
Developing Topology Discovery in Event-B?

Thai Son Hoang1, Hironobu Kuruma2, David Basin1, and Jean-Raymond Abrial1

1 Department of Computer Science, ETH Zurich
2 Hitachi Systems Development Laboratory, Yokohama, Japan

Abstract. We present a formal development in Event-B of a distributed topol-
ogy discovery algorithm. Distributed topology discovery is at the core of several
routing algorithms and is the problem of each node in a network discovering and
maintaining information on the network topology. One of the key challenges is
specifying the problem itself. Our specification includes both safety properties,
formalizing invariants that should hold in all system states, and liveness proper-
ties that characterize when the system reaches stable states. We establish these by
appropriately combining proofs of invariant preservation, event refinement, event
convergence, and deadlock freedom. The combination of these features is novel
and should be useful for formalizing and developing other kinds of semi-reactive
systems, which are systems that react to, but do not modify, their environment.

1 Introduction

We report here on a case study in critical system development using refinement. In
our case study, we use the Event-B formalism [1] to specify and formally develop an
algorithm for topology discovery, which is a problem arising in network routing. We
proceed by constructing a series of models, where the initial models specify the system
requirements and the final model describes the resulting system. We use the Rodin tool
for Event-B [2] to prove that each successive model refines the previous one, whereby
the resulting system is correct by construction.

The problem we examine is interesting for several reasons. First, it is a significant
case study in specifying and developing distributed graph and routing algorithms. In
routing protocols such as link-state routing [16], which is the basis for protocols such
as OSPF [13, 12] and OLSR [14], every router in the network must build a graph rep-
resenting the network topology. In this graph, the vertices represent routing nodes and
there is an edge from node a to node b if a can directly transmit data to b. Each node uses
this graph to determine the shortest path to all other nodes, from which it constructs its
routing table, which describes the best next hop to each destination. The main challenge
in topology discovery is to ensure that the distributed construction of these graphs, as
well as their updates after network changes, proceeds correctly. While there has been
some work on using model checkers and theorem provers to verify properties of routing
protocols (e.g., [6]), there have been relatively few case studies (e.g., [1, 3, 15]) in using
? An extended version of this paper is [10] and a proof archive can be found at deploy-

eprints.ecs.soton.ac.uk/31. Part of this research was carried out within the European Com-
mission ICT project 214158 DEPLOY, www.deploy-project.eu/index.html. We thank Daniel
Fischer, Matthias Schmalz, and Christoph Sprenger for their comments on drafts of this paper.



formal methods to develop such protocols. Our work provides some insights on how
this can be done.

Second, as we will see, the problem of topology discovery is surprisingly nontriv-
ial. The complexity is both in specifying the protocol’s desired properties (what does
it mean to “proceed correctly?”) and in carrying out the development and proofs. This
complexity comes from the fact that the protocol should function in dynamically chang-
ing environments. If we do not place constraints on the environment a priori (which we
do not) then the actual topology may change faster than the nodes can propagate in-
formation about the changes they discover. For example, two nodes may be connected
and not know it, but by the time they receive link information on this, they may be
no longer connected. To address this, we present a novel approach to specifying and
developing algorithms whose properties depend on the environment’s dynamics. Our
approach combines the use of convergent events in refinement (these are events that
cannot take control of the system for ever) with a specification of deadlock freeness to
specify the system’s properties in stable system states.

Finally, our case study is representative of an important class of systems, which we
call (distributed) semi-reactive systems. These are distributed systems where the envi-
ronment is dynamically changing and, although the system cannot alter the environ-
ment, it must monitor and appropriately react to the changes in the environment. This
includes, for example, distributed monitoring algorithms where the nodes must reach
some kind of agreement about the environment’s properties. Our approach suggests one
way of developing systems in this general class.

2 Background on Event-B

Here we briefly describe the Event-B formalism; see [1, 4] for further details. A de-
velopment is a set of models described by contexts and machines. Contexts specify a
model’s static part, in terms of sets, constants, and axioms, whereas machines specify
the dynamic part and correspond semantically to transition systems. A machine has
variables, defining its state, and an initial state. The possible states are constrained by
invariants. State transitions are described by events, which are guarded commands, each
consisting of a guard and an action. The guard is a conjunction of predicates formaliz-
ing the necessary condition under which an event may occur, and the action describes
how the state variables change when the event occurs. Semantically, an event denotes a
relation (v, v′) between the pre-state v (before the event) and the post-state v′ after the
event. We will later refer to the pairs v 7→ v′ as instances of an event.

Machine refinement provides a means to introduce details about the dynamic prop-
erties of a model. Event-B’s theory of refinement is closely related to that of Action Sys-
tems [5]. In particular, a concrete machine can refine another abstract machine, whereby
their states are related by a (simulation) relation called a gluing invariant. Refinement is
used to develop systems that are correct by construction. One specifies a series of ma-
chines M0, M1, . . . ,Mn, where each Mi+1 refines Mi, the initial machines formalize
the system’s requirements, and the final machines formalize the system itself.

We have used the Rodin Tool [2] to create and analyze Event-B models. This tool
generates proof obligations that ensure the correctness of the systems developed. These



if DetectChange(x,v) then
UpdateLSDB(x,v)
UpdateSPFTree(LSDB)
LSA← CreateLSA(x,v)
Broadcast(LSA)

end if

if Receive(LSA) then
if IsFresh(LSA) then

UpdateLSDB(LSA)
UpdateSPFTree(LSDB)
Broadcast(LSA)

else
Drop(LSA)

end if
end if

Broadcast(LSDB)� �

Fig. 1. Link-state algorithm for node v (loop body)

include: invariant preservation for establishing that invariants always hold; refinement
between machines; and the convergence (termination) of sets of events (i.e., that the
events in the set do not collectively diverge). Note that the convergence of some events
cannot always be shown immediately and is then delayed to later refinements. In this
case, the convergence of these events is anticipated.

3 Topology Discovery

In this section, we describe our requirements on the system and our assumptions on the
environment for topology discovery. We begin by describing the problem and algorithm
informally, in the context of link-state routing, which is one of its main applications.

3.1 Informal Description

Routing is the process of selecting paths through a network for sending data from a
source to a destination. A path may require the data to travel over multiple hops, each
hop being an intermediate router. At each router, data is forwarded using routing tables
to select the next hop (the appropriate output port) based on the packet’s destination
address. It is the routing algorithm’s task to build these routing tables. In link-state
routing, this is done using several auxiliary data structures. In particular, each router
maintains a link-state database (LSDB) that encodes its view of the topology of the
communication network, i.e., the set of routers and the links between them. From its
LSDB, a router computes a shortest path first (SPF) tree, using Dijkstra’s algorithm [9].
The SPF tree is used to create the routing table: the next hop to some destination is
simply the neighbor that constitutes the first link in the shortest path to that destination.
Examples of routing algorithms that proceed this way include the Open Shortest Path
First protocol (OSPF) [12, 13] and (optimized) link-state routing [7, 8].

In our case study, we focus on the important subproblem of topology discovery: dis-
covering and maintaining local information about the network topology. This requires a
distributed algorithm (protocol) since each node must construct its own local copy of the
network topology. To do this, each node discovers changes in its own local communica-
tion environment and communicates them to other nodes. The nodes each individually
build their own graphs, representing their local view of the global network topology.

To show how topology discovery is used in routing, Figure 1 presents a simplified
view of link-state routing. The algorithm consists of an infinite loop, which runs on
each node v. The loop’s body nondeterministically chooses (represented by�) between



three parts. From left-to-right these are: (1) detect and propagate changes; (2) receive
and process changes; and (3) send information to neighboring nodes.

The first part describes how a node processes and propagates changes. Suppose a
node v detects a change in the status of a link that joins some node x to v. The node v
then adjusts its own link-state database (LSDB), which stores all topology graph nodes
and edges. Afterwards, it updates its shortest path first (SPF) tree from the LSDB using
Dijkstra’s algorithm. Finally, it creates a link-state advertisement (LSA) describing the
status (up or down) of the link from x to v, and starts flooding the network by broadcast-
ing this to all of its neighbors. The second part describes a node’s actions after receiving
a link-state advertisement. If the LSA is fresh, then again the SPF tree is updated and
the flooding is continued by sending the LSA to all neighbors. The third part states
that a node v can, at anytime, start flooding the network by broadcasting information
about its current link-state database. This can be implemented by v broadcasting an
LSA describing the status of the link from x to y, for each pair of distinct nodes x and
y. Alternatively, one message can be broadcast, describing the entire state of v’s LSDB.
In this case, the second part must be modified to also handle the reception of LSDBs.

These three parts implement basic link-state routing. If we are interested in pure
topology discovery, it suffices to simply delete the two UpdateSPFTree statements. The
resulting algorithm corresponds closely to what we will develop in Section 4.

A key point is the need for the third part, which initiates flooding even when no
changes are present. This is required for two reasons. The first is to handle the possi-
bility that LSAs are lost during communication, which can occur if a link goes down
during message transit. The second reason is to handle the special case where discon-
nected parts of a network are reconnected. Suppose, for example, that the network is
disconnected into two subnetworks S1 and S2, which each undergo changes and at
some later time point become connected due to a link l coming up (i.e., l connects a
node in S1 with one in S2). Just flooding both subnetworks with an LSA describing l
being up is not enough for the nodes in S1 to learn the topology of S2 and vice versa.
In actual link-state routing protocols, this third part, periodic flooding, occurs at fixed,
relatively infrequent intervals. For example, in OSPF it takes place every 30 minutes.

Observe that the above algorithm description is still abstract and omits critical de-
tails. For example, nodes receive and propagate information at different times and hence
a node may receive old LSAs containing invalid information about the network topol-
ogy. How this is handled (e.g., using sequence numbers) and information is updated is
not specified above. We must address precisely such details in our case study.

3.2 Requirements for Topology Discovery

As previously mentioned, it is surprisingly difficult to formulate the requirements for
topology discovery. The protocol must operate in an environment where the status of
links may change at any time. Moreover, the environment’s behavior is out of the control
of the protocol and not influenced by it (this is the notion of semi-reactive system,
previously mentioned at the end of Section 1). If the environment changes sufficiently
rapidly, then links reported as down may actually be up and vice versa. Hence the local
LSDBs may bear little relationship to the actual network topology.



To tackle this problem, we focus on the limiting, and most important, case of the
algorithm’s behavior: its behavior when the environment is sufficiently quiescent. In this
case, we expect that the local LSDBs will eventually converge (also called “stabilize”
in the routing literature) to images of the actual global topology. Some care must be
taken in precisely formalizing this, in particular to handle the previously mentioned
problem that the network may not always be connected. In general, a node n can only
learn about a link from a node a to its neighbor b when there is a path through the graph
(representing the topology) from b to n.

Recall from basic graph theory that any graph can be decomposed into a collection
of strongly-connected components. Our main system requirement is therefore:
System Requirement 1. If the environment is inactive for a sufficiently long time then

for each strongly-connected component M , the local view (LSDB) of every node
in M is in agreement with the actual topology, restricted to M .

Hence, when information about the system gained from link sensing (detecting com-
munication neighbors) and communication stabilizes, each node has the correct view of
the links between all nodes in its connected subnetwork.

We state one further requirement, which limits the possible local views of nodes
during the protocol.
System Requirement 2. The local views of the nodes must be consistent with the past:

a link listed as up is either up or was previously up.
This requirement rules out the case that a node concludes that a link is up that never
was. So errors in the local topologies must effectively come from communication delays
concerning status changes.

3.3 Environment Assumptions

Before developing a topology discovery algorithm, we must also be clear about our
assumptions on the environment. We list them below.
Environment Assumption 1: There are only finitely many nodes.

Without this assumption, any notion of stability based on a hop-by-hop propagation of
information would be unachievable.
Environment Assumption 2: There are directed, one-way links between some pairs

of distinct nodes. Links may come up or go down at any time.

These links represent the ability to carry out directed (one-way) communication be-
tween two nodes. Links may be wired or wireless.
Environment Assumption 3: When there is a new link from node a to node b, then b

is made aware of this. Likewise, when a link from a to b exists and is broken, b is
also made aware of this.

We will refer to a link from a to b as either an outward link from a or an inward link to
b. Assumption 3 reflects the ability to carry out “link sensing”, whereby each node can
sense its inward links. In practice, this must be realized by some kind of protocol, e.g., a
must periodically announce its presence to b, or, in the bidirectional case, a handshake
protocol initiated by b may be used. Note, as a result, that this assumption does not
require that the receiver b immediately becomes aware of changes, but only eventually.



Environment Assumption 4: When a link goes down, any messages sent on it and not
yet received are lost.

This reflects that communication is asynchronous. There is a delay (of unbounded
length) between message transmission and reception, and messages can be lost during
this time interval.
Environment Assumption 5: Nodes communicate by broadcasting whereby a may

send a message to all b for which there exists a link from a to b.

Note that broadcasting is sufficient for topology discovery and is used during flooding.
For other protocols, one might alternatively use point-to-point communication.

In the next section, we shall see how each of these requirements is formalized in the
context of our Event-B development.

4 Formal Development

We now describe our development of topology discovery. We developed seven models.
The initial models formalize our environmental assumptions and system requirements,
whereas the subsequent models introduce design decisions for the resulting system.

Initial model specifies the protocol environment.
Refinement 1 introduces the observer event for observing stable states and adds system

events to model how nodes update their link information.
Refinement 2 provides more details about link updates. Namely, a node updates infor-

mation about its direct links or receives information about links from its neighbors.
Refinement 3 introduces sequence numbers for tracking fresh link-state information.
Refinement 4 uses message passing to transmit information about the status of links.
Refinement 5 separates the events into two sets: the set of events that update link-state

information and those events that discard it as being redundant. The idea is to prove
the convergence of the events that update the link-state information.

Refinements 6 introduces a variant for proving the convergence of some events.

Due to lack of space, we present below only selected parts of our formalization and
omit proof details.

4.1 The Context and Initial Model

We begin by defining an Event-B context. In the context, we define the carrier set
NODES of all network nodes and we axiomatize that it is finite. This formalizes Envi-
ronment Assumption 1. Additionally, we define a (function) constant closure that,
together with axioms, formalizes the transitive closure of binary relations between
NODES. Note that “;” denotes forward relational composition.

axioms:
axm0 1 finite(NODES)
axm0 2 closure ∈ (NODES↔ NODES)→ (NODES↔ NODES)
axm0 3 ∀r · r ⊆ closure(r)
axm0 4 ∀r · closure(r); r ⊆ closure(r)
axm0 5 ∀r, s · r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s



In our initial model, we formalize the behavior of the environment, where links
(represented as pairs of nodes) may go up or down at any time. The variable RLinks
(R for real, i.e., actual links) represents the set of links that are currently up, whereas the
variable DLinks represents the set of links that have previously been up, but are now
down. These sets are disjoint (inv0 3) since a link cannot be simultaneously both up and
down. Note, however that we do not require that their union is the set of all links. This
may be because two nodes are simply not communication neighbors or because their
status has not yet been fixed. This set of “unknown” links is simply the complement of
the set RLinks ∪ DLinks.

variables: RLinks, DLinks

invariants:
inv0 1 RLinks ∈ NODES↔ NODES
inv0 2 DLinks ∈ NODES↔ NODES
inv0 3 RLinks ∩ DLinks = ∅

Besides initializing RLinks and DLinks both to the empty set, there are two events:
AddLink and RemoveLink. The former models that an arbitrary link comes up. This
link is then added to the set of RLinks and removed from the set of DLinks (if it is
already there). The latter event handles the symmetric case. Note from the guards that
if a link is in either set (i.e., its status is not unknown), then it has been up, at least once
in the past.

AddLink
any link where

link /∈ RLinks
then

RLinks := RLinks ∪ {link}
DLinks := DLinks \ {link}

end

RemoveLink
any link where

link ∈ RLinks
then

RLinks := RLinks \ {link}
DLinks := DLinks ∪ {link}

end

These events formalize Environment Assumption 2. Communication links are di-
rected as the relations RLinks and DLinks are not necessarily symmetric.

4.2 The First Refinement

In our first refinement, we start to model the details of the protocol, although still very
abstractly. In particular, we state that the link information stored at each nodes gets
updated, although without yet specifying how.

We introduce two variables rlinks and dlinks with the following invariants. These
two variables represent the current link-state information stored by each node.

invariants:
inv1 1 rlinks ∈ NODES→ (NODES↔ NODES)
inv1 2 dlinks ∈ NODES→ (NODES↔ NODES)
inv1 3 ∀n · rlinks(n) ⊆ RLinks ∪ DLinks
inv1 4 ∀n · dlinks(n) ⊆ RLinks ∪ DLinks
inv1 5 ∀n · rlinks(n) ∩ dlinks(n) = ∅



The first two invariants formalize that each node stores its own local information (a
binary relation between NODES) about the status of links. Moreover, if a node has some
information about a link, then this link must be either currently up or down (i.e., not
unknown). This is represented by the invariants inv1 3 and inv1 4. The last invariant,
inv1 5, states that a node cannot store contradictory information about the same link.
Of course, different nodes can have different information about the same link.

Note that, together with the events AddLink and RemoveLink from the initial
model, these invariants establish System Requirement 2. We have that a link can be
in DLinks iff it is removed with RemoveLink iff it was previously added to RLinks
with AddLink (since no other events change the state of RLinks and DLinks) and
therefore was previously up. Hence a link is only in RLinks ∪DLinks if it is up (left
disjunct) or was previously up (right disjunct).

One of the key aspects of our development strategy is to specify a so-called observer
event. This event has no effect on this system state itself as its action is skip. Rather, its
guard is used to define the notion of a stable state of the system.

stabilize
status ordinary
when
∀x, y · x 7→ y ∈ RLinks⇔ x 7→ y ∈ rlinks(y)
∀x, y · x 7→ y ∈ DLinks⇔ x 7→ y ∈ dlinks(y)

∀m, n ·m 7→ n ∈ closure(RLinks)⇒
(∀k · (k 7→ m ∈ rlinks(n)⇔ k 7→ m ∈ rlinks(m)) ∧

(k 7→ m ∈ dlinks(n)⇔ k 7→ m ∈ dlinks(m)))
then skip end

The first two guards require that every node y knows the correct status of all its inward
links, i.e., y has detected all environment changes with respect to its inward links. The
last guard requires that if there is a path from a node m to n, then n has the same
(up/down) information as m for all inward links to m. Hence, the observer event fires
in those states where nodes know the correct status of their neighbors and this status
has already been propagated through the network along all outward links. Intuitively,
in stable states, all nodes have the maximum knowledge of the environment that can be
acquired from link sensing and communication. We say that the system is in a stable
state when the observer event can fire.3

A central property that we proved is the following.

Theorem 1 (Stability implies correct local view). If the system is stable, then for
any strongly-connected component M in the network and any node n in M , n has the
correct view of the status (up/down) of all links in M .

We formulate this theorem in Event-B as follows, where grdStabilize refers to the
guard of the observer event.

3 This notion of system stability is an instance of the general notion of a stable system property
(see e.g., [11]), which is a property P of system states whereby if P is true of any reachable
state s then P is true of all states reachable from s.



grdStabilize
⇒ (∀M · (∀f, l · f ∈M ∧ l ∈M ∧ f 6= l⇒ f 7→ l ∈ closure(RLinks))
⇒ (∀n · n ∈M

⇒ M C rlinks(n)BM = M CRLinksBM ∧
M C dlinks(n)BM = M CDLinksBM ))

Here, a set of nodes M defines a strongly-connected component of the graph whose
edge relation is defined by RLinks, when for every distinct pair of nodes f and l in
M , then f 7→ l ∈ closure(RLinks). The operators C and B respectively restrict the
domain and the range of a relation to a set (here M , the strongly-connected component).

We proved this theorem using the Rodin tool. The theorem itself constitutes part of
the proof of System Requirement 1. Namely, in a stable state, each node has the correct
view of all links in its strongly-connected component. It still remains to be proved that
this stable state will be reached whenever the environment is inactive for a sufficient
long time period. We prove this in Section 4.8.

In this model, we also introduce two new events, addlink and removelink, which
modify the link-state information of some node.

addlink
status anticipated
any n, link where

n ∈ NODES
link ∈ RLinks ∪ DLinks

then
rlinks(n) := rlinks(n) ∪ {link}
dlinks(n) := dlinks(n) \ {link}

end

removelink
status anticipated
any n, link where

n ∈ NODES
link ∈ RLinks ∪ DLinks

then
rlinks(n) := rlinks(n) \ {link}
dlinks(n) := dlinks(n) ∪ {link}

end

The event addlink abstractly models a node receiving information on a link directly
from the topology. Specifically, the event nondeterministically selects a node n and a
link link with a known status. It then updates n’s local information about link, ensur-
ing that it is added to the set of real (up) links and removed from the set of down links.
Perhaps counterintuitively, the event may add a link to rlinks(n) that is actually down,
i.e., that belongs to DLinks. This reflects a key aspect of our distributed algorithm:
the information nodes receive about the environment may be out-dated. As noted pre-
viously, being in RLinks ∪ DLinks simply means the node has been up in the past.
But by the time n receives information that link is up, the link may actually be down.
The second event removelink is analogous. At this level of refinement, addlink and
removelink are anticipated. That is, we delay the proof that these events converge to
subsequent refinements.

From now on, we concentrate on the refinement of addlink. The refinement of re-
movelink can be found in our on-line development archive.

4.3 The Second Refinement

In this refinement, we specify more concretely how link information is updated in each
node. There are two cases. The first case models a direct update by the hello event. The
second case models an indirect update by the transfer rlink event.



hello
refines addlink
status convergent
any n, m where

m 7→ n ∈ RLinks
m 7→ n /∈ rlinks(n)

then
rlinks(n) := rlinks(n) ∪ {m 7→ n}
dlinks(n) := dlinks(n) \ {m 7→ n}

end

transfer rlink
refines addlink
status anticipated
any n, m, x, y where

x 7→ y ∈ rlinks(m) ∪ dlinks(m)
n 6= y

then
rlinks(n) := rlinks(n) ∪ {x 7→ y}
dlinks(n) := dlinks(n) \ {x 7→ y}

end

The event hello models a node n discovering information (e.g., by receiving a “hello”
message) from a node m with an outward link to n. This event refines the abstract event
addlink, where the abstract parameter link is represented by the mapping m 7→ n. The
event transfer rlink models a node n receiving information about a link x 7→ y from
some node m, which is not necessarily a neighbor. The guard n 6= y indicates that this
is an indirect update, that is, x 7→ y is not an inward link of n. This refines the abstract
event addlink, where the abstract parameter link is represented by the mapping x 7→ y.

The link-state information for down links is modeled analogously by the events
goodbye and transfer dlink, which are omitted here. Together, hello and goodbye
formalize Environment Assumption 3.

At this stage, we also prove the convergence of the hello and goodbye events and
we will prove the convergence of the transfer rlink and transfer dlink events in the
next refinement, that is, they are anticipated at this point. By decomposing the conver-
gence proof into different refinements we can simplify the proof by decomposing the
events into two different subsets and then considering these subsets individually. Note
that when proving the convergence, we still have the obligation of proving that the an-
ticipated events do not increase the new variant. Taken together, these steps imply that
the events reduce a composite variant, built from the lexicographic combination of the
variants used in the two proofs.

We prove convergence by showing that these two events always decrease a variant,
which is a set-valued expression. In this case the variant is

{m 7→ n | m 7→ n ∈ RLinks \ rlinks(n)} ∪
{m 7→ n | m 7→ n ∈ DLinks \ dlinks(n)} .

This is the set of inward links to n, where n has incorrect information. Informally, since
the hello and goodbye events both provide correct information about one inward link
of a node, they decrease the variant. Since the set of NODES is finite, this variant is also
finite and thus well-founded.

4.4 The Third Refinement

In the next two refinement steps, we model communication between nodes. This is in
contrast to the last step where nodes update their link information directly using the link
information of other nodes, which is of course not realizable in a distributed system.



Before modeling communication, we first model how nodes track which informa-
tion is fresh, i.e., whether the link information received is new or old. Namely, we
introduce a new variable, seqNum ∈ NODES→ (NODES× NODES→N) represent-
ing the sequence number stored at each node for each link. We omit listing here the
invariants for seqNum. Moreover, to reason about the convergence of transfer rlink
and transfer dlink, we introduce an auxiliary variable msg that “measures” the conver-
gence of the event. This variable will not be used in the guards of the event, that is, it
will not affect the execution of the events, hence we can safely remove this variable in
the subsequent refinement.

In the initialization event, the sequence number for all links is set to 0 and msg
is empty. The sequence number for a particular node and link first takes on a positive
value after a direct update (e.g. in the hello event).

hello
refines hello
any n, m where

m 7→ n ∈ RLinks
m 7→ n /∈ rlinks(n)

then
rlinks(n) := rlinks(n) ∪ {m 7→ n}
dlinks(n) := dlinks(n) \ {m 7→ n}
seqNum(n) := seqNum(n)C− {(m 7→ n) 7→ seqNum(n)(m 7→ n) + 1}
msg := msg ∪ ({m 7→ n 7→ seqNum(n)(m 7→ n) + 1} × (NODES \ {n}))

end

The only difference with the abstract version is the last two assignments, which incre-
ment the sequence number (C− denotes relation overriding) and update msg. Since the
event’s guard is unchanged and the additional assignment modifies only a new variable,
this clearly refines the corresponding abstract hello event. Once new information is de-
tected by n, this information must be propagated to all the other nodes in the network.

For indirect updates, the sequence number for a particular link is not updated, but
simply passed from one node to another.

transfer rlink
refines transfer rlink
status convergent
any n, m, x, y, sn where

m 7→ n ∈ RLinks
sn ≤ seqNum(m)(x 7→ y)
seqNum(n)(x 7→ y) < sn
∀k · seqNum(k)(x 7→ y) = sn⇒ x 7→ y ∈ rlinks(k)

then
rlinks(n) := rlinks(n) ∪ {x 7→ y}
dlinks(n) := dlinks(n) \ {x 7→ y}
seqNum(n) := seqNum(n)C− {(x 7→ y) 7→ sn}
msg := msg \ {x 7→ y 7→ sn 7→ n}

end



Compared to the abstract version of the event, there is an additional parameter, sn, for
the sequence number associated with the link-state information. This sequence number
sn is no more than the sequence number that m has for the same link. The reason is that
the original message came from m and sequence numbers are never decreased.4 The
sequence number sn is (strictly) greater than n’s sequence number for the same link,
that is, n only updates its local state with new information. The last guard states that for
any node k with the same sequence number for the same link x 7→ y, that link is in the
set of up links for k. This ensures that there will be no conflicting information in the
network. Note that this guard cheats in the sense that it cannot be directly implemented.
This cheating will be eliminated in a subsequent refinement. The additional assignments
in the event’s action, with respect to the abstract version, update n’s sequence number
for the link x 7→ y and remove this information from the set msg.

We also proved the convergence of the transfer rlink and transfer dlink events.
The variant is just msg. This, together with the convergence proof from the last refine-
ment, shows that the events hello, goodbye, transfer rlink, transfer dlink decrease a
combined lexicographic variant.

The guard of the observer event stabilize (from the first refinement) is also refined
using information about sequence numbers. It becomes:

stabilize
when
∀x, y · x 7→ y ∈ RLinks⇔ x 7→ y ∈ rlinks(y)
∀x, y · x 7→ y ∈ DLinks⇔ x 7→ y ∈ dlinks(y)

∀n1, n2, link · n1 7→ n2 ∈ RLinks⇒
seqNum(n1)(link) ≤ seqNum(n2)(link)

then skip end

The first two guards are unchanged. What is new is the last guard, which states that for
any pair of nodes n1 and n2, and link link, if n1 has a direct communication link to
n2, then n2’s information about link is not older than n1’s.

4.5 The Fourth Refinement

We now model communication. We first remove the auxiliary variable msg. We also re-
move the assignments that modify msg from the events hello and goodbye. We then in-
troduce three variables: SChan of type (NODES×NODES)→((NODES×NODES)→
N) and RChan and DChan, both of type (NODES×NODES)→(NODES↔NODES).
For each pair of nodes, the link-state information is a relation between NODES, formal-
izing the set of pairs of nodes on the communication channel. For all nodes m and n,
RChan(m 7→ n) (respectively, DChan(m 7→ n)) is the set of up (down) link informa-
tion that is transferred from m to n. The channel SChan associates sequence numbers
to the links in the link-state channels. Thus SChan(m 7→ n) stores information about
the sequence numbers that are in transit from m to n.

4 However, sn can differ from m’s sequence number, since during the time for the message to
reach n, m can in the meantime update its sequence number for the same link.



Communication between nodes uses the above channels, so the abstract events for
transferring link information (namely, transfer rlink and transfer dlink) must each be
split into a pair of events for sending and receiving information. The following diagram
illustrates what happens. First, the node m sends the information to the channels and
afterwards the node n receives information from the channels. In our development, each
transfer event is refined by a receive event and we add a new send event, which therefore
refines skip. In our diagram, the top part is the abstraction (skip and transfer) and the
bottom part is the refinement (i.e., send and receive).

mGFED@ABC nGFED@ABC

mGFED@ABC nGFED@ABCchannels

skip // transfer //

send // receive //

Below is the description of the new event for sending information about an up link
from m to n.

send rlink
status anticipated
any m, n, link where

m 7→ n ∈ RLinks
SChan(m 7→ n)(link) = 0
link ∈ rlinks(m)

then
SChan(m 7→ n) := SChan(m 7→ n)C− {link 7→ seqNum(m)(link)}
RChan(m 7→ n) := RChan(m 7→ n) ∪ {link}

end

For a node to send information about certain link, this event requires that the infor-
mation about the same link from the last send has been received. This is formalized
by the guard stating that the corresponding sequence number in the channel is 0. The
information is then sent by placing it on the outward links from m to n. The guard
m 7→ n ∈ RLinks (i.e. the link from m to n is currently up) formalizes Environment
Assumption 5.

The abstract transfer rlink is refined to specify the following event receive rlink.

receive rlink
refines transfer rlink
any m, n, x, y where

seqNum(n)(x 7→ y) < SChan(m 7→ n)(x 7→ y)
x 7→ y ∈ RChan(m 7→ n)

then
rlinks(n) := rlinks(n) ∪ {x 7→ y}
dlinks(n) := dlinks(n) \ {x 7→ y}
seqNum(n) := seqNum(n)C− {(m 7→ n) 7→ SChan(m 7→ n)(x 7→ y)}
SChan(m 7→ n) := SChan(m 7→ n)C− {(x 7→ y) 7→ 0}
RChan(m 7→ n) := RChan(m 7→ n) \ {x 7→ y}

end



The link-state information is retrieved from the channels from m to n. Here, the abstract
parameter sn is refined as SChan(m 7→ n)(x 7→ y). The refinement of transfer dlink
to receive dlink is analogous.

Note that the event receive rlink receives only genuinely new messages. Hence it is
necessary to introduce a complement event that discards obsolete information, both for
up and down links. Another reason for introducing discard events is that, without them,
we would not be able to prove the deadlock freeness property in the next refinement
level. Below is the event for discarding information about an up link (the new event
discard dlink is analogous).

discard rlink
status anticipated
any m, n, link where

SChan(m 7→ n)(link) ≤ seqNum(n)(link)
link ∈ RChan(m 7→ n)

then
SChan(m 7→ n) := SChan(m 7→ n)C− {link 7→ 0}
RChan(m 7→ n) := RChan(m 7→ n) \ {link}

end

The link-state information is obsolete since the node has already received more recent
information about link in the channel. Hence, the information is simply discarded from
the channel. This new event refines skip since the actions only effect the new variables,
SChan and RChan.

Now that we have explicitly introduced communication, we refine the environment
event RemoveLink to account for Environment Assumption 4. That is, when a link
goes down, any messages sent on it and not yet received are lost.

RemoveLink
refines RemoveLink
any link where

link ∈ RLinks
then

RLinks := RLinks \ {link}
DLinks := DLinks ∪ {link}
SChan := SChanC− ({link} × {NODES× NODES× {0}})
RChan(link) := ∅
DChan(link) := ∅

end

This trivially refines the abstract RemoveLink event since the guard is unchanged and
the new assignments only modify new variables.

Note that at this point all the events can be straightforwardly implemented in a
distributed system. That is, the events no longer “cheat” and perform tests or actions
that would not be algorithmically realizable.



4.6 The Fifth Refinement

Our machine in the fourth refinement constitutes a (high-level) protocol implementa-
tion. However, we have not yet established the convergence of the events send rlink
and discard rlink (and correspondingly for dlink). There is a good reason for this:
these events do not converge and should not converge. As we saw in Figure 1 (third
part), each node periodically broadcasts information about its LSDB and its neighbors
repeatedly receive this information, even when it is not new. What we prove then is that
the system eventually does reach a stable state (assuming that the environment does not
change), despite continually broadcasting and receiving redundant information.

To prove this, we shall partition these four non-convergent events each into two
parts: a convergent and divergent part. We accomplish this by defining a restricted local
notion of stability, called neighbor stability, and showing that the neighbor-stable parts
diverge and, conversely, the neighbor-unstable parts converge.

Given a link link and a link from m to n, we say the information about link is
neighbor stable from m to n if n’s sequence number for link is at least as large as
m’s. This means that the information about link in m does not need to propagate to
n and therefore further information coming from m about link will not change this
neighbor-stable status. Using this notion, we can restate the third guard of the observe
event stabilize (from Section 4.4) as follows: Any link is neighbor-stable for any up
link from m to n.

We now partition the events by adding either the guard seqNum(m)(link) ≤
seqNum(n)(link) or its complement. For example, we partition send rlink into the
two events send rlink stable and send rlink unstable. For send rlink stable we add
the above guard and for send rlink unstable we add the complement as a guard. We
partition the other three events discard rlink, send dlink, and discard dlink similarly.
Note that we must partition the discard events as information must also be discarded
in neighbor-unstable states. The reason for this is that communication is asynchronous
and therefore information may be sent in a stable state but received in an unstable state.

Given this partition, we prove the convergence of the events send rlink unstable
and send dlink unstable using the variant

{m 7→ n 7→ link | SChan(m 7→ n)(link) ≤ seqNum(n)(link)} .

This denotes the set of old messages on all channels. We will prove the convergence of
discard rlink unstable and discard dlink unstable in the next refinement level and
hence they act as anticipated events here.

In this refinement step, we also proved the following theorem about the deadlock
freeness of a set of events. Namely, the guard of the event stabilize is equivalent to the
negation of the disjunction of the guards of the following eight events: hello, goodbye,
send rlink unstable, send dlink unstable, receive rlink, discard rlink unstable, re-
ceive dlink, and discard dlink unstable. Hence, if none of these eight events is en-
abled, then stabilize is enabled and the system is therefore in a stable state.

Moreover, we also proved theorems stating that the four events send rlink stable,
send dlink stable, discard rlink stable, and discard dlink stable maintain the sys-
tem’s stable state, that is, if we assume that the state before the event execution is stable,
we have to prove that the state after the event execution is also stable. However, stable



refers to RLinks, DLinks,rlinks, dlinks, and seqNum only, whereas our events
(send rlink stable, send dlink stable, discard rlink stable, and discard dlink stable)
only modify the information in the channels, i.e., SChan, RChan, and DChan, so the
above events will maintain the stable state.

4.7 Sixth Refinement

In this refinement step, we prove the convergence of the discard rlink unstable and
discard dlink unstable using the variant

{m 7→ n 7→ link | SChan(m 7→ n)(link) 6= 0} ∩
{m 7→ n 7→ link | seqNum(n)(link) < seqNum(m)(link)} .

4.8 Partial Convergence implies Stability

In contrast to the development of terminating programs, we now only prove the conver-
gence of a subset of the events. Nevertheless, we show that this is adequate to establish
System Requirement 1. Namely, if the environment is inactive for a sufficiently long
time, then for each strongly-connected component M , the local view of every node in
M is in agreement with the actual topology, restricted to M .

First, we introduce the notion of a run of Event-B together with a strong-fairness
assumption. A run of an Event-B model is an infinite sequence of states obtained from
an initial state by executing events of the model. We call a run strongly fair with respect
to a set of events E if it respects the following strong-fairness assumption with respect
to E: if an event from E is enabled infinitely often, then it will be taken infinitely often.
This assumption will hold for any reasonable implementation of topology discovery.

At the last refinement, the set of events can be divided into the following groups.

1. A set of environment events Env = {Env1, . . ., Envl}. In our case, there are just
the two events AddLink and RemoveLink.

2. An observer event Obs. This observer event has skip as its action and its guard
specified that the system is in stable state. Hence it is of the form:

when stable then skip end

In our development, this is the stabilize event.
3. A set of convergent events CE = {CE1, . . ., CEm }. In our development, the con-

vergent events are hello, goodbye, send rlink unstable, send dlink unstable,
receive rlink, discard rlink unstable, receive dlink, and discard dlink unstable.

4. A set of divergent events DE = {DE1, . . ., DEn}. These events are send rlink stable,
send dlink stable, discard rlink stable, and discard dlink stable.

We will now prove the following theorem:

Theorem 2 (System Stabilizes). Assume that the following propositions hold:

i) Deadlock-freedom for the observer event Obs and convergent events CE. In par-
ticular,

stable⇔¬(Grd(CE1) ∨ · · · ∨Grd(CEm)) .



ii) The events in CE converge using a well-founded variant V .
iii) The events in DE do not increase V .
iv) The events in DE preserve stable. By this we mean that none of the DE events

disable the guard of Obs.
v) The events in CE are strongly fair.

Then if the environment is eventually quiescent (i.e., at some point no environment
events Env1, . . ., Envl from the first group occur) then the system will eventually reach
a stable state and remain in this state.

In our case, we are assuming Proposition (v), and the other propositions have al-
ready been previously proved.5 Our proof of Theorem 2 is by contradiction and pro-
ceeds as follows. Assume that there is a strongly fair run R with a quiescent suffix, but
which never reaches a stable state. Then there must be infinitely many i such that R(i)
does not satisfy “stable”. Let r be a quiescent suffix of R. By Proposition (i), there
are infinitely many states such that some event in CE is enabled. By the fairness as-
sumption, Proposition (v), the events in CE must be taken infinitely often on r. Since
there are no environment events and by Proposition (ii) all events in CE decrease the
variant, whereas by Proposition (iii), other system events (i.e., Obs and DE) do not
increase the variant V , the variant V decrease infinitely often in r. This contradicts the
well-foundedness of V . Therefore, all strongly fair runs with a quiescent suffix even-
tually reach a stable state. Moreover, once in a stable state, all the events in CE are
disabled and, by Proposition (iv), the events in DE preserve the stable state. Together
with the fact that event Obs does not change the state (its action is skip), it follows that
the system stays in the stable state. This concludes our proof. Note that this proof is a
traditional “paper and pencil proof”, rather than a proof using the Rodin tool.

The system referred to in the theorem statement is the machine M5 given by the
5th refinement, rather than the machine M4 from the 4th refinement, which is our im-
plementation. However, M5 simply partitions four of M4’s events. Therefore the proof
of Theorem 2 just given for M5 can be naturally mapped to M4. Namely, the partition
of M4’s events into stable and unstable events in M5 gives rise to a partition of their
instances. Therefore Theorem 2 also holds for M4 if we restate the fairness assumption
in Theorem 2 as follows: “If an instance of event is enabled infinitely often, then it will
be taken infinitely often.”

Finally, recall Theorem 1, proved in Section 4.2, which states that in a stable state,
each node has the correct view of all links in its strongly-connected component. It fol-
lows from this and Theorem 2 that the system M4 satisfies System Requirement 1.

4.9 Summary — Proof Statistics

In Table 1 we give proof statistics of the development in the Rodin Tool. These statistics
measure the size of the model, the proof obligations generated and discharged by the
Rodin Platform, and those interactively proved. Note that there are many proof obliga-
tions in the 4th refinement due to the introduction of three different channels. In order to

5 We proved Propositions (i) and (iv) in the 5th refinement and proved Propositions (ii) and (iii)
in the 2nd, 3rd, 5th, and 6th refinements.



Model Number of Automatically Interactively
Proof Obligations Discharged Discharged

Context 3 0(0%) 3(100%)
Initial Model 9 9(100%) 0(0%)
1st Refinement 31 26(84%) 5(16%)
2nd Refinement 30 23(77%) 7(23%)
3rd Refinement 74 37(50%) 37(50%
4th Refinement 159 79(50%) 80(50%)
5th Refinement 44 7(16%) 37(84%)
6th Refinement 8 0(0%) 8(100%)

Total 358 181(51%) 177(49%)
Table 1. Proof statistics

guarantee the correctness using these channels, various invariants must be established.
Moreover, our formal model of these channels uses high-order functions. Given the cur-
rent state of the Rodin platform, this results in a high number of interactive (manual)
proofs. Also, most of the proofs in the 5th and the 6th refinements are interactively dis-
charged. The main reason for this is the lack of appropriate automatic support in the
tool for reasoning about set comprehension, disjunctions, and strict subsets.

5 Conclusions

We have presented a case study in formally developing a distributed topology discovery
algorithm in Event-B. Our approach to formalizing and reasoning about stable states
should be applicable to other semi-reactive systems, including other routing algorithms.
Our approach is novel in how it combines refinement with arguments about convergence
and disjointness of events to specify liveness properties about the system eventually
stabilizing and properties of the resulting stable state.

We have presented a single development of topology discovery. In actuality, we
formalized several different developments, each highlighting a different aspect of the
problem, making different assumptions about the environment, and establishing differ-
ent properties. For example, we first considered the case where the environment is static
and we developed a terminating algorithm satisfying a strong post-condition. We also
considered the case where the environment is dynamic and not necessarily stabilizing.
There we had the idea of augmenting the environment with some history (DLinks)
and using this to establish interesting, although weak invariants, e.g., corresponding to
our second requirement. The current development arose from different attempts to com-
bine these developments and exploit the standard notions of convergence and deadlock-
freeness as a way to express properties holding only in stable states.

Our different developments reflect not only the many facets of the problem, but
also that there was a learning process involved in understanding the problem and its
solution. The observation that this process is often nontrivial and requires iteration to
converge on a good solution (and there may be many) is certainly not a new. But it is an
observation worth repeating and such iteration fits well a development process where
one alternates between specification and proving at different levels of abstraction.



References

1. Jean-Raymond Abrial. Modeling in Event-B: System and Software Design. Cambridge
University Press, 2008. To appear.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open
extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume
4260, pages 588–605. Springer, 2006.

3. Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically proved
and incremental development of IEEE 1394 tree identify protocol. Formal Asp. Comput.,
14(3):215–227, 2003.

4. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantiation
of discrete models: Application to Event-B. Fundamenta Informaticae, XXI, 2006.

5. Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets with central-
ized control. Distributed Computing, 3(2):73–87, 1989.

6. Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal verification of stan-
dards for distance vector routing protocols. J. ACM, 49(4):538–576, 2002.

7. T. Clausen, G. Hansen, L. Christensen, and G. Behrmann. The Optimized Link State Routing
Protocol, Evaluation through Experiments and Simulation. IEEE Symposium on Wireless
Personal Mobile Communications, September 2001.

8. T. Clausen, P. Jacquet, A. Laouiti, et al. Optimized Link State Routing Protocol. Request for
Comments, 3626, 2003.

9. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik,
1:269–271, 1959.

10. Thai Son Hoang, Hironobu Kuruma, David Basin, and Jean-Raymond Abrial. Developing
topology discovery in Event-B. Technical Report 611, ETH Zurich, 11/2008.

11. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
12. J.T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley Professional,

1998.
13. J.T. Moy et al. OSPF Version 2, 1994.
14. Rfc3626: Optimized link state routing protocol (OLSR), October 2003.
15. A Udaya Shankar and Simon S Lam. A stepwise refinement heuristic for protocol construc-

tion. ACM Transactions on Programming Languages and Systems, 14(3):417–461, 1992.
16. Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Reference,

2002.


