
Constructing Mid-points for Two-party Asynchronous
Protocols

Petar Tsankov, Mohammad Torabi-Dashti, and David Basin

ETH Zürich, 8092 Zürich, Switzerland

Abstract. Communication protocols describe the steps that the communication
end-points must take in order to achieve a common goal. In practice, networks
often contain mid-points, which can relay, redirect, or filter messages exchanged
by the end-points. A mid-point can enforce a communication protocol: it for-
wards the messages that conform to the protocol, and drops them otherwise. Pro-
tocol specifications typically define only the end-points’ behavior. Implementing
a mid-point that enforces a protocol is nontrivial: the mid-point’s behavior de-
pends on the end-point’s behavior, and also on the behavior of the communication
environment in which the protocol executes.
We present a process algebraic framework that takes as input the formal spec-
ifications of the protocol and the environment and outputs a specification for
a mid-point that enforces the protocol. We prove that the mid-point specifica-
tions synthesized by our framework are correct: only messages that could have
resulted from correctly executing end-points are forwarded. As an application,
we construct a formal model for the mid-point that enforces the TCP three-way
handshake protocol.

Key words: mid-point, specification, synthesis, formal methods, protocol en-
forcement

1 Introduction

Context. Communication protocols describe the steps that the communication end-
points take in order to achieve a common goal, e.g. to exchange data reliably. In prac-
tice, the end-points often communicate over mid-points, which relay, redirect, or filter
the communication. Firewalls are prominent examples of mid-points. They can not only
observe the execution of a protocol between end-points, but also enforce that the pro-
tocol is correctly executed. Namely, the mid-point forwards the messages that conform
to the protocol, and drops them otherwise. The messages that do not conform to the
protocol may have been sent by a faulty end-point or by an adversary, may be the re-
sult of communication failures, etc. For example, a mid-point (or firewall) that enforces
the TCP protocol should drop ack messages from B to A right after A has sent B a
syn message. This is because, according to TCP’s three-way handshake, B must reply
to A’s syn either with a syn&ack or with a rst message.

The behavior of a mid-point that enforces a communication protocol depends on the
steps that the end-points must take, and also on the communication environment where
the protocol should be executed. This is intuitively because the mid-point would observe

the actions of the end-points via a “lens”, namely the communication channels that con-
nect the end-points to the mid-point. In an asynchronous message-passing environment,
for instance, it is possible that an end-point sends message a and then message b, but
the mid-point observes the message b before the message a. The mid-point cannot sim-
ply dismiss the observed sequence of messages as a violation of the protocol because,
depending on the channels’ characteristics, the mid-point may observe different events,
and events in different orders, compared to the end-points; cf. [2].

Contributions. We present a process algebraic framework1 for automatically synthe-
sizing formal models for mid-points. The input to the framework is the specification of
the end-points of an asynchronous protocol and the characteristics of the channels that
connect the end-points to the mid-point. The framework outputs a formal specification
for a mid-point that enforces the protocol. Formal specifications for mid-points can in
general be used for (model-based) testing, (model-driven) development of mid-points,
and formal verification of mid-points. These are all practically important and nontrivial
tasks: A case study on three commonly used firewalls (Checkpoint, netfilter/iptables,
and ISA Server) shows that different firewall manufacturers implement the mid-point
for (enforcing) the TCP protocol differently, and sometimes incorrectly with respect to
the TCP specification given in [8] (see [3] for details). A formal specification for TCP
mid-points can be used either to avoid or to pinpoint the causes of such discrepancies.

The inputs and the output of our framework are processes specified in the µCRL
process algebraic language [13]. The resulting mid-point process can be expanded to a
(finite) state machine, if desired. Choosing µCRL for automatically constructing mid-
point specifications has two benefits:

1. (Theoretical) The problem of constructing mid-point specifications is reduced to
computing parallel compositions in our framework, hence relating the problem to
a well-studied body of research. This simplifies the correctness proof for the con-
struction, and also enables us to use bisimulation reductions for minimizing the
mid-point processes output by the framework.

2. (Practical) The µCRL process algebra comes with a mature tool support [5, 4, 6].
This allows us to put the proposed framework immediately into practice: the µCRL
toolset has been used for the case study reported in this paper.

We have carried out a case study on constructing a formal model for the mid-point
that enforces the TCP three-way handshake protocol [9].

Related work. The closest related work is [3], where the authors give an algorithm for
constructing mid-points, assuming that the specifications of the end-points are given as
finite-state machines. Our framework is more general and more modular than the al-
gorithm of [3]: (1) end-points are defined as finite-state machines in [3] while in our
framework µCRL processes with recursive data types allow for a larger class of end-
point specifications, and (2) the algorithm of [3] is tailored for a fixed type of channels
while any µCRL process can model the channels in our framework. Thus, our algorithm

1 The framework can be downloaded at www.infsec.ethz.ch/research/software.

can be directly applied to settings where different channels have different characteris-
tics.

Bhargavan et al. [2] consider a problem which is related to, but nonetheless different
from, the mid-point construction problem. In [2], the end-points are assumed to be con-
nected directly via communication channels, and the authors consider the problem of
automatically constructing specifications for monitors that observe the communication
between the end-points. There is a significant difference between monitors and mid-
points as the following simple example shows. Suppose that A and B communicate
over asynchronous channels. The mid-point, mediating the communication between A
and B, knows that if it has not forwarded a message m from A to B, then B could
not have received m. However, the monitor, passively observing the communication
between A and B, cannot know this: it could be that m has reached B, but m has not
reached the monitor due to the asynchronous nature of communication.

Related areas are firewall testing [15, 7], the extensive literature on test case gener-
ation from Mealy machines (e.g. see [19]), and testing TCP end-point automata [18].
In firewall testing a mid-point is tested. The previous works start with the firewall rules,
while our focus is on the interactive nature of stateful firewalls. Test case generation
from Mealy machines can be applied to the transition systems produced by our frame-
work for testing mid-points. Testing TCP end-point automata is complementary to our
work, as we consider constructing mid-point formal specifications that in turn can be
used for testing TCP mid-points.

The remainder of this paper is organized as follows. In Section 2 we give a short
introduction to the µCRL process algebra. In Section 3 we describe how we model com-
munication protocols and their environments. In Section 4 we discuss the challenges in
constructing mid-point specifications. In Section 5 we give formal definitions and in
Section 6 we present our process algebraic framework. In Section 7 we present our case
study on the TCP three-way handshake protocol and in Section 8 we draw conclusions.
We prove the correctness of our method in Appendix A.

2 The µCRL process algebra

For specifying end-points, mid-points, and communication channels, we use the process
algebra µCRL [13], which is an extension of the process algebra ACP [1] with abstract
data types. Our results however do not depend on this choice in any crucial way, as
µCRL is similar to other process calculi such as CSP. In what follows, we provide a
brief introduction to µCRL. Its complete syntax and semantics are given in [13].

A µCRL specification consists of data type declarations and process behavior def-
initions, where processes and actions can be parameterized by data. Data is typed in
µCRL and types can be recursive. Each non-empty data type has constructors and pos-
sibly non-constructors associated with it. The semantics of non-constructors is given by
equations. The presence of a type Bool of Booleans with constants T and F as construc-
tors, and the usual connectives ∧, ∨ and ¬ as non-constructors, is always assumed.

A process is specified as a guarded recursive equation that is constructed from a
finite set of action labels, process algebraic operators and recursion variables; mutual
recursion among processes is allowed. The set of action labels is denoted Act . All mem-

bers of Act , except for a designated action label τ for silent steps, may be parameterized
with data to construct actions. The process algebraic operators + and · denote nondeter-
ministic choice and sequential composition, respectively: The process p+ q can behave
either as process p or as process q, and the process p ·q behaves as process p and when p
terminates (if p ever does), it continues as process q. The constant δ denotes a deadlock
process, i.e. one that cannot perform any actions. Recursion variables, which can be
parameterized with data, are used in the natural way, e.g. X = a · X , with a ∈ Act ,
describes a process that performs action a and then recurs, thereby performing an infi-
nite number of a actions in sequence. A recursive equation is guarded if all its recursion
variables are preceded by an action.

The parallel (asynchronous) composition p‖q interleaves the actions of p and q.
Moreover, actions from p and q may synchronize, when this is explicitly allowed by
the predefined commutative and associative partial function | : Act × Act → Act .
Two actions can synchronize only if their data parameters are semantically equal. This
implies that synchronization can be used to represent data transfer between processes.
Encapsulation ∂H(p), which renames all occurrences of actions from the set H in p
to the deadlock action δ, can be used to force actions to communicate. For example,
with a, b, c ∈ Act and a|b = c, the process (a.δ)‖(b.δ) behaves as a.b.δ + b.a.δ + c.δ.
Therefore, ∂{a,b}((a.δ)‖(b.δ)) = c.δ. The operator ρ is used for renaming: ρa→b(p)
simultaneously renames all occurrences of action a to action b in process p.

The summation operator
∑
d:D p(d), where d is a free variable in process p(d),

provides the possibly infinite choice over a data type D. The conditional construct pC
bB q, with b : Bool, behaves as p if b = T and as q if b = F. In particular, the construct∑
d:D p(d) C f(d) B δ, with f : D → Bool, chooses values of d ∈ D such that f(d)

is true. The operator · has the strongest precedence, the conditional construct binds
stronger than +, and + binds stronger than

∑
.

A µCRL specification describes a labelled transition system (LTS) whose states rep-
resent process terms and edges are labelled with actions. The µCRL tool set [5, 4],
together with LTSmin [6] and CADP [10] which act as µCRL’s back-ends, features
visualization, simulation, symbolic reduction, (distributed) state space generation and
reduction, model checking, and theorem proving capabilities for µCRL specifications.

3 Communication protocols, environments, and mid-points

Below, we fix a data type Msg for messages. Let the two end-points be indexed by j ∈
{1, 2}. Given an end-point j, we refer to its partner (the other) end-point by j̄ = 3− j.

Communication protocols. Communication protocols typically describe the steps that
the communication end-points take to achieve a common goal, e.g. to exchange data re-
liably. We therefore define a communication protocol Π as a pair (E1, E2), where Ej

specifies the protocol for end-point j. Note that we are concerned with two-party com-
munication protocols, as opposed to multi-party protocols. The specifications Ej are
subject to a number of restrictions defined below. We define two communication ac-
tions for each end-point:

snd : {1, 2} ×Msg
rcv : {1, 2} ×Msg

Intuitively, snd(j,m) denotes the event of message m being sent to Ej (via the
communication environment, as defined below), and rcv(j,m) denotes the event of
message m with destination Ej being received. We assume that all non-silent actions
appearing in Ej are either of the form snd(j̄,m) or rcv(j,m), for j ∈ {1, 2} and
some m ∈ Msg . All internal actions of Ej are therefore modeled by the silent action τ .

Communication environments. Communication protocols are executed in communica-
tion environments. A communication environment is a set of channels {C1, · · · , Cn},
with n > 0. A channel’s behavior can be formally specified as a µCRL process. There-
fore, a communication environment Env is defined as a tuple (C1, · · · , Cn), where Ci

is the specification of channel i for 1 ≤ i ≤ n (see § 4.1 for examples). The specifica-
tions Ci are subject to a number of restrictions defined below. We define two channel
actions for each channel:

in : {1, · · · , n} ×Msg
out : {1, · · · , n} ×Msg

Intuitively, in(i,m) with 1 ≤ i ≤ n and m ∈ Msg denotes the event of message m
being sent to channel i, and out(i,m) denotes the event of message m being received
from channel i. We assume that all non-silent actions appearing in Ci are either of the
form in(i,m) or out(i,m), for some m ∈ Msg . Any other action of channel i (e.g.
dropping or duplicating messages) is therefore modeled as a silent step.

Mid-points. We assume that the mid-point is placed in the communication environment
such that all the communication between the end-points passes through the mid-point.
See Figure 1.

C1
o

C2
o

C2
i

C1
i

E2E1
M

Fig. 1. The general setting: E1 and E2 are the end-points and M is the mid-point.

The communication protocol Π = (E1, E2) is executed in environment Env by
placing the channels Cji , C

j
o between Ej and M , as shown in Figure 1. We model

the communication environment Env as a quadruple (C1
i , C

1
o , C

2
i , C

2
o). The subscript i

denotes “input” and the subscript o denotes “output”. We remark that each of the chan-
nels Cji , C

j
o may in reality consist of several channels linked together. In our model,

say, C1
o is therefore the specification of a channel that simulates the behavior of all the

channels that are used along the communication path that connects E1 to M .
Note that the mid-point is assumed to be able to distinguish between messages ar-

riving from different channels. In practice, the modeled environment is an IP network
and the mid-point is placed such that it interconnects the networks of E1 and E2. The

mid-point must be the only entity connecting the two networks to ensure that it can
observe all messages exchanged by the end-points. Each network is connected on a
different port, hence our assumption is reasonable.

Protocol specifications are usually informal. We however assume that a formal spec-
ification for the end-points E1 and E2 is available. The characteristics of the commu-
nication channels Cji , C

j
o , with j ∈ {1, 2}, are also assumed to be formally speci-

fied. In § 4.1, we give formal specifications for a number of common channel types,
such as lossy channels and reliable asynchronous channels. Our goal is to automati-
cally construct a formal specification for the mid-point M that enforces the protocol,
given formal specifications for Ej , Cji , C

j
o , with j ∈ {1, 2}. The notion of enforcement

is formally defined in § 5.

4 Challenges

In this section, we describe the main aspects that should be considered when construct-
ing formal models for mid-points: channel fidelity and non-determinism.

4.1 Channels fidelity

Ej

Cj
o

Cj
i

M

Fig. 2. Mid-point’s view
of end-point Ej

Channels fidelity refers to the fact that the sequence of
events executed at the end-point and the sequence of events
observed by the mid-point may differ depending on the
characteristics of their communication environment. De-
pending on their properties, channels Cji , C

j
o distort the

way the mid-point views the actions of Ej .
The mid-point views the actions of Ej via the “lenses”

Cji and Cjo ; see Figure 2. We illustrate this with an exam-
ple. Assume that the specification of the end-point E1 is
E1 = rcv(1, x) · snd(2, y) · δ + rcv(1, x) · δ. That is, E1 receives message x and then
sends message y, or it receives message x and then stops. Furthermore, assume that the
channel C1

i is reliable, while the channel C1
o is lossy (i.e. it can lose messages). Assume

also that the mid-point M sends x to C1
i . As long as M does not receive message y

on C1
o , it does not know whether E1 executes rcv(1, x) · snd(2, y) · δ or rcv(1, x) · δ.

This is because message y can be lost by C1
o and therefore these two executions of E1

are indistinguishable to the mid-point.
We remark that given formal specifications of the end-pointEj and the channels Cji

and Cjo , we can compute the behavior of the end-point as seen from the point of view
of the mid-point; see § 6. As examples, the behavior of reliable, resilient, and lossy
channels are formalized in µCRL below. We assume the data structures Queue and Set
are given with their usual operators, which we use to model how channels store the
messages passed to them. 2

Reliable channel. Messages are not lost, duplicated, or reordered in this model. The
channel stores messages in a queue. When a message is received, modeled by action

2 For a formal specification see www.infsec.ethz.ch/research/software.

in(i,m), the reliable channel i inserts the message in the queue. When the queue
is not empty, the channel removes the first message from the queue and delivers
it via action out(i,m). Below, we omit the name of the channel i from the action
labels in and out.

Creliable(Q : Queue) =
∑
m:Msg in(m)·Creliable(enqueue(Q,m))

+∑
m:Msg out(m)·Creliable(dequeue(Q)) / m = head(Q) . δ

Models of reliable channels are useful, e.g., when the mid-point is co-located at one
of the end-points. For such a mid-point, the sequence of observed events matches
the sequence of events executed by the end-point.

Resilient channel. Messages are not lost, but they may be duplicated or reordered in
transmission. The channel stores received messages in a set. A message may be
delivered multiple times after it is inserted in the channel.

Cresilient(S : Set) =
∑
m:Msg in(m)·Cresilient(S ∪ {m})

+∑
m:Msg out(m)·Cresilient(S) / m ∈ S . δ

In practice, messages can be sent over different routes due to link failures, traffic
load balancing, etc. This leads to messages arriving out of order, or multiple times,
at the destination.

Lossy channel. Messages are lost and reordered, but are not duplicated. The channel
stores messages in a multiset. When a message is in the multiset, it may be delivered
or simply removed from the channel buffer.

Clossy(S : Set) =
∑
m:Msg in(m)·Clossy(S ∪ {m})

+∑
m:Msg out(m)·Clossy(S \ {m}) / m ∈ S . δ

+∑
m:Msg τ ·Clossy(S \ {m}) / m ∈ S . δ

In practice, channel have finite buffers; when their buffer is full the channels lose
messages. Messages are also dropped in case of link failures.

4.2 Non-determinism

Non-determinism in specifications is generally used to allow different alternative be-
haviors. The alternative behaviors can model, e.g., under-specification (that is, the im-
plementations can follow one or several of the provided alternatives) and abstraction
(for instance, probabilistic choices can be modeled as non-deterministic choices).

Since the specifications of the end-points are given in µCRL in our framework, non-
determinism in end-points can be naturally expressed using the choice operator +. For
instance, consider the end-point specification E1 = rcv(1, x) · (snd(2, y) + snd(2, z)) ·
δ. That is, E1 executes rcv(1, x) and then non-deterministically executes snd(2, y) or
snd(2, z). The mid-point needs to consider both the executions rcv(1, x) · snd(2, y) and
rcv(1, x) · snd(2, z) as valid, since they comply with the specification of E1.

5 Formal definitions

We assume that the protocol specification Π = (E1, E2), and the communication en-
vironment specification Env = (C1

i , C
1
o , C

2
i , C

2
o) are given in µCRL, and they conform

to the restrictions specified in § 3. Our goal here is to define when a mid-point M
enforces the protocol described by Π = (E1, E2), executing in the communication
environment described by Env = (C1

i , C
1
o , C

2
i , C

2
o). We first define how the proto-

col Π executes in the communication environment Env . We define the set of actions
Act = {a : {1, 2} ×Msg | a ∈ {snd, rcv, in, out, α, β, com}} and the synchronization
rules snd|in = com, out|rcv = com, α|β = f. We define two processes P and Q that
describe how E1 and E2 execute in the communication environment:

P = τ{com}∂{Act\{α,β,com}}(E1‖ρ{out→α}C
1
o‖ρ{in→β}C1

i)
Q = τ{com}∂{Act\{α,β,com}}(E2‖ρ{out→α}C

2
o‖ρ{in→β}C2

i)

Note that we rename the actions out and in in Cjo and Cji to α and β, respectively, and
force communication between α and β actions in order to link each input channel Cji
to the output channel C j̄o , for j ∈ {1, 2}; see Figure 3. Finally, we define our reference
model R:

R = ∂{α,β}(P‖Q)

Intuitively, R describes how the mid-point observes the execution of E1 and E2 in the
communication environment defined by Env .

We now define how arbitrary end-points, constrained by a mid-point M , execute
in the communication environment. We assume the extreme case when the end-points
arbitrarily execute snd and rcv actions over the set of messages Msg ; we model this as
⊥j =

∑
m:Msg(snd(j̄,m) + rcv(j,m)) · ⊥j . Let M be the mid-point process such that

M executes only f(j,m) actions, for j ∈ {1, 2} and m ∈ Msg . Action f(j,m) denotes
that the mid-point forwards message m to end-point j. We define processes P ′ and Q′

that describe how the arbitrary end-points execute in the communication environment:

P ′ = τ{com}∂{Act\{α,β,com}}(⊥1‖ρ{out→α}C
1
o‖ρ{in→β}C1

i)
Q′ = τ{com}∂{Act\{α,β,com}}(⊥2‖ρ{out→α}C

2
o‖ρ{in→β}C2

i)

We set the synchronization rules to α|f = c1, f|β = c2, c1|β = λ, α|c2 = λ, and define
our implementation model I:

I = ∂{α,β,f,c1,c2}(P
′‖M‖Q′)

Given the synchronization rules, a message delivered by an output channel (action α)
is received by an input channel (action β) only after synchronizing with the mid-point
(action f).

A symmetric binary relation B over processes is a bisimulation relation [17, 16] iff

(P, P ′) ∈ B implies that for any action a and any messagem, P
a(m)→ P1 =⇒ P ′

a(m)→
P ′1 with (P1, P

′
1) ∈ B. Two processes P and P ′ are bisimilar, denoted P ≡ P ′, iff there

is bisimulation relation B such that (P, P ′) ∈ B. The Bisimilarity of two processes
intuitively indicates that the two processes are indistinguishable from an observer’s
point of view. This is the core of our definition of enforcement.

rcv(1,m) out(1,m)
C1
i

snd(1,m)

E1 E2

C2
o

in(1,m)

C1
o

snd(2,m) in(2,m) out(2,m) rcv(2,m)
C2
i

α(2,m) β(2,m)

α(1,m)β(1,m)

Fig. 3. µCRL action synchronization

Definition 1 (Enforcement). Mid-point M enforces the communication protocol de-
scribed by Π = (E1, E2) in the communication environment described by Env =
(C1

i , C
1
o , C

2
i , C

2
o) iff I ≡ ρf→λR.

Note that we rename action f to λ so that we can compare the implementation and
the reference models. The intuition behind this definition is that if the reference and
the implementation processes have executed the same protocol steps until some point
in time and the reference process can continue the protocol execution with some step s,
then the implementation process can also execute s. Conversely, if the implementation
process can continue by taking a step s′, then the reference process can also take s′.

6 The framework

In this section we present our framework which computes a formal specification of the
mid-point. The framework takes as an input the protocol specification Π = (E1, E2),
and the communication environment specification Env = (C1

i , C
1
o , C

2
i , C

2
o). Π and

Env are both given in µCRL and must conform to the restrictions specified in § 3.
In § 4.1 we provided several common channel specifications that can be used as an
input to our framework. We remark that our framework is modular and each of the
four channels can have a different specification. The mid-point specification computed
by our framework enforces the communication protocol in the environment defined by
Env . A message from Ej to E j̄ is allowed, i.e. forwarded to E j̄ , if it could have been
sent by Ej , and rejected otherwise. An incorrect message could result from a faulty
end-point or due to communication channel noise.

We distinguish three steps performed in our framework. The first step (construction)
takes as inputs the specifications of Π and Env given in µCRL and outputs a specifi-
cation of M in µCRL. Step two (minimization) minimizes the state space of M using
a branching bisimilarity algorithm. Optionally, the specification of M can be expanded
to a finite state machine using a standard ε-removal algorithm in the third step. All three
steps are automated using the µCRL toolset.

6.1 Mid-point construction

The mid-point construction computes a process that enforces the protocol executed by
the two end-points. We define one enforcement action for the mid-point:

f : {1, 2} ×Msg

Intuitively, the action f(j,m) denotes the event of message m being forwarded to end-
point Ej for some message m ∈ Msg and j ∈ {1, 2}. By forwarding a message m to
Ej we mean that the mid-point receives a message on C j̄o and inserts it in channel Cji .
To determine what messages should be forwarded by the mid-point, we compute the
parallel composition of the input µCRL processes Ej , Cji , and Cjo for j ∈ {1, 2}. We
link channel C1

o to C2
i and channel C2

o to C1
i , as illustrated in Figure 3. The channels

are linked by renaming the action out in channels C1
o and C2

o to α, renaming the action
in in channels C1

i and C2
i to β, and forcing communication between α and β actions.

Given the synchronization between α and β actions, every message delivered by an
output channel is inserted into the corresponding input channel.

We synchronize actions that must happen together. Figure 3 illustrates the actions
performed by the end-points and the channel processes. We declare the following syn-
chronization rules:

snd | in = com
out | rcv = com
α | β = f

snd | in enforces that output channel Cjo receives a message from Ej only when Ej

triggers a send message event (action snd); we synchronize these two actions to ac-
tion com which denotes communication between an end-point and a channel. out | rcv
enforces that end-point Ej receives a message from input channel Cji only when Cji
triggers a deliver message event (action out). We also force communication between α
and β actions to enforce that an input channel Cji gets a message from C j̄o only when
C j̄o triggers a deliver message event (action α).

The mid-point process is synthesized by computing the parallel composition of the
processes E1, E2, C1

i , C
1
o , C

2
i , C

2
o and then hiding all actions that are unobservable to

the mid-point. Intuitively, the parallel composition of the input processes gives us a
process that describes all possible protocol executions in the given environment. Hid-
ing all actions unobservable by the mid-point gives us the mid-point’s point of view of
the protocol executions. The mid-point receives messages from C1

o and C2
o , and sends

messages to C1
i and C2

i . Therefore, M observes the α and β events that are synchro-
nized to action f and hence we do not hide action f. As an example, action f(1,m)
indicates that upon receiving message m, the mid-point should forward it to end-point
E1. The mid-point cannot observe communication between an end-point and a channel
and hence we hide the action com. We compute the mid-point process as follows:

M = ∂{α,β}(τ{com}∂{Act\{α,β,com}}(E1‖ρ{out→α}C
1
o (∅)‖ρ{in→β}C1

i (∅))‖
τ{com}∂{Act\{α,β,com}}(E2‖ρ{out→α}C

2
o (∅)‖ρ{in→β}C2

i (∅)))

Theorem 1. M enforces the communication protocol Π in the communication envi-
ronment Env .

Proof. We show that I ≡ ρf→λR, where I is the implementation model and R is the
reference model, both defined in § 5. According to Theorem 2 (given in Appendix A)
I ≡ ρf→λM if P � P ′ andQ � Q′, where P andQ are the processes that describe how
E1 and E2 execute in Env , and P ′ and Q′ describe how arbitrary end-points execute in

Env ; these processes are all defined in § 5. By construction, the mid-point processM is
equivalent to the reference model R, therefore, I ≡ ρf→λR holds if P � P ′ and Q �
Q′. Recall that P = τG∂H(E1‖ρKC1

o‖ρLC1
i) and P ′ = τG∂H(⊥1‖ρKC1

o‖ρLC1
i) for

G = {com}, H = {Act\{α, β, com}},K = {out → α}, and L = {in → β}. Using
the fact that (P‖X) � (P ′‖X) if P � P ′ (proved in Lemma 1 in Appendix A) and
that E1 � ⊥1, we have P � P ′; analogously Q � Q′. ut

M

f(2, x)

f(2, x)

f(1, y)

E1

snd(2, x)

snd(2, x)

rcv(1, y)

E2

rcv(2, x)

snd(1, y)

Fig. 4. A permissive mid-point

We remark that the computed mid-point is
permissive: it forwards messages that could have
resulted from correctly executing end-points. If
the mid-point M receives a message sent by an
intruder, and the mid-point cannot distinguish be-
tween the intruder’s message and the end-point’s
message,M will forward the message. Construct-
ing a permissive mid-point is the best we can do
as we do not want to block legitimate messages
and interfere with the protocol execution.

Note that when the mid-point forwards a mes-
sage to Ej , there is no guarantee that Ej can re-
ceive the message. Using the end-point specifica-
tions we can compute a mid-point that blocks messages that cannot be received by
the receiving end-point. We illustrate this observation using a simple example. Con-
sider two end-points with specifications E1 = snd(2, x) · (rcv(1, y) · δ + E1) and
E2 = rcv(2, x) · snd(1, y) · δ. E1 repeatedly sends x to E2 until it receives y from
E2, then terminates. E2 receives x from E1, sends y, and terminates. An acceptable
execution is illustrated in Figure 4. The second x message from E1 is forwarded to E2,
although E2 has already terminated after sending message y to E1.

6.2 State space minimization.

The mid-point process M has a state space associated to it. The computation of M in-
volves hiding all events that the mid-point cannot observe, which appear as τ events
in M . Due to the τ events, the mid-point’s state space can be large. We reduce the
state space by applying branching bisimulation reduction on the mid-point process. The
choice of branching bisimulation reduction is motivated by the fact that the notion of
enforcement in our framework is based on bisimulation, and branching bisimulation re-
duction preserves the branching structure of processes while removing the action τ [12].
Our framework computes a process M ′, which is branching bisimilar to M . The state
space of M ′ is potentially smaller than the state space of M , and M ′ is branching
bisimilar to M (hence Theorem 1 holds for M ′ as well).

6.3 The mid-point as a state machine.

The µCRL specification of the mid-point is in the form of a linear process equation
which can be automatically expanded to a state machine. The state space can be ex-
plored by a depth-first search. The generated state space contains τ transitions for all ac-
tions unobservable by the mid-point. To eliminate all τ transitions, we apply a standard

ε-removal algorithm. The output is a state machine that can also be used as a mid-point
specification. For example, Figure 5 (in Section 7) illustrates the mid-point state ma-
chine for enforcing the TCP three-way handshake protocol, output by our framework.
Clearly, this step cannot be completed if the state space of the mid-point is infinite.

7 TCP case study

An evaluation on three popular firewalls (Checkpoint, netfilter/iptables, and ISA Server)
shows that different firewall manufacturers implement mid-points for the TCP protocol
differently and incorrectly [3], i.e. they forward messages that should not be sent by
the end-points if they implement the protocol correctly. We performed a case study on
the TCP protocol to demonstrate how our framework constructs a specification for a
mid-point that enforces the protocol. The mid-point specification synthesized by our
framework eliminates any ambiguities concerning which packets should be forwarded
by the mid-point.

A formal mid-point specification has several applications in practice. It can be used
for model-based testing in order to test an implementation for inconsistencies. The tester
can use the mid-point specification to generate test cases and run them against the im-
plementation. Additionally, when the mid-point specification is relatively simple, which
is the case of the TCP mid-point, a software engineer can use the formal specification to
perform code inspection, i.e. systematically examine the source code of the mid-point
using the formal specification as a reference. Another application of our framework is
model-driven development for mid-points, e.g., using the formal specification to auto-
matically generate the implementation of a stateful TCP firewall.

Firewalls typically distinguish between internal and external networks. The policy
for handling TCP connections initiated from the external network are usually handled
differently from TCP connections initiated from the internal network. To reflect this,
we take the TCP protocol specification [9] and construct two end-point specifications:
one that models the initiator role and another that models the responder role. Below we
give the specification of the two roles in µCRL, where we assume that E1 represents the
initiator role and E2 the responder role.

Initiator end-point. It is the end-point that initiates a TCP connection. Below we give
the µCRL specification for the initiator role:

E1 = snd(2, syn) · rcv(1, synack) · snd(2, ack)·
(rcv(1, fin) · snd(2, ack) · snd(2, fin) · rcv(1, ack)

+
snd(2, fin) · (rcv(1, ack) · rcv(1, fin) · snd(2, ack)

+
rcv(1, fin) · snd(2, ack) · rcv(1, ack))) · δ

Responder end-point. The responder end-point waits for an initiator end-point to open a
TCP connection. The actions performed by the responder are symmetric to the initiator
actions. We assume that the responder role can initiate a tear-down after it has sent a
synack to E1, i.e. before receiving an ack from E1.

E2 = rcv(2, syn) · snd(1, synack) · (rcv(2, ack) · E2
T + E2

T)
E2
T = rcv(2, fin) · snd(1, ack) · snd(1, fin) · rcv(2, ack) · δ

+
snd(1, fin) · (rcv(2, ack) · rcv(2, fin) · snd(1, ack)

+
rcv(2, fin) · snd(1, ack) · rcv(2, ack)) · δ

f(1, fin)

f(2, ack)
f(2, fin)

f(2, ack)

f(1, ack)

f(1, ack)

f(2, ack)

f(2, ack)

f(1, ack)f(2, fin)

f(1, ack) f(2, ack)

f(1, fin)
f(1, ack)

f(1, fin)

f(2, ack)

f(2, ack)

f(2, ack)

f(2, fin)

f(2, ack)f(2, fin)

f(1, synack)

f(2, syn)

Q1

Q3

Q2

Q4

Q7Q6Q5

Q8

Q12
Q13 Q14

Q15

Q17Q16

Q18

Q9 Q10
Q11

f(1, fin)

f(1, fin)

f(2, fin)
f(1, fin)

f(2, ack)

f(1, synack)

Fig. 5. Mid-point automaton for TCP

In our case study we assume that the
environment can lose and reorder packets,
but cannot duplicate messages. For the chan-
nel specification we use the µCRL specifica-
tion of a lossy channel as defined in § 4.1.
We compute M using our framework and
perform the optional step 3 to expand the
state space of M to a state machine, given
in Figure 5. The input alphabet to the mid-
point automaton is f(j,m), j ∈ {1, 2},m ∈
{ack, synack, syn, fin}. Action f(j,m) de-
notes thatM receives a messagem from end-
point E j̄ and forwards it to end-point Ej .

Although the end-points have a small
number of non-deterministic choices in their
specifications, the mid-point process can re-
ceive different types of messages in most
states, as depicted in Figure 5. This is ex-
plained by the effect of the environment,
which can reorder and drop messages. For in-
stance, assume M is in state Q2, i.e. it has
forwarded the initial syn message to E2. E2

replies to the syn with a synack message and
afterwards it can send a fin. The network may reorder the two messages. Therefore, M
would forward the fin message if it is received before the synack message.

The TCP specification computed by our framework is equivalent to the TCP au-
tomaton presented in [3]. The environment models in both case studies exercise the
same properties, hence, the mid-point specification is identical, as expected. In contrast
to [3] which fixes the behavior of the environment, we can easily modify the channel
specifications and compute a mid-point specification for a different environment. For
instance, suppose that the mid-point is co-located at one of the end-points, say E1. To
handle this scenario, we set the specifications of C1

i and C1
o to reliable channels and

re-run our framework on the new inputs.

8 Conclusions and Future Work

We give a process algebraic approach to automatically synthesizing a formal specifica-
tion for a mid-point that enforces a communication protocol. Formal mid-point speci-
fications can be used for model-based testing, for model-driven development, and for

formal verification of mid-points. In this paper we have systematically explored the
aspects that must be considered when constructing formal models for mid-points. Our
approach to handling these challenges can be applied to other related problems; for
instance, our framework can be extended to synthesize specifications for passive moni-
tors. Passive monitors are entities that observe messages exchanged over a channel and
can be used to check security properties or to guard against network intrusion.

An interesting direction for future work is synthesizing more restrictive mid-points.
As we mentioned in § 6, our current framework implementation computes mid-point
specifications that are in some cases too permissive. For instance, forwarding a message
to an end-point does not guarantee that the receiving end-point can actually receive the
message. This may happen, e.g., when an end-point repeatedly re-transmits a message
until receiving an acknowledgment from the other end-point or when a channel can
duplicate messages. We can modify our framework to compute a mid-point process that
forwards a message only if it could have been sent by the source end-point and it can be
received by the destination end-point. We remark that such a mid-point achieves more
than enforcing the protocol and can be seen as an additional optimization, e.g. to reduce
network traffic.

Acknowledgments The work has been supported by the EU FP7 projects SPACIOS (no.
257876).

References

1. J. Bergstra and J. Klop. Algebra of communicating processes with abstraction. Theor. Com-
put. Sci., 37:77–121, 1985.

2. K. Bhargavan, S. Chandra, P. McCann, and C. Gunter. What packets may come: Automata
for network monitoring. In POPL, pages 206–219. ACM, 2001.

3. D. Bidder-Senn, D. Basin, and G. Caronni. Midpoints versus endpoints: From protocols to
firewalls. In ACNS, volume 4521 of LNCS, pages 46–64. Springer, 2007.

4. S. Blom, J. Calamé, B. Lisser, S. Orzan, J. Pang, J. van de Pol, M. Torabi Dashti, and A. Wijs.
Distributed analysis with µCRL: A compendium of case studies. In TACAS ’07, volume 4424
of LNCS, pages 683–689. Springer, 2007.

5. S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lisser, and J. van de Pol. µCRL:
A toolset for analysing algebraic specifications. In CAV ’01, volume 2102 of LNCS, pages
250–254, 2001.

6. S. Blom, J. van de Pol, and M. Weber. Ltsmin: Distributed and symbolic reachability. In
T. Touili, B. Cook, and P. Jackson, editors, CAV, volume 6174 of Lecture Notes in Computer
Science, pages 354–359. Springer, 2010.

7. A. Brucker, L. Brügger, P. Kearney, and B. Wolff. Verified firewall policy transformations
for test case generation. In ICST, pages 345–354. IEEE Computer Society, 2010.

8. Achim D. Brucker, Lukas Brgger, and Burkhart Wolff. Model-based firewall conformance
testing. In In 8th International Workshop on Formal Approaches to Testing of Software,
Tokyo,Japan, pages 103–118, 2008.

9. J. Postel (editor). Transmission control protocol, 1981.
10. J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu. CADP -

a protocol validation and verification toolbox. In CAV ’96, volume 1102 of LNCS, pages 437
– 440. Springer, 1996.

11. W. Fokkink. Modelling Distributed Systems. Texts in Theoretical Computer Science.
Springer, 2007.

12. R. van Glabbeek. The linear time - branching time spectrum II. In CONCUR ’93, volume
715 of LNCS, pages 66–81. Springer, 1993.

13. J. Groote and A. Ponse. The syntax and semantics of µCRL. In Algebra of Communicat-
ing Processes ’94, Workshops in Computing Series, pages 26–62. Springer, 1995. Also as
technical report CS-R9076, CWI, Amsterdam, The Netherlands, Dec. 1990.

14. J. Groote and M. Reniers. Algebraic process verification. In J. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra, pages 1151–1208. Elsevier, 2001.

15. A. Mayer, A. Wool, and E. Ziskind. Offline firewall analysis. Int. J. Inf. Sec., 5(3):125–144,
2006.

16. Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

17. David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor,
Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer, 1981.

18. V. Paxson. Automated packet trace analysis of TCP implementations. In SIGCOMM, pages
167–179, 1997.

19. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan-
Kaufmann, 2007.

A Proof of correctness

We start with a definition: A binary relation S over processes is a simulation relation

iff (P, P ′) ∈ S implies that P
a(m)→ P1 =⇒ P ′

a(m)→ P ′1, with (P1, P
′
1) ∈ S, for all

actions a and messages m. Process P simulates process P ′, denoted P ′ � P , iff there
is a simulation relation S such that (P, P ′) ∈ S.

Below, we fix

– The reference model: M = ∂{α,β}(P‖Q) and α|β = f .
– The implementation model: I = ∂{α,β,f,c1,c2}(P

′‖M‖Q′) and the synchronization
rules α|f = c1, f |β = c2, c1|β = λ, α|c2 = λ.

Theorem 2. I ≡ ρf→λM if P � P ′ and Q � Q′.

Proof. We define the relation B as (S, S′) ∈ B iff

S = ρf→λ∂{α,β}(P‖Q)

and S′ = ∂{α,β,f,c1,c2}(P
′‖M‖Q′) for all processes P, P ′, Q,Q′ with P � P ′ and

Q � Q′. Below, we show that B is indeed a bisimulation relation. In the following we
refer to the assumption P � P ′ and Q � Q′ as the simulation assumption. We split the
proof into two parts:

– Assume S λ→ S1. We claim S′
λ→ S′1 and (S1, S

′
1) ∈ B. Notice that in order

for S to perform λ, ∂{α,β}(P‖Q) must execute f , and in turn the processes P and
Q must execute α and β respectively (the symmetric case is trivial; hence omitted

here). Let P α→ P1 and Q
β→ Q1. Due to the simulation assumption, P ′ α→ P ′1 and

Q′
β→ Q′1 and P1 � P ′1 with Q1 � Q′1. That is,

S′ = ∂{α,β,f,c1,c2}(α · P
′
1‖f · δα,β(P1‖Q1)‖β ·Q′1)

Given the aforementioned synchronization rules, we have S′ λ→ S′1 where
S′1 = ∂{α,β,f,c1,c2}(P

′
1‖δα,β(P1‖Q1)‖Q′1). It is immediate that (S1, S

′
1) ∈ B.

– Assume S′ λ→ S′1, with S′1 = ∂{α,β,f,c1,c2}(P
′
1‖δα,β(P1‖Q1)‖Q′1) for someP1, Q1, P

′
1

and Q′1. We claim S
λ→ S1 and (S1, S

′
1) ∈ B. Notice that in order for S′ to per-

form λ, the following two conditions must be satisfied:
• The process ∂{α,β}(P‖Q) must execute f . This implies that P α→ P1 and

Q
β→ Q1 (the symmetric case is omitted here). Then it is immediate that S λ→

∂{α,β}(P1‖Q1).

• Moreover, P ′ α→ P ′1 and Q′
β→ Q′1 (the symmetric case is omitted). Due to

the simulation assumption, P1 � P ′1 and Q1 � Q′1. Now it is immediate that
(∂{α,β}(P1‖Q1), S′1) ∈ B.

These two points prove our claim.

This completes the proof. ut

Lemma 1. (P‖X) � (P ′‖X) for all X , if P � P ′.

Proof. Let P � P ′ for some processes P and P ′. We define the binary relation S
over processes as: ((Q‖Z), (Q′‖Z)) ∈ S for all Q � Q′ and any Z. Obviously we
have ((P‖X), (P ′‖X)) ∈ S. Below, we show that S is indeed a simulation relation.

Suppose that (P‖X) a→ Y . It must be that either P or X executed a, or that P and
X executed some b and c, respectively, and b|c = a. We look at these three cases:

– (P‖X) a→ (P1‖X). This implies that P a→ P1. Given that P � P ′ it follows
that P ′ a→ P ′1 and P1 � P ′1. It is immediate that (P ′‖X) a→ (P ′1‖X). Clearly,
(P1‖X,P ′1‖X) ∈ S.

– (P‖X) a→ (P‖X1). This implies that X a→ X1. Then, (P ′‖X) a→ (P ′‖X1), and
hence (P‖X1, P

′‖X1) ∈ S.
– (P‖X) a→ (P1‖X1). This implies that P b→ P1 and X c→ X1, for some b, c ∈ Act

and b|c = a. Given that P � P ′, it follows that P ′ b→ P ′1 and P1 � P ′1. It is
immediate that (P ′‖X) a→ (P ′1‖X1). Hence (P1‖X1, P

′
1‖X1) ∈ S.

This completes the proof. ut

