
Verification of a Signature Architecture with
HOL-Z

David Basin1, Hironobu Kuruma2, Kazuo Takaragi2, and Burkhart Wolff1

1 ETH Zurich, CH-8092 Zurich, Switzerland
{basin,bwolff}@inf.ethz.ch

2 Hitachi Systems Development Laboratory, Yokohama Japan
{kuruma,takara}@sdl.hitachi.co.jp

Abstract. We report on a case study in using HOL-Z, an embedding
of Z in higher-order logic, to specify and verify a security architecture
for administering digital signatures. We have used HOL-Z to formal-
ize and combine both data-oriented and process-oriented architectural
views. Afterwards, we formalized temporal requirements in Z and car-
ried out verification in higher-order logic.
The same architecture has been previously verified using the SPIN model
checker. Based on this, we provide a detailed comparison of these two
different approaches to formalization (infinite state with rich data types
versus finite state) and verification (theorem proving versus model check-
ing). Contrary to common belief, our case study suggests that Z is well
suited for temporal reasoning about process models with rich data. More-
over, our comparison highlights the advantages of this approach and pro-
vides evidence that, in the hands of experienced users, theorem proving
is neither substantially more time-consuming nor more complex than
model checking.

1 Introduction

While there is increasing consensus about the usefulness of formal methods for
developing and validating critical systems, there are many options and schools
of thought on how best to do this. Formal methods can be loosely characterized
along different dimensions in terms of what views of the system they empha-
size, the proof techniques used, etc. When most of the complexity of the system
stems from the way that processes interact, and the data manipulations are com-
paratively simple, then the use of a process-oriented modeling language, like a
process algebra or some kind of communicating automata, is typically favored
and model checking is the preferred means of verification. On the other hand,
when data is structured into rich data types (e.g., formalizing problem domains,
interface requirements, and the like) that are subject to complex manipulations,
then data-oriented modeling languages are considered superior and verification is
carried out by theorem proving. But what about systems whose design encom-
passes both complex data and nontrivial interaction and whose requirements
speak about both the operations on data and their temporal sequencing? Here

there is less consensus and the options available include using abstraction to
simplify the data model to enable model checking, theorem proving, and even
combining formal methods.

In this paper, we look at an example of one such system: a security archi-
tecture used for a digital signature application. The architecture is based on
the secure operating system DARMA (Hitachi’s platform for Dependable Au-
tonomous hard Realtime MAnagement) [2], which is used to control the inter-
action between different subsystems, running on different operating platforms.
In particular, DARMA is used to ensure data integrity by separating user API
functions, which run on a potentially open system (e.g., connected to the In-
ternet), from those that actually manipulate signature-relevant data, which run
on a separate, protected system. Any model of this architecture must formalize
both the processes that run on the different platforms and the data that the
processes manipulate to produce signatures. Moreover, the modeling formalism
must be capable of formalizing data-integrity requirements, expressed as tempo-
ral properties about how the different data stores can change.

Here we present a model of the signature architecture that combines data-
oriented and process-oriented aspects. We describe the system’s state and its
state transitions in the specification language Z [14]. As Z is a very rich speci-
fication language, we also use it to formalize a simple process model describing
the system’s semantics in terms of the set of its traces, i.e., those state sequences
possible. This provides a basis for naturally formalizing the system’s integrity
requirements as trace requirements and carrying out verification by induction
over the set of traces. Our first contribution in this paper is to show how the
use of a sufficiently expressive data-modeling language provides a foundation for
formalizing a trace-based model of process interaction. Thus, there is no need to
resort to different formal methods to formalize and combine the different system
views since this can all be done within Z itself. Moreover, via the embedding of
Z in higher-order logic (HOL-Z), we can prove system correctness by theorem
proving within the Isabelle/HOL system [6, 12].

In a previous case study [5], the same architecture was formalized and veri-
fied using the SPIN model checker [10]. Our second contribution is to provide a
detailed comparison of these two different approaches to formalization (infinite
state with rich data types versus finite state) and verification (theorem prov-
ing versus model checking). Perhaps surprisingly, our experience shows that in
the hands of an experienced user, theorem proving is neither substantially more
time-consuming nor more complex, and in some regards it is considerably sim-
pler, than working with a process-oriented view alone using a model checker.
Moreover we document a number of tradeoffs where the additional complexity
is counterbalanced by additional benefits, for example, a more general architec-
ture, stronger theorems, and an increased confidence in the system gained by
formalizing and proving system invariants.

Overall, our modeling and verification of signature architecture is one of the
largest case studies made using HOL-Z. Previous case studies also include a secu-
rity architecture (for controlling access to a repository) [7], but there the empha-

sis was on data refinement, rather than the verification of temporal properties
of system runs. The studies are complementary in that together they illustrate
how HOL-Z can be used to formalize, verify, and refine architectures at different
levels of abstractions, covering both data and process-oriented aspects.

Organization. In Section 2, we provide an informal overview of both the signature
architecture and its security requirements. We describe our formalization of the
architecture in Section 3 and its properties and correctness proofs in Section 4. In
Section 5, we conclude with an in-depth comparison with a previous case study
based on model checking. Note that all definitions and complete proof scripts
for this case study are given in [4].

2 The Signature Architecture

2.1 Overview

The signature architecture is based on two ideas. The first is that of a hystere-
sis signature [15], which is a cryptographic approach designed to overcome the
problem that, for some applications, digital signatures should be valid for very
long time periods. Hysteresis signatures address this problem by chaining signa-
tures together so that the signature for each document signed depends on hash
values computed from all previously signed documents. These chained signatures
constitute a signature log and to forge even one signature in the log an attacker
must forge (breaking the cryptographic functions behind) a chain of signatures.

The signature system reads the private keys of users from key stores, and
reads and updates signature logs. Hence, the system’s security relies on the con-
fidentiality and integrity of this data. The second idea is to protect these using a
secure operating platform. For this purpose, Hitachi’s DARMA system [2] is used
to separate the user’s operating system (in practice, Windows) from a second
operating system used to manage system data (e.g., Linux). This compartmen-
talization plays a role analogous to network firewalls, but here the two systems
are protected by controlling how functions in one system can call functions in
the other. In this way, one can precisely limit how users access the functions and
data for hysteresis signatures that reside in the Linux operating system space.

Our model is based on a 13 page Hitachi document, which describes the
signature architecture using diagrams (like Figures 1 and 2) and text, as well as
discussions with Hitachi engineers.

2.2 Functional Units and Dataflow

The signature architecture is organized into five modules, whose high-level struc-
ture is depicted in Figure 1. The thick-lined boxes represent modules and the
thin-lined boxes represent individual functions.

The first module contains three functions, which execute in the user op-
erating system space. We call this the “Windows-side module” to reflect the

AuthenticateUserW

LogoutW

GenerateSignatureW

Linux−side module

AuthenticateUserL

GenerateSignatureL

LogoutL

Windows−side module

D
A

R
M

A

Session M
anager

A
ccess C

ontroller

Fig. 1. The Signature Architecture

Log
Signature

Private−Key

Session ManagerAccess Controller

Access control
list

ReadSignatureRecord

ReadPrivateKey

AuthenticateUser

AppendSignatureRecord

Logout

FreeSessionInformation

CheckValidofSession

RegistSessionInformation

Session Table

Fig. 2. The Access Controller and Session Manger Modules

(likely) scenario that they are part of an API available to programs running
under the Windows operating system. These functions are essentially proxies.
When called, they forward their parameters over the DARMA module to the
corresponding functions in the second, protected system, which is here called
the “Linux-side module”, again reflecting a likely implementation. There are
two additional (sub)modules, each also executing on the second system, which
package data and functions for managing access control and sessions.

To create a hysteresis signature, a user takes the following steps on the Win-
dows side:

1. The user application calls AuthenticateUserW to authenticate the user and
generate a session identifier.

2. The application calls GenerateSignatureW to generate a hysteresis signature.
3. The application calls LogoutW to logout, ending the session.

As explained above, each of these functions uses DARMA to call the correspond-
ing function on the Linux side and DARMA serves to restrict access from the

Parameters
Input:

username: Name of the user who generates the hysteresis signature.
password : The password for username

Output:
SessionID : If the user authentication is successful, SessionID > 0,

otherwise SessionID ≤ 0.

Details

1. Sends username, password and command to Linux side using CommunicateW. The
command is information used by the Linux-side module to distinguish the type of
data that it receives.

2. Outputs SessionID returned by CommunicateW .

Fig. 3. Interface Description for AuthenticateUserW

Parameters
Input:

username: Sent by AuthenticateUserW through Darma.
password : Sent by AuthenticateUserW through Darma.

Output:
SessionID : If the user authentication is successful, then SessionID > 0,

otherwise SessionID ≤ 0.

Details

1. Calculate the hash value of password using the Keymate/Crypto API. If successful,
go to step 2, otherwise set SessionID to CrypotErr (≤0) and return.

2. Authenticate the user using the function AuthenticateUser of Access Controller.

3. Output SessionID returned by AuthenticateUser.

Fig. 4. Interface Description for AuthenticateUserL

Windows side to only these three functions. The Linux functions themselves may
call any other Linux functions, including those of the Access Controller , which
controls access to data (private keys, signature logs, and access control lists).
The Access Controller in turn uses functions provided by the Session Manager ,
which manages session information (SessionID, etc.), as depicted in Figure 2.

The Hitachi documentation provides an interface description for each of these
functions. Two representative examples are presented in Figures 3 and 4. These
are the descriptions of the functions AuthenticateUserW and AuthenticateUserL.
The former calls DARMA and returns a session identifier while the latter does
the actual work of checking the password and communicating with the access
controller.

2.3 Properties

The Hitachi documentation also states three requirements that the signature
architecture should fulfill. These state that authenticated users are limited to
generating one signature (with their private key) per authentication.

R1. The signature architecture must authenticate a user before the user gener-
ates a hysteresis signature.

R2. The signature architecture shall generate a hysteresis signature using the
private key of an authenticated user.

R3. The signature architecture must generate only one hysteresis signature per
authentication.

3 Formal Model

3.1 Formal Method Used

For our work, we have used Z as our modeling language and the environment
Isabelle/HOL-Z for theorem proving. As Z is well established and extensively
documented, e.g., [11, 14, 16], we will assume the reader’s familiarity with it.
HOL-Z [6] is a system built upon Isabelle/HOL [12]. It provides a front end for
creating “literate specifications”, where specifications are mixed with informal
explanations and are constructed as LATEX documents, typeset using standard Z
macros and idioms. These specifications are processed by HOL-Z and translated
into a conservative shallow embedding of Z in HOL. HOL-Z also provides tactic
support tailored to reasoning about Z specifications and implements various
verification and refinement techniques.

3.2 The Data Model

Our formalization of the system state and operations is basically standard and
closely follows Hitachi’s informal specification: we formalize a state schema for
each of the different modules and an operation schema for each function.

State Schemas. As examples, we present two state schemas: the session manager
and DARMA. The session manager maintains a session table, which associates
user names and session identifiers to information on access permissions for keys
and the signature log.

SESSION TABLE ==
(USER ID \ {NO USER}) 7→

(SESSION ID \AUTH ERRORS) 7→
[pkra : PRI KEY READ ACCESS ;
slwa : SIG LOG WRITE ACCESS]

In this definition, USER ID, SESSION ID, PRI KEY READ ACCESS,
and SIG LOG WRITE ACCESS are the types of user identifiers, session iden-
tifiers, and permissions on private keys and signature log access, respectively.
NO USER and AUTH ERRORS are constants representing error elements.
The session manager also stores the set of session identifiers currently in use.

SessionManager

session table : SESSION TABLE
session IDs : F SESSION ID

∀x, y : dom(session table) •
(∃s : SESSION ID • s ∈ dom(session table(x))

∧ s ∈ dom(session table(y))) ⇒ x = y
∀x : dom(session table) •

∀s : dom(session table(x)) • dom(session table(x)) = {s}

The predicate part of this schema states that a session identifier is associated
with at most one user identifier and, conversely, that each user identifier is
associated with at most one session identifier. From this predicate, it follows
that each authenticated user has exactly one, unique session identifier.

The DARMA module serves as a communication medium. Its state records
which of the three Windows-side functions are called along with its arguments
and the return value from the Linux side. Part of this schema is given below,
where we have elided declarations for the arguments and return values for the
signature generation and logout functions.

DARMA
Command : COMMAND
User authentication uid : USER ID \ {NO USER}
User authentication pw : seq CHAR
Authentication : SESSION ID \ {x : SESSION ERROR • Inr(x)}

...

Operation Schemas. Each of the module functions is associated with an opera-
tion schema. The association is mostly straightforward, although one aspect that
requires explanation is the way that we model DARMA’s use as a communica-
tion medium. To formalize this, each operation schema includes a copy of the
DARMA state and explicitly relates the schema’s local input/output variables
(respectively postfixed by “?” and “!”, following the standard Z convention) with
their DARMA counterparts.3 We illustrate this below, for the module functions
AuthenticateUserW and AuthenticateUserL, which were described in Section 2.2.
3 Logically, the input and output variables are determined by the DARMA state and

could be eliminated. However, not only do they clarify the information flow, they also
help to maintain the correspondence between our formal specification and Hitachi’s
informal interface descriptions (see Figures 3 and 4) with their explicit inputs and

The schema AuthenticateUserW models the identically named function, given
in Figure 3. This function is quite simple and essentially acts as a proxy, forward-
ing values over DARMA. Hence the only thing to model is this communication.

AuthenticateUserW
userid? : USER ID
password? : seq CHAR
session id! : SESSION ID
DARMA

User authentication uid = userid?
User authentication pw = password?
Command = authenticate user
session id! = Authentication

Here the variables User authenticate uid, User authenticate pw, Command,
and Authentication are state variables from the DARMA state schema. The
first two are assigned the input values userid? and password?, coming from
the user. Command represents the name of the function called, named here by
the constant authenticate user. Finally the output of the schema, session id!,
is assigned Authentication, representing communication from DARMA (as we
will see below, this represents the output of AuthenticateUserL).

The actual work in authenticating users and registering session information is
carried out on the Linux side by AuthenticateUserL. Our operation schema here
formalizes the description given in Figure 4. Step 1 of the informal description is
reflected in the test of the hash value. Step 2 is modeled in the first else branch,
using an auxiliary function for user authentication, which returns either a new
session identifier or an error value. The remainder of the specification formalizes
how to proceed, depending on whether the hash calculation and authentication
succeeded or failed. In the former case (Authentication /∈ AUTH ERRORS),
the session manager’s state is updated: the session table records, for this user
identifier and session identifier, the right to read the user’s private key and to
update the signature log, and the set of session identifiers is updated with the
new session identifier. In the latter case (Authentication ∈ AUTH ERRORS),
the session manager’s state is unchanged. Note that the result of Authentica-
teUserL is stored both in the output SessionID! and in the DARMA variable
Authentication.

outputs. Note too that, as it is standard for Z, reference to input and output, as
well as other imperative notions like assignment, is just a conceptual convenience;
the semantics of Z schemas is, of course, the standard declarative one, given by sets
of bindings.

AuthenticateUserL
∆SessionManager
ΞHysteresisSignature
ΞAccessController
username? : USER ID
password? : seq CHAR
SessionID! : SESSION ID
DARMA

Command = authenticate user
Authentication = if hashFailure(User authentication pw)

thenCRY PT ERR
elseAuthenticateUser(User authentication uid,

hash(User authentication pw), access control list,
session table, session IDs)

session table′ = if Authentication /∈ AUTH ERRORS
then session table ∪

{User authentication uid 7→ {Authentication 7→
〈|pkra == accept read prikey, slwa == accept write siglog|〉}}

else session table
session IDs′ = if Authentication /∈ AUTH ERRORS

then session IDs ∪ {Authentication} else session IDs
username? = User authentication uid
password? = User authentication pw
SessionID! = Authentication

In this schema, the functions hashFailure and AuthenticateUser are defined sep-
arately by axiomatic definitions. For example, AuthenticateUser checks the user
identifier and the hashed password against an access control list. In the case of
a successful authentication, a new session identifier is generated.

3.3 The Process Model

In general, there are many possible ways of enriching a data model with process-
oriented aspects, ranging from the use of combined (data/process-oriented) for-
mal methods, e.g., [8, 13], to working with a fixed notion of abstract machine
and execution semantics, e.g., [1]. In our case, we proceed by formalizing the
system traces within Z.

Architecture as Transition System. We use Z’s schema calculus to “wire to-
gether” the parts of our data model into an architectural description by speci-
fying how the Windows-side operations interact with the Linux-side operations
over DARMA. First, we separately collect all the client-side and server-side op-
erations. We use schema disjunction here to model nondeterministic choice: This
transition relation models a system where the Windows-side functions may be
called in any order and with any values, valid or invalid. Afterwards, we use

schema conjunction to model the parallel composition of the client-side opera-
tions with the server-side operations and we use existential quantification (again
in Z’s schema calculus) to hide the shared DARMA state. This models syn-
chronous internal communication between the sides. (Internal communication
within each side is not modeled here.) The resulting architectural description
defines a global transition relation.

ClientOperation ==
AuthenticateUserW ∨GenerateSignatureW ∨ LogoutW

ServerOperation ==
AuthenticateUserL ∨GenerateSignatureL ∨
LogoutL ∨NopOperationL

System == ∃DARMA • ClientOperation ∧ ServerOperation

Note that NopOperationL models a “no-op” operation on the Linux side by
simply stuttering the Linux-side state. It results when DARMA is called from
the client side, but a client-side error occurs and the step is aborted.

Afterwards, we specify the global state of the system by composing the
states of the system components (HysteresisSignature formalizes the part of
the Linux-side module’s state that manages the signature logs). Similarly, we
specify the initial state, given schemas (not shown here) specifying the initial
states of the different modules.

GlobalState ==
SessionManager ∧HysteresisSignature ∧AccessController

Init ==
SessionManagerInit ∧HysteresisSignatureInit ∧AccessControllerInit

System Traces. The schema System formalizes a transition relation, whose state
variables range over the input/output variables of all operation schemas (e.g.,
variables like username? and SessionID! from AuthenticateUserW). To reason
about the system behavior, what we actually need is a transition relation ex-
pressed in terms of just those variables in GlobalState (e.g., state variables such
as session table and session IDs from the state schema SessionManager).
Hence, to proceed, we project the transition relation System to those state vari-
ables in GlobalState by existentially quantifying over the remaining variables.
This construction can be elegantly formalized using Z’s schema comprehension:

Next == {System • (θGlobalState, θGlobalState′)} .

This builds the relation that consists of pairs (θGlobalState, θGlobalState′),
whose components formalize the variable tuples (so-called characteristic bind-
ings in Z) in the pre-state and post-state.

Afterwards, we define the set of traces. Each trace is represented by a function
that describes how the global state of the system can evolve over time.

Traces ==
{f : N→GlobalState | f(0) ∈ Init ∧ (∀i : N • (f(i), f(i + 1)) ∈ Next)}

4 Properties and Proofs

4.1 Formalizing the Security Requirements

The architecture’s informal requirements, given in Section 2.3, are phrased in
terms of temporal relationships between events. For example, (R1) states that
“the signature architecture must authenticate a user before the user generates a
hysteresis signature.” This, and the other two requirements, can be formalized as
a set of traces that constitutes a safety property over a set of events and we can
formalize the correctness of the architecture by stating that each such property
holds for every system trace.

First we must formalize the relevant events. In model checking, it is common
to associate events with different states in a transition system, which correspond
to execution events like calls to particular functions. Unfortunately, this leaves
open the question of where these events are actually generated. Moreover, it is
not well suited to a more abstract, declarative approach to modeling where there
are no program points, only sequences of program states. Here we will take an
alternate, less operational approach. We introduce abstract event predicates that
characterize the state changes associated with events, i.e., they specify the effect
of events rather than their cause. An event predicate, therefore, is a (possibly
parameterized) relation over pairs of states that characterizes when a relevant
state change occurs.

Let us now turn to (R1), our first requirement. The formalizations of the
other two requirements are similar. (R1) can be formalized in terms of three
event predicates: the session table changes due to a user authenticating himself
by logging in; the session table changes due to a user logging out; and the
signature log changes (due to a generated hysteresis signature), for some user.
Below is an axiomatic definition formalizing the first of these predicates.

userDoesLogin : USER ID → (GlobalState↔GlobalState)

∀uid : USER ID ; s1, s2 : GlobalState •
(s1, s2) ∈ userDoesLogin(uid)

⇐⇒
uid /∈ dom(s1.session table) ∧ uid ∈ dom(s2.session table)

We can now directly formalize (R1) in terms of the relative positions (re-
flecting the relative time) where these predicates hold in the system traces. Our
requirement states that at every point where a user changes the signature log,

there exists a previous time point where the user logged in, and moreover he
has not logged out since then. In other words, there must be a login for the user
before the associated signature log entry is changed and his session must still be
valid.

` ∀t : Traces ; n : N ; uid : USER ID •
(t(n), t(n + 1)) ∈ siglogChanges(uid)

⇒
(∃k : 0 . . (n− 1) • (t(k), t(k + 1)) ∈ userDoesLogin(uid)

∧ (∀j : (k + 1) . . (n− 1) •
(t(j), t(j + 1)) /∈ userDoesLogout(uid)))

Note that we have formalized our requirement in terms of consecutive pairs of
time points and relationships between time points. An alternative, also possible
in Z, would be to embed the operators of a temporal logic like LTL over our
traces in order to express these dependencies using temporal modalities.

4.2 Proofs

All three requirements were proved using the proof environment for HOL-Z.
In Section 5, we provide statistics on our verification effort. Here we restrict
ourselves to a few comments on its overall structure.

The verification required proving 173 theorems. Many of these were simple
lemmas, for example, for simplifying expressions, which were then incorporated
into Isabelle’s automatic proof procedures. The bulk of the preparatory work
centered around formalizing and proving (1) properties of operation schemas,
(2) architecture decomposition theorems, and (3) global invariants.

With respect to (1), for each operation schema we stated and proved lemmas
that characterize its preconditions, postconditions, and invariants in terms of its
inputs, outputs, pre-state, and post-state. The theorems proven were of the form

OP (in, out, σ, σ′) ⇒ COND(in, out, σ, σ′) ⇒ Φ(σ, σ′) ,

where OP is an operation schema, COND a side-condition and Φ is one of:

INV (σ, σ′), expressed in terms of (state variables from) the pre-state σ and the
post-state σ′;

PRE(σ), expressing a condition on the pre-state σ; or
POST (σ′), expressing a condition on the post-state σ′.

An example of such a lemma is the invariant

` AuthenticateUserL ⇒ uid : dom(session table)
⇒ session table′(uid) = session table(uid) ,

stating that when a user identifier is in the session table, its entries remain
unchanged after another user is authenticated. Note that, as this example illus-
trates, HOL-Z is syntactically more liberal than Z. This invariant is a HOL-Z

formula, but strictly speaking not a Z formula, since it combines Z schema ex-
pressions and predicate calculus expressions and it is not closed.

In general, the complexity of proving these lemmas ranged from easy (as
in this case) to very high, both in terms of the conceptual work required to
understand why they hold and in terms of the proof effort required in Isabelle.

With respect to (2), one of the main lemmas proved was an architecture
decomposition theorem, which states that the signature architecture can make
progress in exactly four ways:

1. an AuthenticateUserW step occurs in parallel with an AuthenticateUserL
step;

2. a GenerateSignatureW step starts and aborts due to an internal error while
running in parallel with NopOperationL (a stuttering step on the Linux
side);

3. a GenerateSignatureW step occurs in parallel with a GenerateSignatureL
step; or

4. a LogoutW step occurs in parallel with a LogoutL step.

By using the Z schema calculus, this theorem can be compactly expressed as:

` (∃DARMA • AuthenticateUserW ∧AuthenticateUserL) ∨
(∃DARMA • GenerateSignatureW ∧NopOperationL) ∨
(∃DARMA • GenerateSignatureW ∧GenerateSignatureL) ∨
(∃DARMA • LogoutW ∧ LogoutL)

⇔ System .

This theorem explains in which ways synchronous communication over DARMA
is possible. We use it in the right-to-left direction as a kind of “elimination rule”
that decomposes assumption over steps in traces by case-splitting: if we have a
trace t and a system transition (s, s′) = (t(n), t(n+1)), a property P (s, s′) holds
if it holds for the four possible system transitions.

With respect to (3), we proved a large number of global invariants, i.e.,
formulas of the form ∀t : traces•INV (t(n), t(n+1)). Examples of such invariants
are that the signature log monotonically increases, and that the domain of the
session table and signature log are always bounded by the domain of the table
of private keys. These lemmas, as well as the proofs of the three requirements,
were proven by induction over the positions in a trace. In the inductive case,
the architecture decomposition theorem was applied to decompose the step into
possible cases. In each case, either other global invariants or relevant lemmas
about properties of operation schemas were used to reason about the consecutive
states. Hence, induction and decomposition served as the primary mechanism to
reduce the reasoning about global invariants to standard reasoning about local
preconditions, postconditions and invariants of operations.

Measurement PROMELA/SPIN HOL-Z/Isabelle

Model Variants 4 1
Model Size 647 lines (average) 550 lines
Model Bounds 2 users, 2 sessions unbounded
Property Size 184 lines 50 lines
Proof Size none 3662 lines

Property Specification Time 6 days 2 days
System Modeling Time 17 days 12 days
Verification Time (included above) 19 days
Proof Checking Time 14 hours 12 minutes
Total Time 23 days 33 days

Expert Input Required 10% 60%

Fig. 5. Statistics on the Two Verifications

5 Theorem Prove or Model Check?

In previous work [5], we used the SPIN model checker [10] to verify a PROMELA
model of the signature architecture. There, we formulated an executable model
in terms of synchronously communicating processes, one for each of the different
system modules. The requirements were formalized either in linear temporal
logic or by augmenting the model (e.g., adding monitor processes) and SPIN
was used to verify the result. While there have been other general comparisons
of theorem proving versus model checking, e.g., [9], and considerable work on
their integration, there appear to be few studies that examine their relationship
concretely on an in-depth case study. We take up this challenge here and make
both quantitative and qualitative comparisons between our two formalizations.
The results, we believe, help shed light on the relative strengths and weaknesses
of the different approaches.

Note that any such comparison must be made and interpreted with care. The
conclusions can differ considerably depending, for example, on the expertise of
those carrying out the verification, the specific formalisms and tools used, and
what is actually measured (see [3] for a discussion of these points). To ensure
an accurate comparison, we have kept statistics on both efforts (times spent
are estimates) and also ensured that each verification was made on an equal
footing: Both verifications were carried out by a team consisting of an expert in
the formal method and an engineer with limited initial knowledge in the formal
method.

Figure 5 provides a quantitative comparison of two approaches. We explain
the differences below.

Size. In PROMELA, we built an initial model of the system, which we adapted
afterwards for each of the three properties that we verified. The 647 lines of
specification is the average size of the four models created. Despite the fact that
the HOL-Z model differs substantially from the PROMELA models, they are

all of roughly similar size. This stems from the fact that the HOL-Z model is
more detailed than the PROMELA models in some respects and more abstract
in others. For example, HOL-Z state schemas are more detailed since they define
not only data types, but also invariants. On the other hand, HOL-Z operation
schemas are typically smaller as they abstractly specify the relationship between
states, rather than the sequence of operations used to change states.

In contrast, the HOL-Z property specifications are considerably more concise,
due to their greater generality. In the PROMELA models, all of the relevant data
domains (messages, keys, users, etc.) were bounded to support finite-state model
checking. Hence all statements quantifying over these sets must be translated
into finite, but large, conjunctions or disjunctions. Moreover, rather than using
event predicates as in HOL-Z, we had to formulate state changes in terms of
explicit statements about program points as well as manipulated data. This too
results in a more voluminous specification. So here we see one of the advantages of
working with a general, behavioral model as opposed to a programing language-
based (PROMELA) model.

Time. More time was spent in the theorem-proving approach than in the model-
checking approach.4 The main difference is due to the fact that model checking
is automatic as opposed to interactive (the 19 days reflects the time spent inter-
acting with the theorem prover). Folk wisdom is that, because of automation,
model checking is much less time consuming than theorem proving. While this is
indeed the case for the verification time itself, the overall time reduction, about
30%, is not so significant. Moreover, this difference is even less significant when
one accounts for the fact that, in the HOL-Z verification, 5 of these days were
spent proving stronger formalizations of the properties (see below).

However, the numbers point only indirectly to what is probably the most
interesting difference: how the time was spent. With SPIN, once a model and a
property are specified, the verification effort is focused on simplifying the prob-
lem so that the model checker terminates. This involves tuning constants as
well as introducing abstractions and other simplifications. In some cases, the
complexity of the model may even increase, due to the addition of auxiliary
variables, assertions, and new (monitor) processes. All of these additions were
necessary during our verification and hence the need to create three additional
model variants, one for each property verified. The time spent with these activi-
ties was substantial and is reflected both in the increased time taken for system
modeling and for property specification.

Note that these efforts are quite different from those required for verification
in HOL-Z. Our HOL-Z verification was based on only one model, the general
system model. We neither had to work out any abstractions or restrictions in
advance nor to make subsequent changes during verification. Hence the spec-
ification time was shorter. In return, substantially more time was required for
verification. Although some of this time was spent pushing low-level proof details

4 Proof checking times, measuring the times taken by the SPIN and Isabelle systems,
are on a 3 gigaherz Pentium IV computer with 1 gigabyte of RAM.

through the Isabelle system, as explained in Section 4.2, much of it concerned
discovering, formalizing, and proving auxiliary system invariants, which were
required to prove the properties of interest.

Although discovering and proving invariants is a more time-consuming activ-
ity than (PROMELA) model simplification, it is certainly also a more insightful
one. Many of the invariants are interesting in their own right as they lead to a
better understanding of why the architecture actually works. Moreover, in our
work, they also led to our discovering problems in our formalization of Hitachi’s
requirements. For example, a direct formalization of the first requirement (that
signature generation requires a prior login) overlooks the fact that the login ses-
sion must still be valid, in other words, there cannot be a logout between these
events. This weaker statement (i.e., omitting the last conjunct in the theorem
statement in Section 4.1) is what we formalized and verified in SPIN. In HOL-
Z, working through the necessary invariants led us to realize that the stronger
theorem was actually intended and held.

Expertise needed. In both case studies, expert input was needed, albeit to a
different degree and in different places. In both approaches, it was possible for
an engineer with limited initial knowledge of the formal method to build the
first model after receiving some training for the task. In the SPIN case study,
most of the expert help required was in formulating properties (which turned out
to be surprisingly tricky) and simplifying the PROMELA models so that SPIN
would terminate. For the HOL-Z model, an expert review and restructuring
of the model was needed. Finding suitably abstract formulations in Z appears
to require more expertise than finding “natural” formulations in PROMELA,
which was perceived as a kind of programming language. While formulating the
security properties in Z was possible without expert advice, this was not so with
theorem proving, where considerable hands-on work by the expert was necessary.
This is reflected by the 60% expert contribution reported in Table 5.

What was modeled and verified. Finally, the numbers given do not reflect that
there were substantial differences in what was modeled and verified. A standard
benefit of using a rich logic, like HOL-Z, is that one can directly model infinite
data domains in their full generality, rather than settling for some finite ap-
proximation. This was also the case here, where PROMELA modeling required
bounding all of the relevant data domains. Hence, the HOL-Z model is both
more general and the theorems proven are significantly stronger.

A more subtle difference stems from the use of a declarative versus an op-
erational approach. In HOL-Z we did not need to commit to either particular
data types or concrete procedures for data manipulation. This leaves us consid-
erably more flexibility in how the architecture can be refined and for exploring
changes. As an example, in the Hitachi architecture, a user may only log in once
before logging out again, i.e., a user may be associated with only one session.
However, an alternative architecture is one that supports multiple sessions per
user. Modeling these kinds of changes in our architecture is trivial. Here, we can
specify this alternative simply by deleting the second constraint in the predicate

part of the session manger schema (Section 3.2), which requires that each user
identifier is associated with at most one session identifier. In this case, almost
all of the system invariants proven go through, unchanged.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. T. Arai, T. Sekiguchi, M. Satoh, T. Inoue, T. Nakamura, and H. Iwao. Darma:
Using different OSs concurrently based on nano-kernel technology. In Proc. 59th-
Annual Convention of Information Processing Society of Japan, volume 1, pages
139–140. Information Processing Society of Japan, 1999. In Japanese.

3. D. Basin and M. Kaufmann. The Boyer-Moore Prover and Nuprl: An experimental
comparison. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 90 –
119. Cambridge University Press, 1991.

4. D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Specifying and
verifying hysteresis signature system with HOL-Z. Technical Re-
port 471, ETH Zürich, January 2004. Available at the URL
http://kisogawa.inf.ethz.ch/WebBIB/publications/papers/2005/HSD.pdf.

5. D. Basin, K. Miyazaki, and K. Takaragi. A formal analysis of a digital signature
architecture. In S. Jajodia and L. Strous, editors, Integrity and Internal Control
in Information Systems, IV, pages 31–48. Kluwer Academic Publishers, 2004.

6. A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof environment for
Z-specifications. Journal of Universal Computer Science, 9(2):152–172, Feb. 2003.

7. A. D. Brucker and B. Wolff. A case study of a formalized security architecture.
In Electronic Notes in Theoretical Computer Science, volume 80. Elsevier Science
Publishers, 2003.

8. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In Proceedings of
FMOODS’97: Formal Methods for Open Object-Based Distributed Systems, vol-
ume 2, pages 423–438. Chapman & Hall, 1997.

9. A. Gupta. Formal hardware verification methods: A survey. Journal of Formal
Methods in System Design, 1:151–238, 1992.

10. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

11. International Standard ISO/IEC 13568:2002. Information technology — Z formal
specification notation — syntax, type system and semantics.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

13. G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-
fied in Object-Z and CSP. In Proceedings of the International Conference of Formal
Engineering Methods, pages 293–302. IEEE Computer Society Press, 1997.

14. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
New Jersey, second edition, 1992.

15. S. Susaki and T. Matsumoto. Alibi establishment for electronic signatures. Infor-
mation Processing Society of Japan, 43(8):2381–2393, 2002. In Japanese.

16. J. Woodcock and J. Davies. Using Z. Prentice-Hall International, New Jersey,
1996.

