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Abstract. Man-in-the-middle attacks pose a serious threat to SSL/TLS-
based electronic commerce applications, such as Internet banking. In this
paper, we argue that most deployed user authentication mechanisms fail
to provide protection against this type of attack, even when they run
on top of SSL/TLS. As a possible countermeasure, we introduce the
notion of SSL/TLS session-aware user authentication, and present dif-
ferent possibilities for implementing it. More specifically, we start with
a basic implementation that employs impersonal authentication tokens.
Afterwards, we address extensions and enhancements and discuss possi-
bilities for implementing SSL/TLS session-aware user authentication in
software.
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1 Introduction

Most electronic commerce (e-commerce) applications in use today employ the Se-
cure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol to authen-
ticate the server and to cryptographically protect the communication channel
between the client and the server. When setting up a secure channel, the main
point where SSL/TLS-based applications differ concerns user authentication.
Options available include passwords, personal identification numbers (PINs),
transaction authorization numbers (TANs), TAN (or scratch) lists, and more
sophisticated one-time password (OTP) or challenge-response systems, such as



Lamport-style OTPs [Lam81] or OTPs generated with SecurID tokens. In con-
trast, there are only a few applications that employ public key certificates for
user authentication as part of the SSL/TLS session establishment. In fact, the
deployment of public key certificates on the client side has turned out to be
slow—certainly slower than it was originally anticipated (e.g., [LOP05]).

In spite of the fact that many researchers have analyzed the security of the
SSL/TLS protocol, relatively few shortcomings and vulnerabilities have actually
been identified [WS96, MSS98, Pau99]. Most of these problems are theoretically
interesting but not practically relevant. Examples include the adaptive chosen
ciphertext attacks against PKCS #1 version 1.5 [Ble98] and version 2.0 [Man01],
as well as the vulnerabilities found in the padding scheme of the CBC encryption
mode [Vau02]. More problematic in practice is the possibility that the protocol is
used in some inappropriate way, or that it is used in an environment that makes
its security properties meaningless because the actual threats are different than
the ones assumed in the design phase (e.g., [And94]). The practical problems in
using SSL/TLS have turned out to be substantial and it is reasonable to assume
that the majority of SSL/TLS-based applications are vulnerable to attacks. In
the recent past, for example, phishing and Web spoofing attacks have become
widespread. They represent special forms of man-in-the-middle (MITM) attacks,
and they are particularly powerful if visual spoofing is employed [OGO5]. If a
MITM can place himself between the user and the server, then he can act as a
relay and authenticate himself to the server on behalf of the legitimate user. Even
worse, if the MITM operates in real-time (i.e., with a small time delay), then
there is hardly any user authentication mechanism (decoupled from SSL/TLS
session establishment) that cannot be defeated or misused.

The question we address in this paper is how to protect SSL/TLS-based e-
commerce applications (and their users) against MITM attacks. We think that
this question is highly relevant and has not received adequate attention, either
in the literature or in practice. The solution we propose is to make user au-
thentication depend on the current SSL/TLS session, i.e., user authentication is
bound to, and only valid for, a specific SSL/TLS session. This thwarts the MITM
by making it ineffective for him to resubmit a user’s credentials on a SSL/TLS
session other than the one established between the user’s Web browser and the
application server. We will present in this paper different ways of achieving this.

The rest of this paper is organized as follows: In Section 2, we present back-
ground on SSL/TLS and MITM attacks. In Section 3, we survey related work.
In Section 4, we introduce the notion of SSL/TLS session-aware user authenti-
cation and, in Section 5, we present different possibilities for implementing it.
In Section 6, we draw conclusions.

2 Background

In this section, we briefly summarize the SSL/TLS protocol and the notion of
MITM attacks.



2.1 SSL/TLS Protocol

The SSL protocol is a transport layer security protocol that was developed
and proposed by Netscape Communications in the 1990s.# The proposal was
the starting-point for the IETF Transport Security Layer (TLS) working group
whose task was to develop a transport layer security protocol of the same name.
The resulting protocol is known as TLS protocol and it is specified in RFC 2246
[DA99].

The SSL and TLS protocols are essentially the same.® Part of the protocol
is a handshake protocol that is responsible for (mutual) authentication and key
establishment. The SSL/TLS handshake protocol can be summarized as follows:

1: C — S ClientHello

2: S — C ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3: C — S Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

4: S — C ChangeCipherSpec
Finished

First, the client (C) and the server (S) exchange ClientHello and ServerHello
messages to synchronize with each other. In step 2, S also provides a public key
certificate to C in a Certificate message, an optional ServerKeyExchange message
(not further addressed in this paper), an optional CertificateRequest message if
the server wants the client also to authenticate itself using a public key certifi-
cate, and a ServerHelloDone message to finish the message sequence. In step 3, C
optionally provides a public key certificate in a Certificate message (if the server
requests the client to authenticate itself using a public key certificate), a pseudo-
randomly generated master secret for the SSL/TLS session encrypted with the
server’s public key (found in the Certificate message) in a ClientKeyExchange
message, and an optional CertificateVerify message (again, if the server wants
the client to authenticate itself using a public key certificate). Finally, C and
S exchange ChangeCipherSpec and Finished messages. Afterwards, all messages
that are subsequently transmitted between C and S can be cryptographically pro-
tected in terms of authenticity, integrity, and confidentiality with cryptographic
keys derived from the master secret.

4 On August 12, 1997, Netscape Communications was granted U.S. patent 5,657,390
entitled “Secure socket layer application program apparatus and method” for the
technology employed by the SSL protocol.

5 There are some subtle differences as explained, for example, in Chapter 6 of [Opp03].



2.2 MITM Attacks

According to RFC 2828, a MITM attack refers to “a form of active wiretapping
attack in which the attacker intercepts and selectively modifies communicated
data in order to masquerade as one or more of the entities involved in a commu-
nication association” [Shi00]. Consequently, the major characteristics of MITM
attacks are (i) that they represent active attacks, and (ii) that they target the
associations between the communicating entities (rather than the entities or the
communication channels between them). Note that in some literature, a MITM
that carries out an active attack in real-time is called adaptive. We will not use
this term and a MITM attack will be adaptive by default.

There are many possibilities to implement MITM attacks. Examples include
Address Resolution Protocol (ARP) cache poisoning and Domain Name System
(DNS) spoofing.® The MITM attacks we have in mind operate at or above the
transport layer. In either case, a MITM attack is very powerful; the attacker
can do literally everything the user is authorized to do on the server side (or
everything the server is authorized to do on the client side, respectively).

In a typical setting, the attacker places himself between the user and the
server in a way that he can talk to the user and the server separately, whereas
the user and the server think that they are talking directly with each other.
The best way to think about a MITM attack is to consider an adversary that
represents an SSL/TLS proxy server (or relay) between the user and the server.
Neither the user nor the server are aware of the MITM. Cryptography makes
no difference here as the MITM is in the loop and can decrypt and reencrypt
all messages that are sent back and forth. If the user wants to authenticate
himself to an application server, then he reveals his credentials to the MITM.
Afterwards, the MITM may choose to use the credentials fairly or to misuse them
to illegitimately spoof the user. If, for example, the user employs a SecurID token
to authenticate himself to a server, then the MITM can grab the SecurlD string
(that is typically valid for a couple of seconds up to a minute) and reuse it to
spoof the user. If the user employs a challenge-response authentication system,
then the MITM can simply send back and forth the challenge and response
messages. Even if the user employed a zero-knowledge authentication protocol
[FS87, GQ8YJ, then the MITM would still be able to forward the messages and
spoof the user accordingly. The zero-knowledge property of an authentication
protocol does not, by itself, protect against MITM attacks—it only protects
against information leakage related to the user’s secret.”

Against this background, we make a case that most currently deployed user
authentication mechanisms fail to provide effective protection against MITM
attacks, even when they run on top of the SSL/TLS protocol. We see two main
reasons for this.

5 Recently, the term pharming has been coined to refer to DNS spoofing attacks, such
as local DNS cache poisoning.

" Note in this regard that there is a construction due to Cramer and Damgard which
can be used to immunize a zero-knowledge authentication protocol against MITM
attacks [CD9T].



1. SSL/TLS server authentication is usually done poorly by the naive end user,
if done at all.

2. SSL/TLS session establishment is usually decoupled from user authentica-
tion.

The first leads to a situation in which the user talks to the MITM, thereby
revealing his credentials to the MITM. The second means that the credentials
revealed by the user can be reused by the MITM to spoof the user to the origin
server. Consequently, any effective countermeasure against MITM attacks in
an SSL/TLS setting must address these problems by either enforcing proper
server authentication or combining user authentication with SSL/TLS session
establishment. As explained below, we think that the second approach is more
appropriate and simpler to deploy.

3 Related Work

First of all, it is important to note that the SSL/TLS protocol is able to pro-
tect against MITM attacks. Hence, if one employed and took advantage of all of
the protocol’s features, then this would provide the necessary protection. This
requires, however, (i) that all clients have personal public key certificates, and
(ii) that server authentication is done properly. Both requirements are difficult.®
This is particularly true for requirement (ii). Requirement (i) could be relaxed,
if one extended the SSL/TLS protocol with some alternative client authentica-
tion methods (in addition to certificate-based authentication). For example, the
adoption of password-based key exchange protocols is proposed in [S+01] and
the use of the Secure Remote Password (SRP) protocol [Wu98] for TLS authen-
tication is ongoing work within the IETF.? We think that this work is important
and useful, and we regret that there is little other activity within the IETF to
extend the TLS specification with other client authentication methods. In either
case, we cannot count on the security properties of the SSL/TLS protocol alone.
Instead, we have to assume a setting in which the SSL/TLS protocol is only
used to authenticate the server and the user authenticates himself on top of an
established SSL/TLS session using some additional authentication mechanism.
Furthermore, we must assume that the certificate-based server authentication is
done improperly by the ordinary user. In such a setting, it is very likely that
MITM attacks will occur, typically sooner than later.

In spite of the fact that researchers have long been aware of MITM attacks,
there are only a few protection mechanisms against them. Most mechanisms pro-
posed are independent of SSL/TLS. For example, Rivest and Shamir proposed
the Interlock protocol [RS84] that was later shown to be vulnerable when used
for authentication [BM94]. Jakobsson and Myers proposed a technique called

8 In some scenarios, such as Internet banking, the two requirements are not indepen-
dent from each other.
9 http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-09.txt



delayed password disclosure (DPD) that can be used to complement a password-
based authentication and key exchange protocol to protect against a special form
of MITM attack—called a doppelganger window attack [JMO05]. Unfortunately,
DPD requires a password-based authentication and key exchange protocol and
is not qualified to protect against the MITM attacks we have in mind.'° Kaliski
and Nystrom proposed the notion of a password protection module (PPM) that
provides some protection against MITM attacks [KNO4]. PPMs are effective
only if they take into account network-related information, such as IP addresses
and URLs. In this case, however, PPMs are very difficult to deploy and man-
age. Finally, Asokan et al. proposed protection mechanisms to secure tunneled
authentication protocols against MITM attacks [ANNO3]. Their work is most
closely related to our findings.

Instead of cryptographic techniques and protocols, some researchers have
suggested employing multiple communication channels and channel hopping
to thwart MITM attacks [ASS03]. This approach has its own disadvantages
and is not practical for Internet-based applications. Similarly, there are sev-
eral applications—especially in Europe—that authenticate users by sending out
short messaging system (SMS) messages that contain TANs and require that
users enter these TANs when they login. While it has been argued that this
mechanism protects against MITM attacks, unfortunately, this is not the case.
If a MITM is located between the user and the server, then he need not eaves-
drop on the SMS messages; all he needs to do to spoof the user is to forward
the TAN submitted by the user on the SSL/TLS session. If one wanted to work
with TANs distributed via SMS messages, then one would have to work with
transaction-based TANs.!? For each transaction submitted by the user, a sum-
mary is returned to the user together with a TAN in an SMS message. To
confirm the transaction, the user must enter the corresponding TAN. The down-
side of this proposal is that transaction-based TANs are expensive (perhaps
prohibitively so) and not particularly user-friendly. Furthermore, they require
the use of secondary networks, such as GSM.

It is a frequently quoted argument in the security industry that strong (pos-
sibly two-factor) user authentication mechanisms are needed to thwart MITM
attacks.'? This argument is wrong. Vulnerability to MITM attacks is not a user
authentication problem; it is a server authentication problem. MITM attacks are
possible mainly because SSL/TLS server authentication is usually done poorly,
as explained above. In other words: if users properly authenticated the server
with which they establish an SSL/TLS session, then they would also be protected
against MITM attacks. Unfortunately, this is not the case and it is questionable
whether this is possible at all. Note that a MITM can employ many tricks to
give the user the impression of being connected to an origin server, for exam-
ple using visual spoofing, which is becoming increasingly popular. In the most
extreme case, one may think of a MITM that is able to control the graphical

!0 This point is, for example, further addressed in attack scenario three of [JMO05].
" http://www.cryptomathic.com /pdf/The%20Future%200f%20Phishing. pdf
12 www.antiphishing.org/sponsors_technical_papers/PHISH_WP_0904



user interface of the user’s browser. In such a scenario, the user has almost no
possibility to recognize that he is subject to a MITM attack.

4 SSL/TLS Session-Aware User Authentication

If the user is not able to properly enforce server authentication, then perhaps it is
possible to technically enforce it. In theory, this seems to be straightforward: just
make sure that the client digitally signs a CertificateVerify message during the
execution of the SSL/TLS handshake protocol if and only if the server provides
an appropriate public key certificate in a Certificate message. In practice, this
is not as simple as it seems to be, mainly because it is not clear what public
key certificate is appropriate. If one considers the use of a PKCS #11-compliant
authentication token, which comes with a list of appropriate public keys and
certificates, then this token normally has no access to the browser’s SSL/TLS
cache (which holds the server certificate for the SSL/TLS session). The only way
out is to implement the SSL/TLS protocol, or at least parts of it, on the token
itself. This approach, however, has its own disadvantages (e.g., performance)
and is certainly not the preferred choice. The bottom line is that it is difficult
and cumbersome to technically enforce proper server authentication without
substantially modifying the client’s or browser’s SSL/TLS implementation.

In this paper, we propose another approach that is based on combining user
authentication with SSL/TLS session establishment. We use the term SSL/TLS
session-aware user authentication to refer to it. The main idea is to make the
user authentication depend not only on the user’s (secret) credentials, but also
on state information related to the SSL/TLS session in which the credentials are
being transferred to the server. The rationale behind this idea is that the server
should have the possibility to determine whether the SSL/TLS session in which
it receives the credentials is the same as the user employed when he sent out the
credentials in the first place.

— If the two sessions are the same, then there is probably no MITM involved.

— If the two sessions are different, then something abnormal is taking place.
It is likely that a MITM is located between the user’s client system and the
server.

Using SSL/TLS session-aware user authentication, the user authenticates
himself by providing a user authentication code (UAC) that depends on both
the credentials and the SSL/TLS session (in particular, on information from
the SSL/TLS session state). A MITM who gets hold of the UAC can no longer
misuse it by simply retransmitting it. The key point is that the UAC is bound to
a particular SSL/TLS session, and if the UAC is submitted on another session,
then the server can easily recognize this fact and drop the session. As such,
SSL/TLS session-aware user authentication provides a lightweight alternative
to the deployment and rollout of a public key infrastructure (PKI) to protect
against MITM attacks.

There are a number of possibilities to implement SSL/TLS session-aware user
authentication. Some of these possibilities are addressed next.



5 Implementation

We make a distinction between hardware-based and software-based implemen-
tations.

— In the first case, we are talking about hardware tokens (i.e., hard-tokens).
Such a token may be (physically) connected or not. By connected, we mean
there is a direct communication path in place between the token and the
client system. This includes, for example, galvanic connections, as well as
connections based on wireless technologies, such as Bluetooth or infrared.

— In the second case, we are talking about software tokens (i.e., soft-tokens).

Furthermore, an authentication token (be it hardware-based or software-
based) can be personal or impersonal.

— If the token is personal, then it comprises a user-specific private key and this
key can be used directly to authenticate the user. In this case, we are in the
realm of full-fledged PKI solutions.

— If the token is impersonal, then it comprises a private key, but this key is not
user-specific and hence cannot be used to authenticate the user. Instead, the
user must authenticate himself by some other means on top of the SSL/TLS
session. The use of impersonal token was originally proposed by Molva and
Tsudik in [MT93]. Impersonal tokens are commercially interesting, mainly
because they are inexpensive and do not require a user registration process.!?

In either case, the token’s private key must have signing capabilities, since
it is used to digitally sign the client’s CertificateVerify message of the SSL/TLS
handshake protocol. This message, in turn, represents the hash value of all mes-
sages previously exchanged during the SSL/TLS handshake protocol execution.
Part of this message is the server’s Certificate message that comprises the server’s
public key certificate (the server’s public key is included in this certificate), and
hence the CertificateVerify message is indirectly bound to the server’s public key.

Furthermore, an authentication token can be consistent with a cryptographic
token interface standard, such as PKCS #11 [RSA04] or Microsoft’s crypto-
graphic application programming interface (CAPI). We assume that a standard
CAPI driver is preinstalled on newer versions of the Windows operating system,
and that this driver can be used by the Microsoft Internet Explorer to drive
the token in some transparent way (from the user’s viewpoint). On all other
platforms, we assume that some PKCS #11 driver software must be installed to
drive the token. This includes, for example, the case in which a Mozilla browser
is employed on a Windows platform.

From a theoretical viewpoint, we prefer hardware tokens over software pri-
marily because software-based approaches can be more easily attacked and ma-
nipulated. Trusted computing platforms may someday provide an alternative.

13 In fact, we think that the user registration process is the cost driver for any PKI
solution.



However, these platforms are not yet widely deployed, and it is questionable
whether they will ever become available on a large scale [OR05]. Furthermore,
we think that an authentication token should be compliant to the PKCS #11
standard. In either case, we prefer impersonal tokens because they do not de-
pend on a user registration process, which simplifies matters considerably. More
specifically, we envision impersonal tokens that can be plugged into a client sys-
tem, and which can combine user authentication with SSL/TLS session estab-
lishment and thereby make user authentication SSL/TLS session-aware. Such a
token-based implementation is addressed first. Afterwards we present extensions
and modifications, provide an informal security analysis, and discuss possibilities
for implementing SSL/TLS session-aware user authentication in software.

5.1 Token-based Implementation

In our token-based implementation, the following entities play a role:

— A user U;

— An impersonal PKCS #11-compliant authentication token T with a small
display;

— A client (i.e., browser) C that is used by U to access an SSL/TLS-based
application;

— An SSL/TLS-enabled server S that hosts the application.*

The entities are equipped with various parameter values and cryptographic
keys. U is equipped with an identifier /Dy and a PIN PINy. PINy, in turn,
is a secret that U shares with S, for example, a few decimal digits. Obviously,
some mechanisms must be in place (not addressed in this paper) that allow U
to manage his PINs. T is identified with a publicly known serial number SNp.!%
Furthermore, T is equipped with both a public key pair (k, k~1)—of which the
private key k~! is used to digitally sign the CertificateVerify messages—and a
secret token key Kr. The keys k and k~! are the same for all tokens (which
is why the tokens are impersonal in the first place), whereas Kp is unique and
specific to T' (it is not specific to the user). K can be generated randomly or
pseudo-randomly using a master key M K:

Ky = FEykg(SNy).

Consequently, there is no need to centrally store all the token keys. Instead, K
can be generated dynamically (by anybody who knows M K) from SNr. MK is
typically possessed and held exclusively by S.

When U wants to access S, he directs his browser C to S. C and S then try
to establish an SSL/TLS session. As part of the SSL/TLS handshake protocol,

4 We do not differentiate between S and the application it hosts. Conceptually, one
may think of S as a dedicated server, i.e., a server that exclusively hosts only the
application under consideration.

15 The serial number may, for example, be imprinted on the token.



S authenticates itself using a public key certificate (we do not require the user
to properly verify this certificate at this point). S is configured in a way that it
always requires client authentication by sending out a CertificateRequest message
to C. After C receives the message, it knows that it must authenticate itself by
returning a properly signed CertificateVerify message to S. As mentioned above,
this message comprises a digitally signed hash value of all previously exchanged
messages (this value is further referred to as Hash). The signature is generated
by T using its private key k~!. Due to the fact that T is an impersonal token,
the CertificateVerify message cannot really authenticate the client (as k~1 is the
same for all tokens). Instead, the CertificateVerify message only ensures that C'
uses a token to establish an SSL/TLS session with S. In addition to providing a
properly signed CertificateVerify message to S, the token also renders a shortened
version of

Np = Ex..(Hash)

in decimal notation on its display.'® Ny is shortened to the length of PINy
(e.g., 8 digits) by truncating it. This value must then be combined with PINy to
generate a user authentication code (UAC) that is valid for exactly one SSL/TLS
session of U. If f is a function that combines Ny and PINy, then the UAC is
computed as

UAC = f(Ng, PINy). (1)

In general, there are many ways to define an appropriate function f. One
possibility, which we adopt from [MT93], is to let f be the digit-wise addition
modulo 10 of N7 and PINy.

The server must authenticate the user by asking him to enter I Dy, SN,
and a valid UAC within the previously established SSL/TLS session.!” On the
server side, S can verify the UAC because it knows f and PINy and because it
can construct N (since it knows Hash and the master key MK that is used to
dynamically generate the token key K that is shared with T'). Obviously, the
server authentication software must be designed in a way that it has access to
the SSL/TLS cache (to retrieve Hash). Clearly this is much simpler to achieve
on the server side.

Note that our token-based implementation does not require synchronized
clocks. Instead, it employs nonces derived from the symmetrically encrypted
hash values used by the SSL/TLS protocol.

16 Alternatively, N could also represent a message authentication code (MAC) com-
puted with a keyed one-way hash function (in this case, Kt represents the key).
For example, the HMAC construction (e.g., [Opp05]) could be used to generate Nr:
NT = HMACKT (Hash)

17 Note that the user need not enter SNr if this value is included in a public key
certificate for T7s private key k~!. In this case, the server S can retrieve SNz from
the public key certificate. Similarly, one could also have the user register with a
specific token. In this case, S can retrieve I Dy from its registration database and
set it as a default value in the user authentication process. Both possibilities are not
further addressed in this paper.



5.2 Extensions and Enhancements

The basic schema may be enhanced and extended in various ways. For example,
instead of using the CertificateVerify message to make a user authentication be
SSL/TLS session-aware, an implementation may also use the Finished message
(that also includes a hash value of all previously exchanged messages). Also,
instead of symmetrically generating Nt on the client and server side, Ny can be
transmitted as part of the CertificateVerify message. In this case, however, N
must be encrypted with a public key for which the private key is known only to
the server. The big advantage we see is that the token does not have to store a
secret token key Kp anymore (it only has to store a public key for the server).
Taken this idea of step further, one may also think of having the CertificateVerify
message include the UAC (in addition to the digitally signed hash value and the
encrypted value of Nt). In this case, the user authentication is handled entirely
by the token and the user does not have to enter anything in a Web form.

As briefly surveyed next, several other extensions and enhancements are pos-
sible.

Mutual authentication: The token can be extended to support server au-
thentication. In this case, the token must be able to display both Np and an
authentication code

AT = EKT (g(Ha‘Sh)) ’

where g is a publicly known length-preserving function. Ny and A7 can be
displayed on two separate displays, on one display (in concatenated form),
or alternating on one display.

Complementing a one-time password or challenge-response system:
The token can be used to complement a strong authentication system, such as
a OTP system (e.g., Lamport-style OTPs or SecurID tokens) or a challenge-
response system. In the first case, U employs the OTP as input for f (instead
of PINy). In the second case, Ny (or a truncated version thereof, respec-
tively) basically represents the challenge.

Relieving the user from computing f: The token can be extended to re-
lieve the user of the burden of computing f. Instead of having U compute
the UAC, one may imagine a token that contains a small keypad. In this
case, the token can implement a pseudorandom function PRF and generate

UAC = PRFp;n, (N7)

in a way that is transparent to the user. The main advantage here is that
the user no longer has to manually compute an addition modulo 10. Alter-
natively, one may also consider the use of a software tool that asks the user
to enter his PIN and provides the token with the user-entered value. Again,
the UAC is then computed on the token. Of course, the client system should
be free of malware in this case, as otherwise a Trojan horse may be used to
request the user’s PIN and make it available to the adversary.



Use of biometrics: An increasingly popular (but sometimes also overblown)
option is to personalize computing devices with biometric authentication
mechanisms. Authentication tokens, even impersonal ones, are good candi-
dates for such personalization and can be extended with a biometric au-
thentication step prior to activation. The use of biometrics is particularly
interesting when combined with the previous extension of using a keypad to
relieve the user from computing f.

Multi-institution tokens: The tokens proposed above can be used to authen-
ticate a user to a single institution, using a single PIN. In a more general
setting, one may employ a multi-institution token, which can authenticate
a user to multiple institutions. Such a token is simple to design, but it may
be considerably more involved to market it.

Some of these extensions and enhancements are further explored in a com-
panion paper [OHBO6].

5.3 Informal Security Analysis

We claim that our token-based approach protects users against MITM attacks
in an SSL/TLS setting and we briefly sketch the reasons for this here.

Consider an adversary M that tries to mount a MITM attack against U. We
assume that M can establish an SSL/TLS session to C' and another SSL/TLS
session to S. On top of the first sessions, M asks U to enter his UAC and forwards
it on the second session to S (claiming to be U). In this situation, S will abort
the second session, spotting that the UAC it obtains does not logically belong
to the associated SSL/TLS session. This occurs because the hash value that T
sees (when it generates Nr) and the hash value S sees (when it executes the
SSL/TLS handshake protocol) are different, with a high probability (because
the hash function in use is assumed to be collision-resistant). Consequently, the
resulting UACs are different and hence S will refuse to accept the submitted
UAC.

Another concern one may have is that M succeeds in retrieving PI Ny from a
valid UAC. For this purpose, M may set up an SSL/TLS session to C (claiming
to be S) and request a valid UAC. Because the UAC depends on Np and Np
depends on Hash (that is now known to M), it may appear feasible to retrieve
PINy from this value. In this case, however, appearances are deceptive and
this attack does not work. Note that Np is encrypted with Kpr—a key that is
known only to 7" and S—and hence there is no easy way for M to construct
Nr (from Hash) without knowing K. It goes without saying that the attack is
successful if the adversary knows or can learn K or MK (in the second case,
Kt can be computed by the adversary). The bottom line is that we must make
the assumption that the symmetric encryption system used is resistant against
known- and chosen-plaintext attacks. This is, however, a standard assumption in
applied cryptography, and all practically relevant symmetric encryption systems,
such as 3DES or AES, have modes of operation that satisfy this assumption (e.g.,
[B497]).



In a similar line of argumentation, one may be concerned that U is not able
to properly authenticate S (i.e., the server that requests the UAC). If this poses
a problem, then the authentication code A may be employed. In this case, U
authenticates himself to S with an appropriate UAC, and S authenticates itself
to U with an appropriate authentication code. Due to the fact that the UAC is
not particularly useful for an adversary, we recommend the use of authentication
codes only in high-security environments.

5.4 Software-based Implementation

In a software-based implementation, the hard-token is replaced with a soft-token.
This means that the token’s functionality is simulated in software and that the
token’s display is emulated on the display of the client system. The soft-token
may still be compliant to PKCS #11, CAPI, or any other cryptographic token
interface standard. In this case, the basic functionality and interface of the soft-
tokens remain essentially identical to the hard-tokens.

On the one hand, soft-tokens are more flexible and less expensive than
hardware-based solutions. On the other hand, soft-tokens have additional se-
curity problems that must be dealt with.

1. Soft-tokens are inherently vulnerable to malware and keylogger attacks. Mal-
ware can, for example, read out cryptographic keys. Keylogger attacks can
be used to retrieve the user credentials when they are typed in.

2. Soft-tokens are vulnerable to visual spoofing attacks.

Both problems are difficult to solve. Keylogger attacks can be partially solved
by displaying a keyboard on the client’ screen and having the user type in his
credentials using this keyboard. The second problem is particularly tricky. One
has to find means to have the soft-token’s GUI display authentic information.
As of this writing, there are only a few (visual) technologies that can be used
for this purpose (e.g.,[YS02, DT05]).

In one way or another, a software-based implementation of SSL/TLS session-
aware user authentication must have access to some SSL/TLS state information,
in particular the Hash value.

— If the soft-token is consistent with PKCS #11 or CAPI, then it has imme-
diate access to this information (similar to the hard-token). In this case, the
implementation of the soft-token is essentially the same. This includes, for
example, the necessity to install driver software on the client system.

— If, however, the soft-token is not consistent with PKCS #11 or CAPI, then
it has no immediate access to this information. In this case, the situation
is slightly more involved and one must employ other means to access the
Hash value. One possibility is to modify the browser in a way that it is
able to render and display the first digits of the Hash (or compress(Hash),
respectively) value as it appears in the execution of the SSL/TLS handshake
protocol. These digits can, for example, be displayed near the closed pad-
lock icon that marks the SSL/TLS session (typically at the bottom right



of the bowser window). The character set and length of compress(Hash)
may be configurable, and thereby meet the requirements of different user
authentication mechanisms and systems.

In the second case, the users can be equipped with a simple program that
implements a UAC calculator. The UAC calculator must compute and display
the currently valid UAC according to formula (1). This value must then be
entered by the user in a Web form or transferred to the server S as part of the
SSL/TLS CertificateVerify message. In this case, we have the possibility to work
with nonces encrypted with a server public key instead of Hash. The advantage
we see in this case is that there is no secret key that must be stored on the
token. In either case, the user must have the assurance that the first digits of
Hash displayed by the soft-token are authentic and can somehow be verified.
Otherwise, an attacker can fake the digits and use the UAC to launch a PIN-
guessing attack. As noted previously, there are only a few technologies that can
be used for to establish a trusted path between the browser and the user. We
see this as one of the major challenges in a software-based implementation.

6 Conclusions and Outlook

MITM attacks pose a serious threat to many relevant SSL/TLS-based applica-
tions, such as Internet banking and remote Internet voting. In this paper, we
argued that most deployed user authentication mechanisms fail to provide pro-
tection against this type of attack, even when they run on top of SSL/TLS.
We introduced the notion of SSL/TLS session-aware user authentication, and
elaborated on possibilities to implement it. More specifically, we started with a
basic implementation that employs impersonal authentication tokens, addressed
extensions and enhancements, gave an informal security analysis, and presented
possibilities for implementing SSL/TLS session-aware user authentication in
software. As of this writing, we are prototyping SSL/TLS session-aware user
authentication for Internet banking, and we expect to have a proof-of-concept
implementation ready for demonstration soon. The implementation is software-
based and employs many ideas raised in Section 5. Most specifically, the imple-
mentation renders and displays the first digits of the Hash (or compress(Hash),
respectively) value as it appears in the execution of the SSL/TLS handshake pro-
tocol. We hope that this extension makes it as a “trusted observer” extension
into the default browsers.

We believe that the time to tackle this problem is running out and we expect
that real-time variants of MITM attacks will take place soon. When this hap-
pens, it is important to have a full understanding of the problem as well as the
space of possible solutions. Many mechanisms currently promoted by industry
simply are not effective against this problem. This includes TAN lists (including
the iTAN mechanism), TANs delivered with SMS messages, SecurID tokens, and
many other two-factor authentication devices.'® A mechanism we think is effec-
tive is the use of personal authentication tokens on the client side (to be used

'8 http://www.acm.org/technews/articles/2005-7/0316w.html#item3



in the SSL/TLS session establishment) and a very restrictive browser configura-
tion. This mechanism, however, is very difficult to deploy and enforce in the real
world; this is particularly true for the restrictive browser configuration. Conse-
quently, we see SSL/TLS session-aware user authentication as a pragmatic and
lightweight alternative to the deployment of a PKI-based solution. In fact, we do
not require any redesign or change of the deployed SSL/TLS infrastructure. Any
existing and deployed OTP system can be made SSL/TLS session-aware (e.g.,
[OHBOG]). This protects the security investments made in the past. Furthermore,
several institutions can work together to issue multi-institution tokens.

Finally, we hope that our work will stimulate further technical discussions
about MITM attacks and their feasibility against applications protected by
SSL/TLS and similar protocols. We believe that these applications are much
less secure in practice than they appear to be in theory and that this miscon-
ception is very dangerous.
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