). We say that a is an element of M, written a ∈ M, if M(a) ≥ 1.
We use standard set notation to define multisets, but allow duplicated elements,
e.g., M := {a1, a1} is the multiset where M(a1) = 2 and for all other a ∈ A,
M(a) = 0. For a finite multiset M, |M| denotes the cardinality of M and is
defined as

∑

a∈A M(a). Given the multisets M and N, their intersection, de-
noted M∩N, is the multiset O, where for all a ∈ A, O(a) := min(M(a),N(a)).
Similarly, their union, denoted M ∪ N, is the multiset O, where for all a ∈ A,
O(a) := max(M(a),N(a)), and their sum, denoted M ⊎ N, is the multiset O,
where for all a ∈ A, O(a) := M(a) + N(a). The empty multiset ∅ of A is the
multiset where ∅(a) := 0, for all a ∈ A.

3 Secure Workflow Processes

3.1 Modeling Workflows

We call a unit of work an action. The temporal ordering of actions and the causal
dependencies between them, which together implement a business objective, are



called a workflow. There are various formalisms for modeling workflows. We
use CSP.

For the rest of this paper, let U be a set of users and A a set of actions.
We model a workflow as a CSP process with a channel bc of type U × A that
we call the business channel. Let EB := {|bc|}, and we call an element of EB a
business event. For a user u and an action a, the business event bc.u.a describes
the execution of the action a by the user u.

We introduce the event done, which states that a workflow has finished.3

We further define the auxiliary predicate done on traces where, for all t ∈ Σ∗,
done(t) if and only if t contains exactly one event done in the end. Formally,
done(t) := ∃t′ ∈ (Σ \ {done})∗ . t = t′ˆ〈done〉.

For a workflow w modeled by a process W, a trace t ∈ T (W) corresponds
to a workflow run (or workflow instance) of w. A trace t represents a finished
workflow run if done(t); otherwise t represents an unfinished workflow run. Note
that given a trace t and a process W, it is straightforward to check, using CSP’s
operational semantics, whether t ∈ T (W).

For a process W that models a workflow, we require the set of traces T (W)
to contain at least one trace that corresponds to a finished workflow run. This
ensures that each workflow can be completed in at least one way.

We define two auxiliary functions that extract users from traces. First, the
projection function user : EB → U , given a business event business.u.a, returns u.
Second, the function users, given a trace t, returns the multiset of users that are
contained in business events in t.

users(t) :=











∅ if t = 〈〉,

{user(b)} ⊎ users(t′) for t = 〈b〉̂ t′and b ∈ EB,

users(t′) for t = 〈e〉̂ t′and e 6∈ EB.

To illustrate these notions, we introduce a running example of a payment
process, similar to the one used in [4].

Example 1 (Payment workflow). Fig. 1 describes a payment workflow where in-
voices are payed by check. For now, all users can execute all actions. Only in
later refinements do we restrict the set of authorized users. First, an invoice is
received and afterwards a payment check is prepared. Next, the payment is either
directly approved, it is approved but at least one further approval is required,
or it is rejected. In the third case, the payment must be prepared again. If the
payment is finally approved, the check is issued and the workflow terminates,
which is denoted by the event done. Fig. 1a models the workflow as a process
W and Fig. 1b depicts the workflow as a labeled transition system. The edge

s1
{l1,...,ln}
−→ s′ denotes the set of labeled transitions s

li→ s′, for i ∈ {1, . . . , n}.

3 We do not use CSP’s special event X and the process SKIP because later we syn-
chronize on done with most, but not all, involved processes. By the semantics of
CSP, all processes must synchronize on X.



W = W1

W1 = bc?u : U .receive invoice → W2

W2 = bc?u : U .prepare check → W3

W3 = (bc?u : U .reject payment → W2)

� (bc?u : U .approve payment → W3)

� (bc?u : U .approve payment → W4)

W4 = bc?u : U .issue check → W5

W5 = done → STOP

RI := {bc.u.receive invoice | u ∈ U}

PC := {bc.u.prepare check | u ∈ U}

AP := {bc.u.approve payment | u ∈ U}

RP := {bc.u.reject payment | u ∈ U}

IC := {bc.u.issue check | u ∈ U}

a) In CSP notation b) As labeled transition system

Fig. 1. Payment Workflow

3.2 Access Control

We use role-based access control (RBAC) [6,10] to describe access-control poli-
cies. We only make use of RBAC’s core feature, which is the decomposition of
the user-permission-assignment relation into a user-role and a role-permission-
assignment relation. For the reminder of this paper, let R be a set of roles.

Definition 1 (RBAC configuration). An RBAC configuration is a tuple
(UA,PA), where UA ⊆ U ×R is the user-assignment relation and PA ⊆ R×A
is the permission-assignment relation.

We say that the user u acts in the role r if (u, r) ∈ UA. Furthermore, the user u
is authorized to execute the action a if ∃r ∈ R . (u, r) ∈ UA and (r, a) ∈ PA.

In contrast to the RBAC standard of NIST [6], we omit the concept of ses-
sions. This is without loss of generality as the activation and deactivation of
roles within a session can be modeled by changing RBAC configurations, where
all assigned roles are always implicitly activated. Note that what we call actions
are called permissions in [6].

Administrative actions AA ⊆ A are the subset of actions that modify RBAC
configurations. For a user u, a role r, and a user-assignment relation UA, the
action addUA.u.r adds the tuple (u, r) to UA and the action rmUA.u.r removes
(u, r) from UA. In this paper, we do not discuss administrative actions that
change permission-assignment relations. We describe a configuration’s evolution
and the enforcement of the resulting access-control policy in terms of a process
that we call the RBAC process.

RBAC(UA, PA) =
(

bc?(u.a) : {u.a | ∃r ∈ R . (u, r) ∈ UA ∧ (r, a) ∈ PA} → RBAC(UA, PA)
)

�

(

ac.addUA?u : U?r : R → RBAC(UA ∪ {(u, r)}, PA
)

�

(

ac.rmUA?u : U?r : R → RBAC(UA \ {(u, r)}, PA)
)



The RBAC process is parametrized by a user-assignment relation UA and a
permission-assignment relation PA, which together represent an RBAC configu-
ration. Besides the channel bc, introduced in Sec. 3.1, the RBAC process also has
a channel called ac of type AA that we call the admin channel. Let EA := {| ac |},
and we call an element of EA an admin event. Note that the RBAC process does
not terminate, i.e., it never behaves like STOP . This is consistent with our view
of access-control monitors that outlive workflow execution.

Given a process W that models a workflow, we define the secure (workflow)
process SW as the parallel composition of W and RBAC, synchronized on all
business events. Like the RBAC process, a secure process is parametrized by an
RBAC configuration.

SW (UA,PA) = W ‖
EB

RBAC(UA,PA)

A secure process models a workflow that only executes actions authorized
under the configuration. By synchronizing only on business events, arbitrary
admin events can be interleaved with business events and done in any order.
Thus, the RBAC configuration can change between workflow actions. Having
introduced all the kinds of events that we need, specifically,Σ = EB∪EA∪{done},
we now refine the workflow from Example 1 into a secure workflow process.

Example 2 (Secure workflow process).
Assume U := {Alice,Bob,Claire} , R :=

{Accountant, Clerk, Manager}, and A := {receive invoice, issue check,

prepare check, approve payment, reject payment}. Also, let the RBAC configu-
ration (UA,PA) be initially given as depicted by the solid arrows in Fig. 2.

Fig. 2. Example RBAC Configuration

Consider the following trace, corresponding to a completed workflow run.

t := 〈bc.Alice.receive invoice, bc.Bob.prepare check,

bc.Bob.approve payment, bc.Alice.issue check, done〉

This trace represents a workflow run of our payment workflow, modeled by W.
In contrast, t 6∈ T (SW (UA,PA)) because no user is authorized to execute
approve payment. This can be overcome by placing Bob in the Manager role.

t′ := 〈bc.Alice.receive invoice, bc.Bob.prepare check, ac.addUA.Bob.Manager,

bc.Bob.approve payment, bc.Alice.issue check, done〉



The new admin event adds the user-role assignment (Bob, Manager) to SW ’s
RBAC configuration as indicated by the dotted arrow in Fig. 2. Therefore,
t′ ∈ T (SW (UA,PA)). However, it is risky to allow Bob to execute both the
actions prepare check and approve payment as he could then approve his own
fraudulent payments. Our next refinement of this example solves this problem
by enforcing an appropriate SoD constraint.

4 Abstract Separation of Duty Constraints

4.1 Separation of Duty Algebra Syntax

Our work builds on Li and Wang’s separation of duty algebra [5], SoDA. We
present below the syntax of SoDA terms.

Definition 2 (SoDA grammar S). A SoDA grammar S with respect to a set
of users U := {u1, . . . , un} and a set of roles R := {r1, . . . , rm} is a quadruple
(N,T, P, S) where:

– N := {S, CT, UT, AT, US, UR, U, R} is the set of nonterminal symbols,
– T := {′,′ , (, ), {, }, ⊗, ⊙, ⊔, ⊓, +, ¬,All} ∪ U ∪ R are the terminal symbols,
– the set of productions P ⊆ (N × (N ∪ T )∗ ) is given by:

S ::= CT | UT CT ::= (CT ⊔ S) | (CT ⊓ S) | (S ⊗ S) | (S ⊙ S) | (UT )+

AT ::= {UR} |R | All UT ::= AT | (UT ⊓ UT ) | (UT ⊔ UT ) | ¬UT

UR ::= U | U, UR U ::= u1 | . . . | un

R ::= r1 | . . . | rm

– and S ∈ N is the start symbol.

The terminal symbols ⊗, ⊙, ⊔, ⊓, +, and ¬ are called operators. Without loss
of generality, we omit the productions CT ::= (S ⊓ CT ) and CT ::= (S ⊔ CT ).
Li and Wang showed in [5] that ⊓ and ⊔ are commutative with respect to their
semantics and this is also the case for our semantics. Therefore, each term that
could be constructed with these additional productions can be transformed to a
semantically equivalent term constructed without them.

Let →1
S
∈ (N ∪ T )+ × (N ∪ T )∗ denote one derivation step of S and →∗

S

the transitive closure of →1
S

. We call an element of {s ∈ T ∗ | S →∗
S
s} a term.

Furthermore, we call an element of {s ∈ T ∗ |AT →∗
S
s} an atomic term. These

are either a non-empty set of users, e.g. {Alice, Bob}, a single role, e.g. Clerk, or
the keyword All. We call an element of {s ∈ T ∗ | UT →∗

S
s} a unit term. These

terms do not contain the operators ⊗, ⊙, and +. Finally, a complex term is an
element of {s ∈ T ∗ |CT →∗

S
s}. In contrast to unit terms, they contain at least

one of the operators ⊗, ⊙, or +. For a term φ, we call a unit term φut a maximal
unit term of φ if φut is a subterm of φ and if there is no other unit term φ′ut that
is also a subterm of φ, where φut is a subterm of φ′ut.



4.2 SoDA Semantics for Multisets of Users

Li and Wang define the satisfaction of SoDA terms for sets of users [5]. We refer
to their semantics as SODAS , which allows for quantitative constraints whereby
terms define how many different users must participate in a workflow. However,
it does not express how many actions each of these users must execute. Consider
the policy P that requires Bob to execute two actions, modeled by the SoDA
term φ := {Bob} ⊙ {Bob}. Under SODAS , φ is satisfied by the set {Bob}. There is
no satisfactory mapping of φ to a process that accepts all traces that correspond
to satisfying assignments of φ. If we define the correspondence between sets
and traces in a way that {Bob} maps to the set of traces containing exactly one
business event executed by Bob, this would not satisfy P . Alternatively, if we map
{Bob} to the set of traces containing arbitrarily many business events executed
by Bob, this set would also include traces that do not satisfy P , for example, the
trace containing three business events executed by Bob. The problem here is that
sets of users are too restrictive: users cannot be repeated and hence information
is lost on how many actions a user (here Bob) must perform.

To address this problem, we introduce a new semantics, SODAM, that de-
fines term satisfaction based on multisets of users. This allows us to make finer
distinctions concerning repetition (quantification requirements) than in SODAS .
As shown below, under SODAM, φ is only satisfied by the multiset {Bob, Bob}.
Mapping multisets to traces is straightforward and the corresponding traces
include exactly two business events that are executed by Bob. In this respect,
SODAM allows a more precise mapping to traces than SODAS .

Definition 3 (Multiset Satisfaction SODAM). Let U ⊆ U be a non-empty
set of users and r ∈ R a role. For a multiset of users U, a term φ, and a user-
assignment relation UA, multiset satisfiability is the smallest ternary relation
between multisets of users, user-assignment relations, and terms, written U |=M

UA

φ, that is closed under the following rules:

(1)
{u} |=M

UA All
∃r ∈ R . (u, r) ∈ UA (2)

{u} |=M

UA r
(u, r) ∈ UA

(3)
{u} |=M

UA U
u ∈ U and ∃r ∈ R . (u, r) ∈ UA (4)

{u} 6|=M

UA φ

{u} |=M

UA ¬φ

(5)
{u} |=M

UA φ

{u} |=M

UA φ+
(6)

{u} |=M

UA φ, U |=M

UA φ+

({u} ⊎ U) |=M

UA φ+

(7)
U |=M

UA φ

U |=M

UA (φ ⊔ ψ)
(8)

U |=M

UA ψ

U |=M

UA (φ ⊔ ψ)

(9)
U |=M

UA φ, U |=M

UA ψ

U |=M

UA (φ ⊓ ψ)
(10)

U |=M

UA φ, V |=M

UA ψ

(U ⊎ V) |=M

UA (φ⊙ ψ)

(11)
U |=M

UA φ, V |=M

UA ψ

(U ⊎ V) |=M

UA (φ⊗ ψ)
(U ∩ V) = ∅ .



We say that U satisfies φ with respect to UA if U |=M

UA φ. Informally, a user
u satisfies the term All if u is in the domain of UA. A user u satisfies a role r
if there is a role assignment (u, r) in UA, and u satisfies a set of users U if u is
member of U and is in the domain of UA. A unit term ¬φ is satisfied by u if
u does not satisfy φ. A non-empty multiset of users U satisfies a complex term
φ+ if each user u ∈ U satisfies the unit term φ. A multiset of users U satisfies a
term φ⊔ψ if U satisfies either φ or ψ, and U satisfies a term φ⊓ψ if U satisfies
both φ and ψ. A term φ ⊗ ψ is satisfied by a multiset of users W, if W can
be partitioned into two disjoint multisets U and V, and U satisfies φ and V
satisfies ψ. Because every user in W must be in either U or V, but not both,
the ⊗ operator separates duties between two multisets of users. In contrast, a
term φ ⊙ ψ is satisfied by a multiset of users W, if there are two multisets U
and V, which may share users, and U satisfies φ, V satisfies ψ, and W is the
sum of U and V. Thus, the ⊙ operator allows overlapping duties where a user
is in both U and V.

We now provide two examples. The first illustrates many of the operators
whereas the second illustrates the difference between SODAM and SODAS .

Example 3. Suppose we have the term φ = (Accountant⊗ (Manager⊔(Accountant⊗

Accountant))) ⊙ All+ and the third user-assignment relation shown in Fig. 2,

UA
′′ := {(Alice, Clerk), (Bob, Accountant), (Bob, Manager), (Claire, Manager)}.

It follows that {Alice, Alice, Bob, Claire} satisfies φ with respect to UA′′. In con-
trast, {Alice, Claire} does not satisfy φ with respect to UA′′, because φ least one
Accountant. Moreover, {Alice, Bob} does not satisfy φ either, because φ requires
also a Manager or a second user who acts as Accountant.

Example 4. Under SODAM, the term {Bob} ⊙ {Bob} ⊙ {Bob}+ is satisfied by all
multisets that contain Bob three or more times, i.e. Bob must execute at least
three actions. Under SODAS , this term is only satisfied by the set {Bob} and
therefore does not define how many actions Bob must actually execute.

We conclude by relating SODAM and SODAS . Under SODAS , X |=S

(U,UR) φ

denotes the satisfaction of a term φ by a set of users X with respect to a tuple
(U,UR), where U ⊆ U and UR ⊆ U×R. Because actions can only be executed by
users who have at least one role assignment, we simplify this tuple and extract
the available users from UA, as one can see in Rule (3) of Def. 3. For a user-
assignment relation UA, the function lwconf(UA) := ({u ∈ U | ∃r ∈ R . (u, r) ∈
UA}, UA) maps UA to the corresponding tuple in SODA

S . Moreover, given a
multiset of users U, the function userset(U) := {u | u ∈ U} returns the set
of users contained in U. We prove the following lemma in [11], showing that
SODAM generalizes SODAS in the following sense.

Lemma 1. For all terms φ, all user-assignment relations UA, and all multisets
of users U, if U |=M

UA φ, then userset(U) |=S

lwconf(UA) φ.



5 Separation of Duty Enforcement

5.1 Approach and Requirements

As shown above, SoDA specifies SoD constraints at a high level of abstraction.
However, the enforcement takes place at runtime in the context of a workflow run.
Given a term φ, we now describe how to construct an enforcement monitor for φ.
Our construction maps φ to a process SODφ(UA), called the SoD-enforcement
process, parametrized by a user-assignment relation UA. SODφ(UA) accepts all
traces corresponding to a multiset that satisfies φ with respect to UA.

In practice, it is critical to allow administrative events during workflow ex-
ecution. If Bob leaves his company, it should be possible to remove all his role
assignments, thereby preventing him from subsequently executing actions in cur-
rently executing workflow runs. Similarly, if Alice joins a company or changes
positions, and as a consequence is assigned new roles, she should also be able to
execute actions in workflow runs that were started prior to the organizational
change. Assuming that a user-assignment relation does not change during the
execution of a workflow run is therefore overly restrictive. The SoD-enforcement
process defined below accounts for such changes. The function upd (“update”)
describes how a trace of admin events changes a user-assignment relation.

Definition 4 (UA change). Let a ∈ E∗
A be a trace of admin events and UA a

user-assignment relation. The function upd is defined as follows:

upd(UA, a) :=















UA if a = 〈〉,

upd(UA ∪ {(u, r)}, a′) if a = (ac.addUA.u.r)̂ a′,

upd(UA \ {(u, r)}, a′) if a = (ac.rmUA.u.r)̂ a′,

where u ranges over U , r over R, and a′ over E∗
A.

Let φ be a term, UA a user-assignment relation, and SODφ(UA) the SoD-
enforcement process for φ and UA. We postulate that SODφ(UA) must fulfill
the following administration requirements.

(R1) SODφ(UA) must accept every trace of admin events a, and behave like
SODφ(UA′) afterwards, for UA′ := upd(UA, a).

(R2) If SODφ(UA) accepts a trace t containing no admin events and reaches a
final state, then users(t) |=M

UA φ.
(R3) SODφ(UA) must engage in a business event bc.u.a, if {u} satisfies at least

one maximal unit term of φ with respect to UA and no restriction imposed
by φ is violated.

(R4) The semantics of the operators +, ⊔, ⊓, ⊙, and ⊗ with respect to traces
must agree with their definition in SODAM.

(R1) says that administrative events are always possible and reflected in
the user-assignment relation. (R2) states that in the absence of admin events,
SODφ(UA) agrees with the SODAM semantics. (R3) formulates agreement with



SODA
M, where for a multiset of users U, if U |=M

UA φ, then each user in U
satisfies at least one maximal unit term of φ with respect to UA. Similarly,
SODφ(UA) must not engage in a business event if the corresponding user does
not contribute to the satisfaction of φ. As for (R4), consider for example the
terms φ⊗ ψ and φ⊙ ψ. It must be possible to partition a trace satisfying φ⊗ ψ

or φ⊙ ψ into two subtraces, one satisfying φ and the other one satisfying ψ. In
the case of φ ⊗ ψ, the users who execute business events in one trace must be
disjoint from the users executing business events in the other trace. In contrast,
for φ⊙ ψ, the multisets of users need not be disjoint.

Fig. 3. Relations between a workflow process, an SoD-enforcement process, and the
RBAC process

Fig. 3 illustrates how an SoD-enforcement process relates to the processes
introduced so far. The X-axis represents time and the Y-axis lists a workflow
process, the RBAC process, and an SoD-enforcement process. We distinguish
between two time periods. At design time, a business officer defines a workflow
using a workflow language that can be modeled as a process W, a security officer
specifies the initial RBAC configuration c1, and a compliance officer formulates
SoD constraints as a term φ, which is mapped to the SoD-enforcement process
SODφ. At run time, the workflow corresponding to W is executed an arbitrary
number of times. Each workflow run, t1, t2 and t3, corresponds to a trace ofW. An
instance of SODφ executes in parallel with each workflow run, e.g., s1 in parallel
with t1. Each instance of SODφ tracks who has previously executed actions in
the associated workflow run and ensures that no SoD constraint is violated.
The execution of the RBAC process is modeled as a single trace. Admin events
change the configuration of the RBAC process. In Fig. 3, the RBAC process
evolves from c1 to c2, then to c3, and so forth. Furthermore, RBAC configuration
changes also affect the currently running instances of SODφ. For example, when
the RBAC configuration of the process changes to c4, this is reflected in s2 and
s3 as indicated by the dotted arrows.

Without loss of generality, in the remainder of this paper, we look only at the
execution of one instance of W, the RBAC process, and one instance of SODφ.
Furthermore, we describe the traces of W, RBAC, and SODφ as the single trace
of the partially synchronized, parallel composition of W, RBAC, and SODφ.
The formal definition follows.



5.2 SoDA Semantics for Traces

The following example shows that SODAM is not expressive enough to capture
the administration requirements (R1)–(R4).

Example 5. Consider the policy P that requires one action to be executed by
a user acting as Manager and another action to be executed by a user who is
not acting as Manager. We model P by the term φ := Manager⊙¬Manager. Under
SODAM, φ can only be satisfied by a multiset of users that contains two different
users. Now, consider the trace

t := 〈ac.addUA.Bob.Manager, bc.Bob.a, ac.rmUA.Bob.Manager, bc.Bob.a′〉 ,

for two arbitrary actions a and a′. From (R1)–(R4), it follows that SODφ(∅)
must accept t. By (R1), SODφ(∅) engages in ac.addUA.Bob.Manager and after-
wards behaves like SODφ(UA), for UA = {(Bob, Manager)}. Next, SODφ(UA) en-
gages in bc.Bob.a by (R3) and (R4) because Bob acts as Manager. Again by (R1),
SODφ(UA) engages in ac.rmUA.Bob.Manager and afterwards behaves like SODφ(∅).
Finally, by (R3) and (R4), SODφ(∅) engages in bc.Bob.a′ because Bob does not
act as Manager. In the end, SODφ engaged in a business event with a user that
acted as Manager and in another one with a user not acting as Manager, satisfy-
ing the policy P . However, we have users(t) = {Bob, Bob}, which contradicts the
previous statement that φ is only satisfied by multisets containing two different
users.

The inability to handle administrative changes motivates the introduction of
a third semantics, SODAT . In SODAT , subterms correspond to separate traces
that may interleave with each other in any order. Admin events, though, must
occur in all traces in the same order. This reflects that SoDA terms do not
constrain the order of executed actions but that the user-assignment relation
must be consistent across all subterms at any time. We formalize this relation
by the synchronized interleaving predicate si. For traces t, t1, and t2, si(t, t1, t2)
holds if and only if t1 and t2 “partition” t such that each admin event in t is
contained in both t1 and t2, and each business event is either in one of t1 or t2.
More formally:

Definition 5 (Synchronized interleaving). Let t, t1, t2 ∈ (EB∪EA)∗ be traces.
The synchronized interleaving predicate si(t, t1, t2) is defined as follows:

si(t, t1, t2) :=























































true if t = 〈〉, t1 = 〈〉 and t2 = 〈〉,

si(t′, t′1, t
′
2) if t = 〈a〉̂ t′, t1 = 〈a〉̂ t′1, and t2 = 〈a〉̂ t′2,

si(t′, t′1, t2) or si(t′, t1, t
′
2) if t = 〈b〉̂ t′, t1 = 〈b〉̂ t′1, and t2 = 〈b〉̂ t′2,

si(t′, t′1, t2) if t = 〈b〉̂ t′, t1 = 〈b〉̂ t′1, and t2 6= 〈b〉̂ t′2,

si(t′, t1, t
′
2) if t = 〈b〉̂ t′, t1 6= 〈b〉̂ t′1, and t2 = 〈b〉̂ t′2,

false otherwise,

where a ranges over EA, b over EB, and t′, t′1, and t′2 over (EB ∪ EA)∗.



Note that the or in the third case arises as there are two possible interleavings.
The predicate si will hold (evaluate to true) if either of the two interleavings
hold. We illustrate si with an example.

t := 〈 b1, b2, b3, a1, b4, b4, a2, b5, a3, b6, a4 〉
t1 := 〈 b1, b3, a1, b4, a2, a3, b6, a4 〉
t2 := 〈 b2, a1, b4, a2, b5, a3, a4 〉

For these three traces, si(t, t1, t2) holds.
We now define the satisfaction of SoDA terms by traces.

Definition 6 (Trace Satisfaction SODAT ). Let a ∈ EA be an admin event
and b ∈ EB a business event. For a trace t ∈ (EA ∪ EB)∗, a user-assignment
relation UA, a term φ, and a unit term φut, trace satisfiability is the smallest
ternary relation between traces, user-assignment relations, and terms, written
t |=T

UA φ, closed under the following rules:

(1)
{user(b)} |=M

UA φut

〈b〉 |=T

UA φut

(2)
t |=T

UA φ

t̂ 〈a〉 |=T

UA φ
(3)

t |=T

UA∪{(u,r)} φ

〈addUA.u.r〉̂ t |=T

UA φ

(4)
t |=T

UA\{(u,r)} φ

〈rmUA.u.r〉̂ t |=T

UA φ
(5)

〈b〉 |=T

UA φut

〈b〉 |=T

UA φ+
ut

(6)
〈b〉 |=T

UA φut , t |=T

UA φ+
ut

〈b〉̂ t |=T

UA φ+
ut

(7)
t |=T

UA φ

t |=T

UA φ ⊔ ψ
(8)

t |=T

UA ψ

t |=T

UA φ ⊔ ψ
(9)

t |=T

UA φ , t |=T

UA ψ

t |=T

UA φ ⊓ ψ

(10)
t1 |=T

UA φ , t2 |=T

UA ψ

t |=T

UA φ⊙ ψ
si(t, t1, t2)

(11)
t1 |=T

UA φ , t2 |=T

UA ψ

t |=T

UA φ⊗ ψ
si(t, t1, t2) and users(t1) ∩ users(t2) = ∅

We say that t satisfies φ with respect to UA, if t |=T

UA φ. SODAT fulfills
the requirements of Sec. 5.1. (R1) follows from rules (2) to (4) of Def. 6, (R3)
follows from the rule (1), and (R4) from the rules corresponding to the respective
operators. The satisfaction of (R2) is shown by the following lemma that relates
SODAM and SODAT , which we prove in [11].

Lemma 2. For all terms φ, all user-assignment relations UA, and all traces
t ∈ E∗

B, if t |=T

UA φ, then users(t) |=M

UA φ.

Example 6. Consider again the term φ and the trace t from Example 5. Under
SODAT , t satisfies φ with respect to UA = ∅. However,

t
′ := 〈ac.addUA.Bob.Manager, bc.Alice.a, ac.rmUA.Bob.Manager, bc.Bob.a′〉 ,

does not satisfy φ with respect to UA = ∅, because no action in t′ is executed
by a user who acts as Manager.



5.3 Mapping Terms to Processes

First, we introduce the auxiliary process FIN that engages in an arbitrary num-
ber of admin events before it engages in done, and finally behaves like STOP .

FIN = (done→ STOP ) � (ac.a : AA → FIN)

Using FIN , we define the mapping J.KU
UA.

Definition 7 (Mapping J.KU
UA). Given a set of users U, a user-assignment

relation UA, and a term φ, the mapping JφKU
UA returns a process parametrized

by UA. For a unit term φut and terms φ and ψ, the mapping J.KU
UA is defined as

follows.

(1) JφutK
U
UA := bc?u : {u′ ∈ U | {u′} |=M

UA φut }.a : A → FIN

� ac.addUA?u : U?r : R → JφutK
U
UA ∪ {(u,r)}

� ac.rmUA?u : U?r : R → JφutK
U
UA \ {(u,r)}

(2) Jφ+
utK

U
UA := bc?u : {u′ ∈ U | {u′} |=M

UA φut }.a : A → (FIN � Jφ+
utK

U
UA)

� ac.addUA?u : U?r : R → Jφ+
utK

U
UA ∪ {(u,r)}

� ac.rmUA?u : U?r : R → Jφ+
utK

U
UA \ {(u,r)}

(3) Jφ ⊔ ψKU
UA := JφKU

UA � JψKU
UA

(4) Jφ ⊓ ψKU
UA := JφKU

UA ‖
Σ

JψKU
UA

(5) Jφ⊙ ψKU
UA := JφKU

UA ‖
{done} ∪ EA

JψKU
UA

(6) Jφ⊗ ψKU
UA := �

{ (Uφ,Uψ) | Uφ∪Uψ=Uand Uφ∩Uψ=∅}
JφK

Uφ
UA ‖

{done} ∪ EA

JψK
Uψ
UA

Note that the equations (1) and (2) require determining whether {u′} |=M

UA φut.
This problem is analogous to testing whether a propositional formula is satisfi-
able under a given assignment and is also decidable in polynomial time.

Definition 8 (SoD-enforcement process). For a term φ and a user-assignment
relation UA, the SoD-enforcement process is the process SODφ(UA) := JφKUUA.

Before we show how an SoD-enforcement process is used together with work-
flows and the RBAC process, we define correctness for the mapping J.KU

UA.

Definition 9 (Correctness of J.KU
UA). The mapping J.KU

UA is correct if for all
terms φ, all user-assignment relations UA, and all traces t ∈ Σ∗, t ∈ T (SODφ(UA))
and done(t) if and only if t′ |=T

UA φ, for t = t′ˆ〈done〉, where t′ ranges over
(EB ∪ EA)∗.



Informally, the mapping J.KU
UA is correct if the following properties hold for

all SoD-enforcement processes SODφ: (1) if SODφ accepts a finished workflow
run, the corresponding trace satisfies φ under SODAT , and (2) if a trace satisfies
φ under SODA

T , the corresponding finished workflow run is accepted by SODφ.
We prove Theorem 1 in [11].

Theorem 1. The mapping J.KU
UA is correct.

Hence, if the SoD-enforcement process accepts a finished workflow run, then
the corresponding SoD constraint is satisfied. We also know that no compliant
workflow run is falsely blocked by the SoD-enforcement process. The following
corollary relates the set of traces of SoD-enforcement processes without admin-
istrative events and their corresponding multisets of users under the multiset
semantics. Its proof follows directly from Theorem 1 and Lemma 2.

Corollary 1. For all terms φ, all user-assignment relations UA, and all traces
t ∈ E∗

B, if t̂ 〈done〉 ∈ T (SODφ(UA)), then users(t) |=M

UA φ.

Given a process W that models a workflow and a term φ that models an
SoD policy, the SoD-secure (workflow) process SSWφ is the parallel, partially
synchronized composition of W, the RBAC process, and the SoD-enforcement
process SODφ.

SSWφ(UA,PA) = (W ‖
EB

RBAC(UA,PA)) ‖
Σ

SODφ(UA)

Let b := bc.u.a be a business event. SSWφ(UA,PA) engages in b if W,
RBAC(UA,PA), and SODφ(UA) each engage in b. In other words, b must be
one of the next actions to be taken according to the workflow specification,
the user u must be authorized to execute the action a according to the RBAC
configuration (UA,PA), and u must not violate the SoD policy φ, given the pre-
viously executed business events and UA. Furthermore, RBAC and SODφ can
synchronously engage in an admin event at any time. Finally, SSWφ(UA,PA)
engages in done if both W and SODφ(UA) synchronously engage in done.

Example 7 (SoD-secure workflow process). Assume that the users who execute
actions in our payment workflow must comply with the SoD policy described
by the term φ of Example 3. Example 2 shows that t′ ∈ T (SW (UA,PA)). In
contrast, t′ 6∈ T (SSWφ(UA,PA)) because Bob is not authorized to execute both
the actions prepare check and approve payment. Hence, SSWφ reduces the risk
of fraudulent payments described in Example 2. We change t′ to t′′ by adding
the admin event ac.addUA.Claire.Manager and let Claire execute approve payment.

t′′ := 〈bc.Alice.receive invoice, bc.Bob.prepare check, ac.addUA.Bob.Manager,

ac.addUA.Claire.Manager, bc.Claire.approve payment, bc.Alice.issue check, done〉

The new admin event adds the role assignment (Claire, Manager) to SSWφ’s
RBAC configuration as shown by the dashed line in Fig. 2. The trace t′′ with-
out done satisfies φ with respect to UA under SODAT . Furthermore, t′′ ∈
T (SSWφ(UA,PA)).



This completes our running example and illustrates how the three kinds
of processes presented in this paper interact and how each of them enforces
its corresponding policy: W formalizes the workflow model, RBAC formalizes
a possibly changing access control policy, and SODφ(UA) formalizes the SoD
policy, while accounting for changing role assignments.

5.4 From Processes to Enforcement Monitors

CSP’s operational semantics interprets a process as a labeled transition system
(LTS). It is straightforward to translate an LTS into a program that only allows
the execution of actions as defined by the process. The program thereby consti-
tutes an enforcement monitor for the policy specified by the process, analogous
to the security automata in [12]. The mapping J.KU

UA may yield a nondeterminis-
tic process. However, the corresponding LTS can either be determinized or the
enforcement monitor can keep track of the set of reachable states after each
transition, essentially performing a power-set construction, on-the-fly.

As shown in Sec. 5.3, an SoD-secure process is the parallel execution of three
subprocesses, each responsible for a specific task. Due to the associativity of
CSP’s ||-operator, these three processes can be grouped in any order. Further-
more, the set of events on which these processes synchronize defines the kinds
of events each process engages in. Therefore, any subset of these three processes
can be mapped to an enforcement monitor and the set of events synchronized
with the remaining processes specifies the monitor’s interface. This is of partic-
ular interest if a system already provides one of the components we model by
our processes. For example, assume a system comes with a workflow engine and
an access control enforcement monitor. In this case, it is sufficient to generate
an enforcement monitor for the SoD-enforcement process and to synchronize all
business and admin events with the existing components.

6 Related Work

There are many formalisms for modeling workflows, for example BPMN [13] and
WS-BPEL [14]. Process algebras have often been used to give these a formal se-
mantics; see for example [15]. There are also numerous models and frameworks to
formalize and enforce separation of duty constraints [16,17]. Although in general
more complex, dynamic SoD enforcement is more flexible than static enforcement
and therefore more interesting for real-world settings. Our work is the first to
model dynamic enforcement of SoD constraints with changing role assignments.

Most SoD mechanisms describe and enforce constraints between two or more
explicit actions and are therefore tightly coupled with the workflow definition
[4,18,19]. In contrast, our approach allows a workflow-independent specification
of SoD constraints and their enforcement on different workflows. This has the
advantages discussed in Sec. 1 but does not support action-specific constraints.
However, if desired, such constraints could be expressed as a further refinement
of our SoD-enforcement processes.



In [4], transaction control expressions define dynamic SoD constraints on
data objects. Enforcement decisions are made at run-time, based on the history
of executed actions. A workflow, associated with a data object, is defined by a
list of actions, each with one or more attached roles. A user is authorized to
execute an action if she acts in one of these roles. By default, all actions must
be executed by different users. Constraints are less expressive than SoDA terms
and they can only be defined in combination with a concrete workflow.

In [18], Bertino, Ferrari, and Atluri check the consistency of constraints de-
fined over workflows in a logical framework. Their constraints are defined with
respect to the sequence of individual workflow actions, applying (first-order)
predicates to action occurrences. Schaad, Lotz, and Sohr extend SoD analy-
sis to workflows with dynamic access rights [20]. They describe the workflow,
the associated access control policy, and the delegation and revocation steps as
transitions of a finite state automaton and apply model checking to verify the
constraints expressed in linear temporal logic. However, neither of these papers
provide a mapping to an enforcement mechanism.

Knorr and Stormer [19] map dynamic SoD constraints along with the work-
flow to Prolog clauses computing all workflow runs that do not violate the speci-
fied SoD constraints. In Nash and Poland’s object-based separation of duties [21],
each data object keeps track of the users who have executed actions on it. If a
user requests to execute an action on an object, this is only granted if he has not
executed an action on this object before. This functionality can be modeled with
our formalism if every data object is protected by an SoD-enforcement process.

In [5], Wang and Li also presented an enforcement mechanism for SoDA
terms. In contrast to our work, their approach is static and not applicable to all
combinations of terms, roles, and permission-assignment relations. In particular,
the use of the ¬-operator can invalidate a large subset of assignment relations.

7 Conclusions

We have showed how to map SoDA terms onto workflows in a general way that
also supports administrative actions. The key ideas were (1) to extend SoDA’s
semantics to traces, handling both multiple actions by users and administrative
actions, and (2) to map SoDA terms to processes, which interact with workflow
and access control processes. Because all components are defined in CSP, we
can directly employ CSP’s operational semantics to map these processes to a
workflow engine that performs the necessary security checks at run-time.

As future work, we will explore how to best implement our SoDA processes
and integrate them with existing workflow engines. Efficiency is a central ques-
tion in this regard. In our mapping to CSP, we focused on providing an abstract
specification of a SoDA-enforcement mechanism, rather than an efficient one.
In particular, the rule (6) of Def. 7 yields a state space that is exponential
in the number of system users. We will investigate translations with improved
complexity and the use of data-structures for efficiently representing extended
state-machines. We will also explore optimization techniques, such as pruning



the state space to eliminate the states of workflow runs from which no final state
can be reached, no matter which changes are made to the RBAC configuration.
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