
Analyzing First-order Role Based Access Control
Carlos Cotrini∗, Thilo Weghorn∗‡, David Basin∗, and Manuel Clavel†

∗Department of Computer Science
ETH Zurich, Switzerland

{basin, ccarlos, thilo.weghorn}@inf.ethz.ch
†IMDEA Software Institute, Spain

manuel.clavel@imdea.org

Abstract—We propose FORBAC, an extension of Role-Based
Access Control (RBAC) based on first-order logic. FORBAC is
expressive enough to formalize a wide range of access control
policies. However, it is simple enough so that relevant policy
analysis queries can be analyzed in NP, which we argue is a
natural complexity class for this problem. To analyze queries
efficiently, we reduce them to the problem of satisfiability modulo
appropriate theories, and use off-the-shelf SMT solvers. We
evaluate FORBAC’s expressiveness and our approach to policy
analysis in a case study, analyzing access control in a European
bank.

I. INTRODUCTION

RBAC [15] is a predominant access control model for
centralized access-control. However, it is not the last word, and
researchers have investigated numerous extensions that allow
RBAC to scale better and be easier to administrate, e.g. [18],
[20], [24], [25], [28], [29]. However, the expressive power of
these extensions makes it difficult to understand the behavior
of policies, which in turn has motivated a plethora of research
on policy analysis for RBAC, e.g. [4], [8], [16], [34].

Many RBAC extensions use first-order logic in their syn-
tax, but first-order logic is simply too expressive for policy
specification languages. This is reflected in the syntax of
different logic-based languages [9], [19] that have been used
in practice; for instance, they exclude disjunction and limit
quantifier alternation. Moreover, these languages have been
defined with a focus on policy formulation rather than policy
analysis. As a result, policy analysis can handle only fragments
of these languages. For example, [22] defines a language
for administrating user attributes, where first-order logic is
used to define administrative rules that specify how users’
attribute values change. Later, in [23], the authors study the
complexity of the reachability problem, a common analysis
problem in administrative RBAC [3], [16], [21]. It turns out
that this problem is PSPACE-complete, even after restricting
quantifier alternation, and allowing only unary functions and
binary predicates. Further restrictions must be imposed on the
language to obtain fragments where this reachability problem
is solvable in polynomial time.

The use of first-order logic in RBAC extensions gives
rise to new problems. In some extensions, the assignments
of roles to users and permissions to roles are specified by
first-order formulas [11], [18], [20], [24]. This specification

‡ The first two authors contributed equally to this work.

Fig. 1. The role r2 is redundant: the permissions assigned to r2 are contained
in those assigned to r1 and the users assigned to r2 are also assigned to r1.

is done by humans and is hence prone to errors. Policy
administrators may fail to anticipate all the consequences of
their specifications. For example, they may specify policies
with redundant roles, as illustrated in Figure 1, or even worse,
assign users incorrect authorizations.

The imbalance between expressiveness and efficient analysis
gives rise to a new research direction: to develop frameworks
strong enough to express realistic authorization policies, but
simple enough to be analyzed in practice. These frameworks
should provide languages for specifying policies and prop-
erties, and procedures to verify properties against policies.
Other researchers have presented such frameworks [5], [31].
However there are features and problems specific to extensions
of RBAC, like the one illustrated in Figure 1 [4], that were
not addressed by this work. To the best of our knowledge,
no prior work has attempted to establish a framework that
balances expressiveness and efficient policy analysis for RBAC
extensions based on first-order logic.

We propose FORBAC, an extension of RBAC that incorpo-
rates the main features of different RBAC extensions from
the literature, e.g. [3], [18], [20], [24]. FORBAC strikes a
balance among the variety of policies it can express, the
properties that can be verified, and its complexity, which is
NP. Although a polynomial complexity would be desirable, we
argue that NP-hardness cannot be avoided in policy analysis.
To verify properties of FORBAC policies, we reduce them to
satisfiability modulo theories and use the SMT-solver Z3 [13].

To evaluate our theses that (1) FORBAC is expressive
enough for substantial real-world applications and (2) realistic
policies can be analyzed with reasonable overhead, we conduct
a case study on the access-control infrastructure of a major
European bank. The bank’s PDP manages around 350 applica-
tions, each with a separate security policy. In total, it manages
access for close to 50,000 users and 57,000 actions. We give an
overview of the bank’s rules that govern both the assignments
of roles to users and the assignment of permissions to roles. We
express them as FORBAC policies and conduct experiments
on a variety of relevant policy analysis queries. Using SMT
solvers, most of the queries are answered in seconds. For a
few of the queries, the evaluation takes several minutes and
we identify reasons for this and suggest improvements.

The remainder of this paper is organized as follows. In
Section II we describe the features of different RBAC ex-
tensions from the literature and establish requirements for
FORBAC. In Section III we define FORBAC’s syntax and
semantics and in Section IV we show how to specify policy
analysis queries for FORBAC policies. In Section V we
present experimental results. In Section VI we discuss related
work and in Section VII we draw conclusions.

II. REQUIREMENTS FOR FORBAC

FORBAC is an RBAC extension that strikes a balance
among the following three factors:
• An expressive language for specifying RBAC policies.
• An expressive language for specifying properties of

RBAC policies.
• A low complexity for verifying policies against proper-

ties.
In the remainder of this section, we discuss language require-
ments and complexity classes for policy verification.

A. Requirements for policy specification

Numerous extensions for RBAC have been proposed and
the syntax of many of them (e.g. [20], [24], [29]) includes
fragments of first-order logic that make policy analysis un-
decidable, or at best highly intractable. In the following, we
review some of their features in order to elicit the central
requirements for an expressive RBAC extension. Based on
these requirements, we present in Section III a fragment
of first-order logic that is simple, but expressive enough to
formalize realistic policies.

a) Attributes: A common feature of RBAC extensions is
the association of attributes to users, roles, and permissions.
This stems from the need to add fine-grained access control
to RBAC. For example, a user in a physician role should be
authorized to access patient information, but only for those
patients he supervises. Instead of defining one role for every
subset of patients, an attribute is added to the role that specifies
the set of patients under the physician’s supervision.

Roles with attributes have been proposed in the literature in
the form of parameterized permissions and role templates [1],
[12], [18]. A parameterized permission represents a set of

permissions that have attributes in common. For example, as-
signing a grade to a student could be represented as a parame-
terized permission AssignGrade(s), where s is a variable that
represents a student. The use of this parameterized permission
spares administrators the burden of defining one permission
for every student. Role templates are sets of parameterized
permissions. For example, for a lecturer, we could define a role
template Lecturer that contains the parameterized permission
AssignGrade(s). When a user is assigned the role template
Lecturer , he is also assigned a set of students S. The pair
(Lecturer , S) is called a role instance. Here, the user can
assign a grade to every student in the set S. A role template
eliminates the burden of creating a role for every lecturer. We
incorporate parameterized permissions and role templates in
our language and use first-order logic to define them.

b) Role and permission assignments specified in first-
order logic: Another common feature of RBAC extensions
is the use of rules to assign roles to users and permissions to
roles. This feature is motivated by the difficulty of manually
administering these relations in large environments where
users’ and permissions’ attribute values frequently change.
Many RBAC extensions, such as [18], [20], [22], use first-
order logic to specify user-role and role-permission assignment
relations. However, they do not limit the fragment of first-order
logic used for these specifications.

We propose restrictions on the first-order fragment we use
in FORBAC. For instance, we do not allow the arbitrary
nesting of quantifiers. In practice, access control permissions
simply require the presence or absence of values in the user’s,
role’s, and permission’s attributes. This is reflected in the
syntax of logic-based policy specification languages that have
been used in practice. For example, Lithium [19] forbids
quantifier alternation and yet it can still express various parts
of U.S. legislation, including fragments of the Privacy Rule,
which governs access to electronic medical files, and Title 42,
Chapter 7 of the U.S. Code, which determines who is eligible
for Social Security. Another example is Cassandra [10], an
earlier version of SecPAL, which does not allow quantifier
alternation, but can express the policies for the national
electronic health record system of the United Kingdom.

c) Numeric constraints: We incorporate this kind of
constraints as they often occur in authorization policies. For
example, Title 29 of the U.S. Code §1181, which belongs to
the HIPAA rule, says:

A period of creditable coverage shall not be
counted, with respect to enrollment of an individual
under a group health plan, if, after such period and
before the enrollment date, there was a 63-day period
during all of which the individual was not covered
under any creditable coverage.

In electronic health record systems, health organizations
are authorized to request a credential asserting patient/EHR-
service bindings if they can provide an RA-approved NHS
health organization credential [10]. Such credentials are valid
only for fixed time intervals. More generally, functions within
an organization may have a limited duration. For instance,

2

vendors may be authorized to access vendor contracts only
in the second week of every quarter of every year, and
vendor contracts must be submitted within two weeks of that
time [11]. Such numerical constraints can usually be expressed
as inequalities between two integer values.

This concludes the requirements for our language for spec-
ifying RBAC policies. Note that there are other access control
features that have received attention in the literature that we
have not included as requirements for our language. These
include role hierarchies [33], delegation [7], and separation-
of-duty constraints [2]. We leave these as future work and
focus on the core features explained above.

B. A complexity class for policy analysis

Ideally, policy analysis should be efficiently computable.
However, we argue that it is NP-hard for any sufficiently
expressive policy specification language. To support this, we
present a simple policy specification language F that can
be embedded into languages like Margrave [30] and the one
presented in [5] and show that checking even the simple query
of whether every access request is permitted in a given policy
in F is NP-hard.

Consider a first-order vocabulary consisting only of unary
relation symbols. Let F be the set of first-order formulas of
the form P1(x) ∧ . . . ∧ Pk(x) ∧ ¬Q1(x) ∧ . . . ∧ ¬Qn(x),
where k, n ≥ 0, x is a variable and Pi and Qj , for i ≤ k and
j ≤ n, are unary relation symbols. A policy in F consists of
a set of formulas in F .

The semantics of this language is as follows. Let T be a
policy in F and S a first-order structure. For an element a in
the domain of S, we say that a is permitted in T if a satisfies at
least one formula in T . Basically, S represents a set of access
requests and every relation symbol Q represents an attribute.
For an access request a ∈ S, a has the attribute Q, if and
only if a is in QS , the interpretation of Q under S. A policy
defines whether an access request is permitted depending on
the request’s attributes.

For a policy T = {ϕ1(x), . . . , ϕ`(x)} in F , suppose that we
want to verify if every access request is permitted. This can be
done by checking validity of ∀x . (ϕ1(x) ∨ . . . ∨ ϕ`(x)) .
However, we prove in Section A in the Appendix that checking
this for an arbitrary T is NP-hard.
F is extremely simple. It uses only unary relation sym-

bols and it can be embedded into state-of-the-art analysis
frameworks used for analyzing realistic XACML policies like
Continue [27] (see Section A in the Appendix for details).
Nevertheless, despite its low expressiveness, even basic policy
analysis queries are NP-hard. For this reason, we believe P is
too restrictive (unless P = NP) and we therefore set our sights
on performing policy analysis in NP.

III. SYNTAX AND SEMANTICS OF FORBAC

Given the requirements for our framework, we start by
defining the vocabulary for writing policies.

Definition 1: A FORBAC signature is a triple Σ =
〈S,A1,A2〉 where S is a set of sorts S = SRBAC ∪
{Integer,String} with,

SRBAC = {Users,Roles1,Roles2, . . . ,RolesT ,Perms},

for T ∈ N. A1 and A2 are sets of unary function symbols.
Every f ∈ A1∪A2 has a type Wf → Vf with Wf ∈ SRBAC .
For f ∈ A1, Vf ∈ {Integer,String}. For f ∈ A2, Vf ∈
{2Integer, 2String}, where 2Integer and 2String denote the sets of
finite sets of integers and strings, respectively.

The symbols inA1 denote single-valued attributes and those
in A2 denote set-valued attributes. We use the term attribute
to refer to any single or set-valued attribute. We use RT (Σ)
as shorthand for the set {Roles1,Roles2, . . . ,RolesT } of role
templates of Σ.

Example 2: We present a simple FORBAC-signature ΣB =
〈S,A1,A2〉 for specifying the access control policies of a
bank’s account administration tool. The sorts of S are Users ,
RStudent, REmployee, Perms, Integer, and String. Here,
RT (ΣB) = {RStudent, REmployee}. RStudent and REmployee

represent two kinds of customer accounts: “student accounts”
and “employee accounts”.

We define the following single-valued attributes for the sort
Users:
• name : Users → String.
• age : Users → Integer.
• nationality : Users → String.
• salary : Users → Integer.
The role template REmployee has one single-valued attribute:
• limit : REmployee → Integer.

This attribute specifies the maximal amount that an employee
may use in one transaction on her bank account.

The role template RStudent has one set-valued attribute:
• country : RStudent → 2String.

This attribute specifies in which countries a student is autho-
rized to carry out transactions.

The sort Perms has three single-valued attributes:
• action : Perms→ String.
• amount : Perms→ Integer.
• location : Perms→ String.

The attribute action denotes the kind of transaction (e.g.,
withdrawing or transferring money from a bank account),
amount denotes how much money is involved, and location
denotes the country where the transaction occurs.

Definition 3: Let Σ = 〈S,A1,A2〉 be a FORBAC signature.
A Σ-structure is an entity S consisting of the following:
• A finite non-empty set WS , for each sort W ∈ S, where

IntegerS and StringS are the sets of integers and strings,
respectively and 2IntegerS and 2StringS are the sets of finite
sets of integers and strings, respectively.

• A function fS : WS
f → V Sf , for every f ∈ A1 ∪A2 with

type Wf → Vf .

3

We call an element of UsersS a user in S. For a role
template R ∈ RT (Σ), we call an element of RS a role
instance of R. We call an element of PermsS a permission
of S.

Example 4: Let ΣB be the FORBAC-signature from Exam-
ple 2. Figure 2 shows a ΣB-structure S with three users, two
role instances of RStudent, one role instance of REmployee,
and three permissions.

u1

u2

u3

r1

r2

r3

p1

p3

p2

UsersS RT(Σ)S PermsS

name(u1) = "Alice"
age(u1) = 21
nationality(u1) = "FR"
salary(u1) = 0

name(u2) = "Bob"
age(u2) = 23
nationality(u2) = "DE"
salary(u2) = 10

name(u3) = "Charlie"
age(u3) = 34
nationality(u3) = "CH"
salary(u3) = 2,000

country(r1) = {"FR", "USA"}

country(r2) = {"DE", "USA"}

limit(r3) = 2,000

action(p1) = "withdraw"
amount(p1) = 300
location(p1) = "FR"

action(p2) = "withdraw"
amount(p2) = 50
location(p2) = "FR"

action(p3) = "transfer"
amount(p3) = 1,000
location(p3) = "USA"

Fig. 2. An example of a ΣB-structure

Definition 5: An atomic FORBAC formula is any expression
of the following form:

• t1 ∼ t2, where t1 and t2 are single-valued terms. These
are constants of type Integer or String, or expressions of
the form f(x), where f is a single-valued attribute and
x is a variable. The symbol ∼ can be =, ≤, or <.

• T1 ∝ T2, where T1 and T2 are set-valued terms. These are
constant symbols denoting finite sets of strings, constant
symbols denoting finite sets of finite intervals of integers,
or expressions of the form F (x), where F is a set-valued
attribute and x is a variable. The symbol ∝ is either =
or ⊆.

• t ∈ T , where t and T are a single-valued and a set-valued
term, respectively.

The following BNF grammar summarizes the syntax of
atomic FORBAC-formulas:

ψ ::= t ∼ t |T ∝ T | t ∈ T
t ::= c | f(x)
T ::= C | F (x)
∼ ::= ≤ | = | <
∝ ::= ⊆ | =

Here, c ranges over integer and string constants, f ranges over
single-valued attributes, F ranges over set-valued attributes, C
is any finite set of strings or any finite set of integer intervals,
and x is a variable of an appropriate type. Finally, a FORBAC-
formula is a Boolean combination of atomic FORBAC formu-
las.

Definition 6: The size of a FORBAC-formula φ is the
number of occurrences of φ’s atomic FORBAC-formulas and
is recursively defined as follows:

|φ| =


1 if φ is atomic
|ψ| if φ ≡ ¬ψ
|ψ1|+ |ψ2| if φ ≡ ψ1 ./ ψ2,

where ./ ∈ {∧,∨,→,↔}.
Remark 7: Every FORBAC-formula can be translated into a

formula in many-sorted first-order logic as follows. For every
set-valued attribute F , define a binary relation symbol RF .
Then rewrite every atomic FORBAC subformula containing a
set-valued term. We illustrate this with three cases, where F
and F ′ range over set-valued attributes and t and t′ range over
single-valued terms. The remaining cases are analogous.

t′ ∈ F (t) RF (t, t′).
F (t) ⊆ F ′(t′) ∀y . (RF (t, y)→ RF ′(t

′, y)) .
F (t) = F ′(t′) ∀y . (RF (t, y)↔ RF ′(t

′, y)) .

Definition 8: A FORBAC-policy is a triple (Σ,UA,PA),
where Σ is a FORBAC-signature. The user-assignment spec-
ification

UA = {UAR(u, r) : R ∈ RT (Σ)}

and the permission-assignment specification

PA = {PAR(r, p) : R ∈ RT (Σ)}

are sets of FORBAC-formulas over Σ. The user-assignment
formulas UAR(u, r) have (just) the two free variables u and
r of sorts Users and R, respectively, and the permission-
assignment formulas PAR(r, p) have (just) the two free vari-
ables r and p of sorts R and Perms, respectively.

Example 9: Consider the FORBAC-signature ΣB from Ex-
ample 2 and suppose that we have the following policy. Users
no older than 25 are assigned an instance of RStudent, which
entitles them to withdraw up to $1,000 in the user’s home
country or in the USA. Users whose salary exceeds $1,500
are assigned an instance of REmployee, which entitles them
to withdraw and transfer money in any country provided the
sum does not exceed the user’s salary. We present a FORBAC-
policy (ΣB ,UA,PA) that models this. Since ΣB was already
specified in Example 2, we just present the formulas in UA
and PA:

UARStudent(u, r) ≡(
age(u) ≤ 25 ∧
country(r) = {nationality(u), “USA”}

)
PARStudent(r, p) ≡ action(p) ∈ {“withdraw”} ∧

amount(p) ≤ 1,000 ∧
location(p) ∈ country(r)



4

UAREmployee(u, r) ≡(
salary(u) > 1,500 ∧
limit(r) = salary(u)

)
PAREmployee(r, p) ≡(

action(p) ∈ {“withdraw”, “transfer”} ∧
amount(p) ≤ limit(r)

)
.

Let Σ be a FORBAC-signature and S be a Σ-structure. Let
u, r, and p be a user, a role instance of R, and a permission of
S, respectively. We say that u is assigned r if u and r satisfy
UAR(u, r) in S. We say that r is assigned p if r and p satisfy
PAR(r, p) in S.

Example 10: Figure 3 illustrates, in the context of the ΣB-
structure of Example 4, which role instances are assigned to
which users and which permissions are assigned to which role
instances.

u1

u2

u3

r1

r2

r3

p1

p3

p2

UsersS RT(Σ)S PermsS

name(u1) = "Alice"
age(u1) = 21
nationality(u1) = "FR"
salary(u1) = 0

name(u2) = "Bob"
age(u2) = 23
nationality(u2) = "DE"
salary(u2) = 10

name(u3) = "Charlie"
age(u3) = 34
nationality(u3) = "CH"
salary(u3) = 2,000

country(r1) = {"FR", "USA"}

country(r2) = {"DE", "USA"}

limit(r3) = 2,000

action(p1) = "withdraw"
amount(p1) = 300
location(p1) = "FR"

action(p2) = "withdraw"
amount(p2) = 50
location(p2) = "FR"

action(p3) = "transfer"
amount(p3) = 1,000
location(p3) = "USA"

Fig. 3. User and permission-assignments in the ΣB-structure S

Definition 11: For a FORBAC-policy (Σ,UA,PA) and a
role template R ∈ RT (Σ), let AuthR(u, p) denote the formula

∃r : R . UAR(u, r) ∧ PAR(r, p).

Let Auth(u, p) denote the formula
∨
R∈RT(Σ) AuthR(u, p) .

For a Σ-structure S, we say that a user u of S is authorized
for a permission p of S if u and p satisfy Auth(u, p) in S.

When quantifying over variables, we do not specify the sorts
Users and Perms, as these should be clear from the context.
For example, instead of writing

∀u : Users ∃r1 : R1, r2 : R2 .UAR1
(u, r1) ∨ UAR2

(u, r2),

we write

∀u∃r1 : R1, r2 : R2 .UAR1
(u, r1) ∨ UAR2

(u, r2).

Example 12: Consider the FORBAC-signature presented
in Example 2, the ΣB-structure S presented in Example 4,
and the FORBAC-policy presented in Example 9. User u1 is
authorized for permissions p1 and p2 and user u3 is authorized
for permissions p1, p2, and p3.

Role templates are not essential and one could use instead
just one sort per role and functions to distinguish different
role templates. However, always using just one role template
could create an overhead when specifying FORBAC-policies.
In Example 9, if we had used just one sort R′ for roles, we
would have to define the functions country ′ : R′ → 2String,
limit ′ : R′ → Integer, and a special function type ′ : R′ →
String to distinguish between “students” and “employees”.
Also, when specifying UAR′(u, r), we would have to specify
limit ′ when we assign a role instance to a student. Similarly,
we would have to specify country ′ when we assign a role
instance to an employee.

We conclude our presentation of FORBAC by observing
that authorization can be decided in polynomial time. The
proof is given in Section B in the appendix.

Theorem 13: Given a FORBAC policy (Σ,UA,PA), a Σ-
structure S, a user u ∈ UsersS , and a permission p ∈ PermsS ,
deciding whether u is authorized for p takes at most polyno-
mial time.

IV. POLICY ANALYSIS IN FORBAC

We now define the language for posing analysis queries for
FORBAC-policies. Since FORBAC-formulas can be expressed
in first-order logic, this language is also a natural choice for
reasoning about FORBAC-policies. However, first-order logic
is undecidable in general and its restriction to fragments must
be done with care. Halpern and Weissman [19] studied several
fragments of first-order logic for specifying access control
policies. They showed that even after limiting the number of
quantifier alternations and removing function symbols, one can
end up with a fragment where merely deciding authorization
is intractable.

To strike a balance between expressiveness in property
specification and efficiency in policy analysis, we propose
the set of existential FORBAC-formulas as the language for
specifying analysis queries.

Definition 14: An existential FORBAC-formula is a first-
order formula of the form ∃x1, x2 . . . , xn . ϕ(x1, x2, . . . , xn),
where ϕ(x1, x2, . . . , xn) is a Boolean combination of
FORBAC-formulas over a FORBAC-signature.

To verify if a property holds for a FORBAC-policy, we
build an existential FORBAC-formula that describes a coun-
termodel that violates the property. The Boolean combination
of FORBAC-formulas describes the negation of the property
and the existential quantifiers specify the elements that should
appear in a countermodel. The formula can then be input into
an SMT solver, which attempts to find such a countermodel.
The syntax of existential FORBAC-formulas limits quantifier
alternation and the behavior of relations and functions so
that deciding satisfiability is NP-complete. We prove this in
Section B in the appendix:

Theorem 15: Deciding the satisfiability of an existential
FORBAC-formula is NP-complete.

5

The low complexity, NP, is not for free. There are relevant
policy analysis queries like observational equivalence and
conflict [5] that cannot be expressed as existential FORBAC-
formulas. However, they can be expressed in first-order logic
and can be passed as input to an SMT-solver.

We present now four kinds of policy analysis queries and
explain how to reduce them to satisfiability of existential
FORBAC-formulas.

A Authorization inspection can be used to verify that a
FORBAC-policy does not grant undesired access.

B Assignment simplification can be used to identify redun-
dancies in FORBAC formulas.

C Role subsumption can be used to identify redundant role
templates.

D Redundant assignments can be used to identify redun-
dancies in the user-assignment relation.

These queries illustrate the expressive power of existential
FORBAC formulas as a language for policy analysis for
FORBAC. Moreover, they are all natural queries, that arise
and require answers, when administrating policies specified in
rich policy languages, e.g., where role templates and first-order
user and permission-assignments interact.

A. Authorization inspection
Suppose we are given a FORBAC-policy (Σ,UA,PA), a

FORBAC formula ψuser (u) with a free variable u of sort
Users , and FORBAC formulas ψ1(p1), ψ2(p2), . . ., ψk(pk),
with free variable p1, p2, . . ., pk of sort Perms. Authorization
inspection can be cast as the question of whether a formula
of the following form is satisfiable:

∃u, p1, . . . , pk . ψuser (u) ∧
∧
i≤k

(
ψi(pi) ∧ Auth(u, pi)

)
. (1)

Checking this formula’s satisfiability amounts to searching for
a Σ-structure S with a user u who matches the criteria of
ψuser and who is authorized for some permissions p1, p2, . . .,
pk that match the criteria of ψ1, ψ2, . . ., ψk, respectively.

Example 16: Consider again the FORBAC-policy from
Example 9. According to UARStudent(u, r), users can be as-
signed instances of RStudent if they are at most 25 years
old. Also, according to PARStudent(r, p), instances of RStudent

can never be granted permission to withdraw amounts larger
than $1,000. One may conjecture that users who are at most
25 years old can never withdraw large amounts of money;
they cannot, at least, for the ΣB-structure in Figure 3. To
determine whether this property holds for any ΣB-structure,
we instantiate Formula (1) as follows.

ψuser (u) ≡ age(u) ≤ 25,

ψ1(p1) ≡
(

action(p1) = “withdraw” ∧
amount(p1) > 1,000

)
.

The resulting instance of Formula (1) is

∃u, p1 .


age(u) ≤ 25 ∧
action(p1) = “withdraw” ∧
amount(p1) > 1,000 ∧
Auth(u, p1)

 . (2)

If this formula is unsatisfiable, then we have confirmed our
conjecture. However, if we input this formula to the SMT-
solver Z3, then Z3 outputs that it is satisfiable and provides a
model satisfying the formula. This model can be used to build
a ΣB-structure that refutes our conjecture.

The following is a ΣB-structure S̃ that satisfies Formula (2).
Let ΣB be the FORBAC-signature from Example 2. Figure 4
shows a ΣB-structure S̃ with one user u, one role instance r of
type REmployee, none of type RStudent, and one permission p.
It is easy to see that u and r satisfy UAREmployee(u, r) and that

u r p

UsersS RT(Σ)S PermsS

name(u) = "Diana"
age(u) = 21
nationality(u) = "UK"
salary(u) = 1,800

limit(r) = 1,800 action(p) = "withdraw"
amount(p) = 1,700
location(p) = "UK"

~ ~ ~

Fig. 4. User and permission-assignments in the ΣB-structure S̃

r and p satisfy PAREmployee(r, p). Therefore u is authorized
for p. This means that it is possible for users who are at most
25 years old to withdraw amounts greater than $1,000. What
they should do is to have a salary greater than $1,500, so
they obtain an instance r of REmployee with a limit higher
than $1,500. This would allow them to withdraw more than
$1,000.

Note that, as given, Formula (1) is not an existential
FORBAC-formula because Auth(u, pi), for i ≤ k, contains
existential quantifiers. However, it can be rewritten into an
existential FORBAC-formula by moving the existential quan-
tifiers in Auth(u, pi), for i ≤ k, to the front of the formula,
using standard first-order equivalences.

B. Assignment simplification

Poor design or changes in policy specifications may lead
to redundancies, which humans have difficulty detecting. We
explain how we can identify redundancies using existential
FORBAC formulas.

Example 17: Consider the following FORBAC formula that
specifies UA for some policy:

UAR(u, r) ≡ ψ1(u, r) ∨ ψ2(u, r),

where
ψ1(u, r) = unit(r) = 45 ∧ level(u) = 23 and
ψ2(u, r) = unit(r) = 45 ∧ level(u) > 20.

UAR(u, r) consists of a disjunction of two formulas, where
the satisfaction of the first formula implies the satisfaction
of the second one. This means that ψ1(u, r) is redundant.
To confirm this, we can show that the following formula is
valid: ∀u∀r : R . (ψ1(u, r) ∨ ψ2(u, r)) ↔ ψ2(u, r) . This is
equivalent to showing that the following existential FORBAC
formula ∃u, r : R .¬ ((ψ1(u, r) ∨ ψ2(u, r))↔ ψ2(u, r)) is
not satisfiable.

The same technique can be used to detect redundancies
in PAR(r, p). In general, whenever one conjectures that a

6

FORBAC formula ψ(x1, x2, . . . , xk) is equivalent to another
formula ψ′(x1, x2, . . . , xk), one can check this by determining
whether the following formula is valid:

∀x1, x2, . . . , xk . ψ(x1, x2, . . . , xk)↔ ψ′(x1, x2, . . . , xk) .

This is equivalent to determining whether the following exis-
tential FORBAC formula is unsatisfiable:

∃x1, x2, . . . , xk .¬ψ(x1, x2, . . . , xk)↔ ψ′(x1, x2, . . . , xk) .

C. Role subsumption

RBAC systems used in large enterprises with multiple
administrators may end up with equivalent redundant roles,
especially, when the administrators are unaware of roles pre-
viously created by other administrators. Identifying these roles
helps simplify RBAC policies. We explain how this situation
can occur in FORBAC.

Example 18: Consider a FORBAC-policy (Σ,UA,PA)
with RT (Σ) = {R1, R2} and

PAR1(r, p) ≡(
action(p) ∈ {“read”, “write”} ∧
(level(r) = level(p) ∨ level(r) > level(p))

)
PAR2(r, p) ≡(

(action(p) = “read” ∨ action(p) = “write”) ∧
level(r) ≥ level(p)

)
.

Now, consider a Σ-structure S with two role instances r1 and
r2 of R1 and R2, respectively. Suppose that levelS(r1) =
levelS(r2). Observe that both instances are assigned the same
set of permissions. As a result, whenever a user is assigned an
instance r of R2, she can be assigned instead an instance r′ of
R1 with levelS(r′) = levelS(r). The user would be authorized
for the same set of permissions. Hence R2 is redundant.

We now formally define the ideas from the previous ex-
ample. For simplicity, we ignore set-valued attributes, but the
presentation is analogous for the general case.

Definition 19: Let Σ be a FORBAC-signature and let
R1, R2 ∈ RT (Σ). We say that R1 expands R2 if for every
attribute f of type R2 → W , with W ∈ {String, Integer},
there is the same symbol f , but of type R1 →W .

Definition 20: Let R1 and R2 be two role templates in
some FORBAC-signature. We say that R1 subsumes R2 if
R1 expands R2 and the following formula is valid:

∀r1 : R1, r2 : R2 .
∧
f :R2→W f(r1) = f(r2)→

∀p .PAR2
(r2, p)→ PAR1

(r1, p) .

Here, f ranges over attributes of type R2 → W , with W ∈
{String, Integer}. This formula says the following. Let r1

and r2 be two role instances of R1 and R2, respectively. If
fS(r1) = fS(r2), for every attribute f of type R2 →W , then
any permission assigned to r2 is also assigned to r1.

Using first-order logic equivalencies, it is easy to prove
that R1 subsumes R2 iff R1 expands R2 and the following
existential FORBAC-formula is unsatisfiable:

∃r1 : R1, r2 : R2∃p .
∧
f :R2→W f(r1) = f(r2) ∧

PAR2(r2, p) ∧ ¬PAR1(r1, p) .

Finally, we call two roles equivalent if they subsume each
other. Equivalent roles point to potential redundancies in the
policy. However, we note that two equivalent roles are not
necessarily redundant. It may happen that such roles have
different functions from an organizational perspective. For
example, the role of a programmer may have exactly the same
types of permissions as the role of a tester, but they need to
be distinguished in an organization [4].

D. Redundant assignments

In classical RBAC, the assignment of roles to users and the
assignment of permissions to roles are two tasks performed
by different people who do not necessarily communicate with
each other. The assignment of roles may be performed, for ex-
ample, by people in human resources; whereas the assignment
of permissions may be performed by the application owners.
This might lead to a situation where for two roles r1 and r2

the permissions assigned to r2 are contained in those assigned
to r1 and the users who are assigned r2 are also assigned r1.
This is illustrated in Figure 1 in the introduction. In this case,
role r2 might be redundant.

This situation, presented in [4], occurs in a kind of FORBAC
policies that we call functional FORBAC-policies. In a func-
tional FORBAC-policy, for every role template R, any two
role instances assigned to a same user have exactly the same
attribute values. The policy presented in Example 9 is a
functional FORBAC policy. For any two role instances r and r′

of RStudent assigned to a user u, we have that country(r) =
country(r′) = {nationality(u), “US”}. Similarly, for any two
instances r and r′ of REmployee assigned to a user u, we have
that limit(r) = limit(r′) = salary(u). Contrast this with a
FORBAC-policy with a role template R such that

UAR(u, r) ≡ age(u) ≥ 18 ∧ level(r) ≤ 50.

This is not a functional FORBAC-policy. A user over 18 can be
assigned several role instances, each with a different value for
level . We now formally define functional FORBAC-policies.

Definition 21: A FORBAC-policy (Σ,UA,PA) is func-
tional if every role template R ∈ RT (Σ) satisfies the fol-
lowing two requirements:

1) UAR(u, r) can be written as a conjunction UAuR(u) ∧
UArR(u, r). This means that the conditions for assigning
a role instance to a user can be split in two: requirements
the user must fulfill and requirements that the role
instance must fulfill based on the user attributes.

2) The following formula is valid:

∀u∀r : R, r′ : R .UArR(u, r) ∧ UArR(u, r′)→∧
f :R→W f(r) = f(r′),

where f ranges over attributes of type R → W , with
W ∈ {Integer,String, 2Integer, 2String}. This means that
any two role instances of R assigned to a same user
have the same attribute values.

It is easy to automatically check if a FORBAC-policy
(Σ,UA,PA) is functional. To check the second requirement,

7

one checks, for every R ∈ RT (Σ), whether the following
existential FORBAC-formula is unsatisfiable.

∃u∃r : R, r′ : R .
UArR(u, r) ∧ UArR(u, r′) ∧

∨
f :R→W f(r) 6= f(r′) .

Having defined what a functional FORBAC-policy is, we
now introduce a policy analysis query for identifying redun-
dant formulas in UA. We start with an example.

Example 22: Consider a FORBAC-policy (Σ,UA,PA)
with RT (Σ) = {R1, R2} and

UAR1(u, r) ≡ age(u) ≥ 18 ∧ level(r) = 6

UAR2
(u, r) ≡ age(u) ≥ 21 ∧ level(r) = 5

PAR1(r, p) ≡(
action(p) ∈ {“read”, “write”} ∧
level(r) ≥ level(p)

)
PAR2(r, p) ≡(

action(p) ∈ {“read”} ∧
level(r) ≥ level(p)

)
.

Note that this is a functional FORBAC-policy. Now, observe
that whenever a user is assigned an instance r2 of R2, he is
also assigned an instance r1 of R1. Moreover, r1 would get
more permissions than r2. This implies that UAR2(u, r) is
redundant.

We now formally define this policy analysis query. Given
a functional FORBAC-policy (Σ,UA,PA) and two role tem-
plates R1, R2 ∈ RT (Σ), we want to check if the following
formula is valid:(

∀u .UAuR2
(u)→ UAuR1

(u)
)
∧

∀u∀r1 : R1, r2 : R2.
UArR1

(u, r1) ∧ UArR2
(u, r2)→

∀p .PAR2(r2, p)→ PAR1(r1, p) .

If the previous formula is valid, then UAR2
(u, r) is redundant

in the FORBAC-policy. Checking the validity of the previous
formula is equivalent to checking whether the following exis-
tential FORBAC-formula is unsatisfiable:(

∃u .UAuR2
(u) ∧ ¬UAuR1

(u)
)
∨

∃u∃r1 : R1, r2 : R2∃p .
UArR1

(u, r1) ∧ UArR2
(u, r2) ∧

PAR2
(r2, p) ∧ ¬PAR1

(r1, p) .

V. EXPERIMENTAL RESULTS

We present here the evaluations of our two theses: the
FORBAC language is suitable for specifying realistic access
control policies and these policies can be analyzed with
reasonable overhead. For this, we conducted a case study on
the access-control infrastructure of a European bank. We had
access to the access control policies of 350 applications, in
particular the rules defining the assignments of roles to users
and the assignments of permissions to roles. We chose 10
of those policies and translated their rules into FORBAC-
policies. In our translation, we omitted those parts dealing with

delegation of role instances and separation-of-duty constraints,
which are out of the scope of FORBAC, as explained in
Section II. For each of the 10 resulting FORBAC-policies,
we randomly generated 10 different instances of the problems
from Section IV and checked them against their respective
policies using Z3.

A. Policy structure

We now describe the structure of the 10 translated
FORBAC-policies (Σ,UA,PA).

a) User-assignment relation: In the FORBAC-policies,
users are assigned role instances in two different ways. First,
depending on a user’s attribute values, like job or country ,
the user is automatically assigned the role instances that
allow him to perform his duties. Second, users may require
for some tasks more role instances than what the bank’s
policy automatically assigns to them. They therefore request
additional role instances from the policy administrator, who
assigns them individually.

These two ways are called provisioned and individual
assignments. Both can be expressed as FORBAC-formulas of
the following form:(∧

i

conditionsi(u)

)
∧ instanceAssigned(u, r). (3)

Whenever a user’s attribute values satisfy
∧
i conditionsi(u),

then the user can be assigned a role instance whose attribute
values are defined by instanceAssigned(u, r).

An example of this formula is

(job(u) = “trader” ∧ country(u) ∈ {“FR”, “USA”})
∧ location(r) = country(u) ∧ value(r) = 10,000.

This expresses a provisioned assignment, which assigns users,
who are traders working in France or the USA, to a role
instance with their own country as location and a value of
10, 000.

Individual assignments are a special case of provisioned
assignments, where

∧
i conditionsi(u) contains only one con-

junct of the form userID(u) = c, with c a constant, and
instanceAssigned(u, r) does not contain any attribute of the
sort User . An example of an individual assignment is

userID(u) = 73,134

∧ location(u) = “FR” ∧ value(r) = 10,000.

Here, userID is an attribute of type Users → Integer used
to identify the application’s users.

The provisioned and the individual assignments for each
role template R ∈ RT (Σ) are expressed in UAR(u, r) as a
large disjunction of FORBAC-formulas of the form (3). To
differentiate between provisioned and individual assignments
we partition the disjunctions

UAR(u, r) = UA1
R(u, r) ∨ UA2

R(u, r)

in two parts, where UA1
R(u, r) contains the provisioned as-

signments and UA2
R(u, r) contains the individual assignments.

8

b) Permission-assignment relation: For a role template
R, the formula PAR(r, p) has the form

∨
i

∧
j fij(p) ∼ gij(r),

where fij and gij are attributes and ∼ is one of the following:
=, 6=,∈, or /∈.

c) Size of the policies: In Table I, we report on the
size of the 10 translated FORBAC-policies. The label]A
denotes the number of (single- and set-valued) attributes in the
signature . |UA1| denotes

∑
R

∣∣UA1
R(u, r)

∣∣, ∣∣UA2
∣∣ denotes∑

R

∣∣UA2
R(u, r)

∣∣ and |PA| denotes
∑
R |PAR(u, r)|.]Users

is the number of users. Finally,]RT (Σ) is the number of role
templates.

Policy]A |UA1| |UA2| |PA|]Users]RT (Σ)

App1 19 33 238,052 126 3,490 6
App2 24 1,646 174,655 1668 9,330 96
App3 56 694 256,439 232 34,782 51
App4 20 78 135,089 262 17,554 11
App5 20 16 3,262 156 85,949 8
App6 9 56 4,451 200 23,368 17
App7 15 363 1,911 237 44,276 14
App8 36 318 13,144 661 20,438 14
App9 15 249 9,427 160 8,152 11
App10 34 46 1,734 120 24,199 12

TABLE I
SIZE OF THE FORBAC POLICIES FOR 10 BANK APPLICATIONS

B. Generating instances of queries
For each of the selected policies and for each query pre-

sented in Section IV, we generated 10 instances and verified
them against the selected policy with Z3. We present next, for
each query, how we generated these instances.

a) Authorization inspection: We generate each instance
as follows.

1) Build ψuser (u). Randomly choose an attribute f of
type Users → W , with W ∈ {Integer,String} and a
constant value c of type W . Let ψuser (u) be f(u) = c.

2) Randomly choose a value k ≤ 10.
3) for i = 1 to k,

a) Build ψi(pi). Randomly choose up to 5 attributes
f1, f2, . . . , f5 and constant values c1, c2, . . . , c5.
Let ψi(pi) be

∧
i≤5 fi(pi) = ci.

b) Build Auth(u, pi) as∨
R

∃r : R .UAR(u, r) ∧ PAR(r, pi),

4) The instance is the formula

∃u∃p1, . . . , pk . ψuser(u)∧

∧
i≤k

ψi(pi) ∧Auth(u, pi)

 .

b) Assignment simplification: Recall that Σ is the
FORBAC-signature used to specify the application’s
FORBAC-policy. Recall too that, for a role template R in Σ,
UA1

R(u, r) is a disjunction of formulas of the form∧
i≤K

conditionsi(u)

 ∧ instanceAssigned(u, r).

To generate an instance of the assignment simplification query,
we randomly choose j ≤ K. The generated instance is then

∃u .¬

∧
i≤K

conditionsi(u)↔
∧
i≤K
i6=j

conditionsi(u)

 .

Intuitively, we want to know if conditionsj(u) is redundant.
Note that instanceAssigned(u, r) is not part of the formula
because we want to simplify the conditions that assign the role
to a user and instanceAssigned(u, r) just describes the role
instance.

c) Role subsumption: To generate an instance of the role
subsumption query, we randomly choose two role templates
R1 and R2. We then take PAR1

(r, p) and PAR2
(r, p) and

define the instance as

∃r1 : R1, r2 : R2 ∃p .∧
f f(r1) = f(r2) ∧ PAR2

(r2, p) ∧ ¬PAR1
(r1, p) .

Intuitively, we ask if R1 subsumes R2. The bank’s policies,
once translated in FORBAC, have the following property:
for any two role templates R1 and R2, if there is defined
a function f : R1 →W , then there is also defined a function
f : R2 → W . In other words, every attribute is defined for
all role templates, so it follows immediately that any two role
templates expand each other.

d) Redundant assignments: Recall that, for every role
template R, UA1

R(u, r) is a disjunction of formulas of
the form (

∧
i conditionsi(u)) ∧ instanceAssigned(u, r).

These disjuncts are always functional FORBAC-formulas .
To generate an instance of the redundant assignments query,
we randomly choose two role templates R1 and R2 and
one disjunct from each of UA1

R1
(u, r) and UA1

R2
(u, r).

Let (
∧
i conditionsi(u)) ∧ instanceAssigned(u, r) and

(
∧
j conditions

′
j(u)) ∧ instanceAssigned ′(u, r) be the se-

lected disjuncts. The instance is(
∃u .

∧
i conditionsi(u) ∧ ¬

∧
j conditions

′
j(u)

)
∨

∃u ∃r1 : R1, r2 : R2 ∃p .
instanceAssigned(u, r1) ∧
instanceAssigned ′(u, r2) ∧
PAR2

(r2, p) ∧ ¬PAR1
(r1, p) .

C. Results and conclusions

We used the SMT solver Z3 to verify each of these instances
against the corresponding FORBAC-policy. We ran the checks
on a 2.50 GHz Intel Core i5 CPU, with 8GB of RAM. Table II
shows how much time Z3 took to verify, for each application,
10 instances of the queries of Authorization Inspection (AI),
Assignment Simplification (AS), Role Subsumption (RS), and
Redundant Assignments (RA). A cell with NA indicates that
there were not enough provisioned assignments to create 10
instances for the corresponding policy. A cell with >360
indicates that Z3 required more than 60 minutes for 10
instances, i.e. more than 360 seconds on average.

9

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI 357.87 >360 >360 >360 2.98 1.85 3.52 32.69 38.02 0.30
AS 0.61 0.63 0.57 0.54 NA 0.75 0.87 0.5 0.49 NA
RS 0.53 0.55 0.43 0.43 0.45 0.47 0.46 0.47 0.47 0.44
RA 0.73 0.47 0.46 0.49 NA 0.58 0.53 0.59 0.49 NA

TABLE II
TIME (IN SECONDS) NEEDED BY Z3 FOR AN INSTANCE ON AVERAGE

Regarding our first thesis, expressiveness, we could express
the main parts of the policies in FORBAC, except for del-
egation of role instances and separation of duty constraints.
Regarding our second thesis, that policies can be analyzed with
reasonable overhead, the instances we generated for AS, RS,
and RA can be analyzed by Z3 within one second for realistic
policies. The only exceptions are the first four applications in
AI, which include many individual assignments.

For policies where many individual assignments must be
analyzed, we see two ways of proceeding in practice:

1) Check the AI queries only on the provisioned assign-
ments UA1

R(u, r). We note that in practice UA2
R(u, r)

should not be too large and can often be replaced by
provisioned assignments to improve policy maintenance.

2) In case UA2
R(u, r) is large, evaluate AI on each individ-

ual assignment separately. Based on our experience it is
possible to restrict the query to a proper subset of all
individual assignments before creating the SMT-files.

If we evaluate the 10 instances on UA1
R(u, r) only, as

described in 1), we obtain the following average times:

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI1 0.11 4.97 1.56 0.15 0.13 0.12 0.40 0.45 0.31 0.12

Alternatively if we evaluate as in 2) on 10 randomly chosen
users with individual assignments, we obtain the following
average times:

Policy App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI2 0.97 6.73 1.75 0.96 0.89 0.78 0.87 1.21 0.95 2.02

Finally note that the evaluation of the individual assign-
ments can be executed in parallel on a cluster since they can be
analyzed independently. If parallelization is not supported, one
can instead proceed iteratively. In each of the 10 FORBAC-
policies, there were at most 10,000 users with individual
assignments. Therefore, an upper bound on the time required
for 2) is one day in the worst case. From the bank’s point of
view this is still reasonable since AI queries must be executed
only rarely for audits and can be run offline over night.

VI. RELATED WORK

In the early days of RBAC, it was sufficient to propose an
RBAC model that overcame the limitations that were observed
in previous RBAC models. Here, limitations were understood
in terms of expressiveness, not policy analysis. Later, some
authors (such as [22] and [17]) noted that the expressive power
of policy specification languages hindered policy analysis.
Hence, our perspective is that new RBAC models should be

frameworks that provide three components: a language for
policy specification, a language for specifying policy analysis
queries, and procedures for efficiently evaluating these queries.
To the best of our knowledge, there are two such frameworks
that have gained acceptance in the literature: [31] and [5]. We
discuss them as well as other work related to RBAC policy
analysis.

A. Margrave

Margrave [31] is a framework for policy specification and
analysis. With Margrave, users can specify policies and query
their properties. Margrave then searches for representative
scenarios that satisfy the property.

In our framework, we reason about RBAC policies and
compute one satisfying scenario rather than a set of scenarios.
In contrast to Margrave, our framework can reason about
integer constraints and, therefore, express policies like “Alice
can read a file if her clearance level is greater than the file’s
clearance level”.

FORBAC’s interaction between set-valued terms and roles
gives rise to policies that cannot be modeled in Margrave.
Consider, for example, a FORBAC signature with a role
template Technician and the following functions:
• OU that assigns a string to each user which represents

the user’s organizational unit.
• Sectors that assigns a set of integers to each role instance

of Technician .
• sector that assigns an integer to each permission.

Suppose that only those users u with OU (u) = A are assigned
an instance r of Technician with Sectors(r) = [100, 110],
and that an instance r of Technician is authorized to any
permission p with sector(p) ∈ Sectors(r).

In Margrave, we can use two policies to model the user and
permission-assignments, respectively. The first policy indicates
when a user u is assigned a role instance r and can be
expressed in Margrave as the following first-order formula:

ΦUA := ∀u, r .
((

OU (u) = A ∧∧
100≤i≤110 Sectors(r, i)

)
→ mUA(u, r)

)
.

The second policy indicates when a role instance r is autho-
rized for permission p:

ΦPA := ∀r, p . (Sectors(r, sector(p))→ mPA(r, p)) .

To decide authorization, we use the Margrave policy analysis
framework. A user u is authorized for permission p if the
following query is satisfiable:

∃r . (ΦUA ∧ ΦPA ∧ mUA(u, r) ∧ mPA(r, p)) .

Now, consider the following property: There is a user who is
authorized for a permission in sector 300. Such a user does not
exist since instances of role Technician can access only the
sectors between 100 and 110. However, if we query Margrave
with

∃u, r, p . (mUA(u, r) ∧ mPA(r, p) ∧ sector(p) = 300) ,

then Margrave responds with a scenario consisting of a user
ũ with OU (ũ) = A, a permission p̃ with sector(p̃) = 300,

10

and a role instance r̃ with Sectors(r̃) = {100, . . . , 110, 300}.
This is because the policy that assigns instances of Technician
allows one to assign to a user any instance that contains at least
the sectors from 100 through 110. It is not possible to assign
an instance of Technician that contains only the sectors from
100 through 110 unless we explicitly say that all other sectors
must not be assigned: OU (u) = A ∧∧

100≤i≤110 Sectors(r, i) ∧∧
i≥111 ¬Sectors(r, i)

→ mUA(u, r). (4)

Such specifications, however, are difficult to maintain. If new
sectors are created in the environment, then the policy must be
adapted to prevent the new sectors from being authorized for
technicians. In addition, Margrave cannot efficiently handle
policies with large attribute domains [5]. In contrast, this
policy can be expressed in FORBAC as follows:

UATechnician(u, r) ≡
(

OU (u) = A ∧
Sectors(r) = [100, 110]

)
PATechnician(r, p) ≡ sector(p) ∈ Sectors(r).

(5)

The fact that no user is authorized for permission in sector 300
follows from the unsatisfiability of the existential FORBAC
formula: ∃u, p . (Auth(u, p) ∧ sector(p) = 300) .

B. Athena+Yices

Another framework related to our work is Athena+Yices [5],
which merges functional programming with first-order logic
for both policy specification and property verification. For
verifying properties, the Yices SMT-solver is used. They do
experiments on the CONTINUE [27] policy and achieve results
better than Margrave [17] and the framework used in [26]. In
contrast to FORBAC, their language can express arithmetic
constraints and they can reason about XACML policies.

Athena+Yices faces the same problem as Margrave when
dealing with the administration of set-valued attributes. Al-
though Athena+Yices can reason about arithmetic constraints,
they do not allow quantification when specifying policies. This
makes it impossible to write Policy (5), unless users explicitly
list all the sectors that should and should not be allowed.

The authors [5] do not provide complexity bounds for the
policy analysis problems they consider. The policy properties
they propose are undecidable in general because their syntax
allows addition, subtraction, and multiplication of integer
variables, which allows Diophantine equations to be expressed
as requirements for authorization. This shows again how one
ends up in undecidable fragments of policy analysis if the
language is not restricted. In contrast, FORBAC ensures that
all the given policy analysis queries are evaluated in NP.
However, the low complexity of policy analysis for FORBAC
does not come for free. Existential FORBAC formulas cannot
express relevant queries presented in [5] like observational
equivalence, conflict detection, and change-impact analysis.

C. Other related work

Other researchers examine policy analysis for RBAC, but
they neither propose a language for specifying properties of
RBAC policies nor procedures for verifying them. They only
propose procedures for verifying specific properties.

For example, [16], [21], [34] focus on the reachability
problem. In this problem, a set of users is given together with
a set of administrative rules. These administrative rules specify
who can assign and remove role assignments according to the
roles assigned to the users. The objective of the reachability
problem is to decide if it is possible for the given set of users
to reach a goal set of roles using the administrative rules.
We did not include the reachability problem in our framework
because there are many efficient frameworks proposed for this
problem. Additionally, the reachability problem is defined only
for classical roles. To the best of our knowledge, no work has
investigated administrative rules for role templates.

[6] uses SMT-solvers to identify induced role hierar-
chies. They model rule-based user-role assignments and decide
which role assignments are entailed by others within an
RBAC model. Their framework can reason about negative
authorization via negated roles. However, they only work
with classical roles and single-valued attributes. In contrast,
we analyze this problem with role templates and set-valued
attributes.

Another language that combines policy specification and
policy analysis is presented in [14]. It is a Datalog-based
language that can express policies in dynamic environments
and performs verification on goal reachability and contextual
policy containment. Goal reachability consists of deciding
if the system can reach a state where a given property
holds, expressed as an existential formula. Contextual policy
containment consists of deciding, for two given policies and
in every state the system can reach, whether those permissions
authorized by one policy are authorized by the other. However,
their framework neither expresses nor reasons about numeric
constraints and set-valued attributes.

Lithium [19] is a policy specification language based on
a fragment of first-order logic. Lithium policies are sets
of formulas consisting of either conjunctions of ground
literals or universally quantified formulas of the form
∀x1 . . . ∀xn . (`1 ∧ . . . ∧ `k → `k+1), where `1, . . .,`k+1

are literals. It can express a variety of authorization policies
used in practice and also decide authorization in polynomial
time. In contrast to our framework, Lithium allows predicates
and function symbols of any arity as long as they respect a set
of conditions (see [19] for details). For example, in a Lithium
policy, there must not be two formulas, which contain two
literals ` and `′ such that ` and ¬`′ are unifiable. However, they
cannot handle numeric constraints and their policy analysis
framework is limited. They only show how to efficiently decide
whether, for a given policy, a permission is permitted and
denied at the same time.

11

VII. CONCLUSION AND FUTURE WORK

Many policy specification languages have been proposed
and new languages are often more expressive than their prede-
cessors. However, policy analysis can only handle a fragment
of the languages for which they are intended [17], [22], [26],
[32]. This is also the case for RBAC where new extensions
have richer expressiveness, but policy analysis becomes more
difficult.

In this work, we have presented FORBAC as a framework
that strikes a balance between expressiveness and efficient
policy analysis for RBAC. We have provided strong evidence
that FORBAC can specify and reason about relevant policies.
As future work, we propose to extend FORBAC with two
RBAC idioms that have received attention in the literature. The
first is role hierarchies, which define a partial order on a set
of roles. Roles are assigned those permissions granted to that
role and those granted to subroles in the hierarchy. There is no
standard that specifies how to define role hierarchies with role
templates. The second idiom consists of constraints. The NIST
standard for RBAC [15] offers two types of constraints: static
and dynamic separation-of-duty constraints and cardinality
constraints. It remains open how to define these constraints
in RBAC models where users, roles, and permissions have
attributes

REFERENCES

[1] Ali E Abdallah and Etienne J Khayat. A formal model for parameterized
role-based access control. In Formal Aspects in Security and Trust, pages
233–246. Springer, 2005.

[2] Gail-Joon Ahn and Ravi Sandhu. The RSL99 language for role-based
separation of duty constraints. In Proceedings of the fourth ACM
workshop on Role-based access control, pages 43–54. ACM, 1999.

[3] Mohammad A Al-Kahtani and Ravi Sandhu. A model for attribute-based
user-role assignment. In Computer Security Applications Conference,
2002. Proceedings. 18th Annual, pages 353–362. IEEE, 2002.

[4] Mohammad A Al-Kahtani and Ravi Sandhu. Induced role hierarchies
with attribute-based RBAC. In Proceedings of the eighth ACM sympo-
sium on access control models and technologies, pages 142–148. ACM,
2003.

[5] Konstantine Arkoudas, Ritu Chadha, and Jason Chiang. Sophisticated
access control via SMT and logical frameworks. ACM Transactions on
Information and System Security (TISSEC), 16(4):17, 2014.

[6] Alessandro Armando and Silvio Ranise. Automated and efficient
analysis of role-based access control with attributes. In Data and
Applications Security and Privacy XXVI, pages 25–40. Springer, 2012.

[7] Ezedin Barka and Ravi Sandhu. A role-based delegation model and some
extensions. In 23rd National Information Systems Security Conference,
pages 396–404. Citeseer, 2000.

[8] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. Auto-
mated analysis of security-design models. Information and Software
Technology, 51(5):815–831, 2009.

[9] Moritz Y Becker, Cédric Fournet, and Andrew D Gordon. SecPAL:
Design and semantics of a decentralized authorization language. Journal
of Computer Security, 18(4):619–665, 2010.

[10] Moritz Y Becker and Peter Sewell. Cassandra: Flexible trust man-
agement, applied to electronic health records. In Computer Security
Foundations Workshop, 2004. Proceedings. 17th IEEE, pages 139–154.
IEEE, 2004.

[11] Rafae Bhatti, Arif Ghafoor, Elisa Bertino, and James BD Joshi. X-
GTRBAC: an XML-based policy specification framework and archi-
tecture for enterprise-wide access control. ACM Transactions on
Information and System Security (TISSEC), 8(2):187–227, 2005.

[12] Piero Bonatti, Clemente Galdi, and Davide Torres. ERBAC: event-driven
RBAC. In Proceedings of the 18th ACM symposium on Access control
models and technologies, pages 125–136. ACM, 2013.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[14] Daniel J Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In Automated
Reasoning, pages 632–646. Springer, 2006.

[15] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and System Security
(TISSEC), 4(3):224–274, 2001.

[16] Anna Lisa Ferrara, P Madhusudan, and Gennaro Parlato. Policy analysis
for self-administrated role-based access control. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 432–447. Springer,
2013.

[17] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and
Michael Carl Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th International Con-
ference on Software Engineering, ICSE ’05, pages 196–205, New York,
NY, USA, 2005. ACM.

[18] Luigi Giuri and Pietro Iglio. Role templates for content-based access
control. In Proceedings of the second ACM workshop on Role-based
access control, pages 153–159. ACM, 1997.

[19] Joseph Y Halpern and Vicky Weissman. Using first-order logic to reason
about policies. ACM Transactions on Information and System Security
(TISSEC), 11(4):21, 2008.

[20] Jingwei Huang, David M Nicol, Rakesh Bobba, and Jun Ho Huh. A
framework integrating attribute-based policies into role-based access
control. In Proceedings of the 17th ACM symposium on Access Control
Models and Technologies, pages 187–196. ACM, 2012.

[21] Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, and
William H Winsborough. Towards formal verification of role-based
access control policies. Dependable and Secure Computing, IEEE
Transactions on, 5(4):242–255, 2008.

[22] Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration
model for attributes. In Proceedings of the First International Workshop
on Secure and Resilient Architectures and Systems, pages 7–12. ACM,
2012.

[23] Xin Jin, Ram Krishnan, and Ravi Sandhu. Reachability analysis for
role-based administration of attributes. In Proceedings of the 2013 ACM
workshop on Digital identity management, pages 73–84. ACM, 2013.

[24] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: role-centric
attribute-based access control. In Computer Network Security, pages
84–96. Springer, 2012.

[25] James BD Joshi. Access-control language for multidomain environ-
ments. Internet Computing, IEEE, 8(6):40–50, 2004.

[26] Vladimir Kolovski, James Hendler, and Bijan Parsia. Analyzing web
access control policies. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 677–686, New York,
NY, USA, 2007. ACM.

[27] Shriram Krishnamurthi. The CONTINUE server (or, How I administered
PADL 2002 and 2003). In Practical aspects of declarative languages,
pages 2–16. Springer, 2003.

[28] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding
attributes to role-based access control. Computer, 43(6):79–81, 2010.

[29] Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A
UML-based modeling language for model-driven security. In UML 2002
The Unified Modeling Language, pages 426–441. Springer, 2002.

[30] Tim Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler,
Shriram Krishnamurthi, and Varun Singh. The Margrave tool.
http://www.margrave-tool.org/v3/. Accessed: 2015-01-12.

[31] Timothy Nelson, Christopher Barratt, Daniel J Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. The Margrave tool for firewall analysis. In
LISA, 2010.

[32] Salman Saghafi, Tim Nelson, and Daniel J Dougherty. Geometric logic
for policy analysis. In International Workshop on Automated Reasoning
in Security and Software Verification (ARSEC 2013), pages 12–20, 2013.

[33] Ravi Sandhu. Role hierarchies and constraints for lattice-based access
controls. In Computer Security ESORICS 96, pages 65–79. Springer,
1996.

[34] Scott D Stoller, Ping Yang, Mikhail I Gofman, and CR Ramakrishnan.
Symbolic reachability analysis for parameterized administrative role-
based access control. Computers & Security, 30(2):148–164, 2011.

12

APPENDIX

A. Complexity results for F

Theorem 23: For a policy T = {ϕ1(x), . . . , ϕ`(x)} in F ,
deciding whether the formula ∀x . (ϕ1(x) ∨ . . . ∨ ϕ`(x))
is valid is NP-hard.

Proof. By reduction to the validity problem for propo-
sitional Boolean formulas in disjunctive normal form. Let
ψ =

∨
i≤M

∧
j≤N `ij be a propositional Boolean formula in

disjunctive normal form. For every propositional variable p
occurring in ψ, pick a unary relation symbol Qp. Let x be a
first-order variable. For i ≤ M and j ≤ N , let Lij(x) be the
following formula:

Lij(x) =

{
Qp(x) if `ij = p

¬Qp(x), if `ij = ¬p.

Finally, let Tψ be the following set of formulas in F : ∧
j≤N

Lij(x) : i ≤M

 .

It is easy to check that ψ is valid iff the following formula is
valid. ∀x .

(∨
i≤M

∧
j≤N Lij(x)

)
.

We now explain how to translate a policy T in F to
a Margrave [30] policy T ′. Define a Margrave predicate
Permit(x) with a free variable x and one Margrave predicate
Q′(x) for every first-order predicate Q(x) occurring in T . For
every formula

∧
i≤M Qi(x) ∧

∧
j≤N ¬Rj(x) in T , define the

following Margrave rule in T ′:

Permit(x) : − Q′1(x), Q′2(x), . . . , Q′M (x),
¬R′1(x),¬R′2(x), . . . ,¬R′N (x).

The rule says that those access requests that satisfy Q′1,
Q′2, . . ., Q

′
M and not R′1, R′2, . . ., R

′
N are permitted. It is easy

to check that an access request is permitted in T iff the access
request is also permitted in T ′. The same technique can be
used to translate policies in F into policies in the language
presented in [5].

B. Complexity results for FORBAC

In this section we prove Theorems 13 and 15. Theorem 13
gives a complexity bound on deciding, for a given FORBAC-
policy (Σ,UA,PA), a Σ-structure S, a user u in S, and a
permission p in S, whether u is authorized for p in S. For
this, we define first how to store S in memory. S is stored as
a tuple(
nUsers , nPerms, (nR : R ∈ RT (Σ)) ,

(
JfSK : f ∈ A1 ∪ A2

))
,

where nUsers denotes the number of users in S; nPerms denotes
the number of permissions in S; nR, for R ∈ RT (Σ), denotes
the number of role instances of R in S; and JfSK, for f
of type V → W , is an array of elements of WS of length
nV . We assume that the users of S are enumerated from 1
to nUsers . For every f in A1 ∪ A2 of type Users → W
and for i ≤ nUsers , JfSK[i] contains the value of fS for the
i-th user. Similar assumptions hold for the permissions and

the role instances of S. If f is a set-valued attribute, then
JfSK[i] stores the elements of the set as a list. Finally, let
RolesS :=

⋃
R∈RT(Σ)R

S denote all role instances of S.
After these preparations, we prove Theorem 13.
Theorem 13: Given a FORBAC-policy (Σ,UA,PA), a Σ-

structure S, a user u ∈ UsersS and a permission p ∈ PermsS ,
deciding whether u is authorized for p takes time

O
(∣∣∣RolesS∣∣∣ · |S|2 · (|UA|+ |PA|)) ,

where |S| is the size of S in memory and |UA| + |PA| =∑
R∈RT(Σ) (|UAR(u, r)|+ |PAR(r, p)|).
Proof. We propose the following algorithm to check if u is

authorized for p:
1) For every R ∈ RT (Σ) and every role instance r of R

in S, do the following.
a) Compute JUAR(u, r) ∧ PAR(r, p)K, a formula ob-

tained from UAR(u, r) ∧ PAR(r, p) by replacing
every atomic formula ϕ with > or ⊥, depending
on whether S satisfies ϕ or not.

b) If JUAR(u, r) ∧ PAR(u, r)K evaluates to true,
then output that u is authorized for p.

2) If at this point it has not been output that u is authorized
for p, then output that u is not authorized for p.

Note that Steps 1b and 2 take O (|UA|+ |PA|) and constant
time, respectively. It suffices to show then that Step 1a takes
O
(
|S|2 · (|UA|+ |PA|)

)
time. To show this, observe that, by

the way we store S in memory, we can check in O(|S|2)-time
whether S satisfies an atomic FORBAC-formula.

Theorem 15: Deciding satisfiability of an existential-
FORBAC formula is NP-complete.

We prove NP-hardness by reduction to the satisfiability
problem for propositional Boolean formulas. Let ψ be a
Boolean propositional formula. Define a FORBAC-signature
that contains a unary symbol fp of type Users → Integer
for each proposition p in ψ. Let ∃uψ′(u) be the existential
FORBAC formula where ψ′(u) is obtained from ψ by re-
placing every proposition p in ψ with fp(u) = 1. Note that
∃uψ′(u) is satisfiable iff ψ is satisfiable.

We now prove that satisfiability of existential FORBAC
formulas is in NP. Let Σ be a FORBAC-signature and Φ =
∃x1, x2, . . . , xk . ϕ(x1, x2, . . . , xk) be an existential FORBAC
formula over Σ. We assume that all unary functions and all
binary relations map to integers. The proof for the general
case is analogous. A certificate for Φ is a function C mapping
every single-valued term in Φ to an integer and every set-
valued term in Φ to a set of integers. A term is any single or
set-valued term. For a term t occurring in C, we denote with
JtKC the interpretation of t by C. C satisfies a formula ψ if the
Boolean expression that results from replacing every term t in
ψ for JtKC evaluates to true. Note that Φ is satisfiable iff there
is a certificate that satisfies Φ.

We define the size of a certificate C for Φ. The size of an
integer is the length of its encoding in the input alphabet. The
size of a set of integers is the sum of the size of its elements.

13

The size of a certificate C for Φ is the sum of all the sizes of
JtKC , where t ranges over terms occurring in Φ.

From now on, we write t and t′ to denote any single-valued
term, c and c′ to denote any integer constants, T and T ′ to
denote any set-valued term, C and C ′ to denote any set of
integer constants, f(e) to denote any single-valued term with
f a unary function and e a variable, and F (e) to denote any
set-valued term with F a binary relation and e a variable.

To show that the set of satisfiable existential FORBAC
formulas is in NP, it suffices to show that for a satisfiable
existential FORBAC formula Φ, there exists a certificate C
that satisfies Φ and is of size at most n2 log(d+ n), where d
is the size of the largest integer constant occurring in Φ and
n is the length of Φ. If Φ is satisfiable, then there exists a
certificate C that satisfies Φ; however C does not need to have
a size polynomial in the length of Φ for two reasons. First,
the size of Jf(e)KC might be large. Second, the set JF (e)KC
might have a large number of elements or some element in
JF (e)KC might have a large size.

The rest of the proof shows how to build a small certificate
C from C. But before that, we build an auxiliary set σ of
atomic formulas. For every atomic formula ψ occurring in Φ,
put ψ in σ, if C satisfies ψ, and put ¬ψ in σ, otherwise. There
are many kinds of atomic formulas in σ. We can reduce this
by rewriting the following formulas as follows:

1) f(e) ≤ t. In this case, replace f(e) ≤ t with f(e) = t,
if Jf(e)KC = JtKC , and with f(e) < t, otherwise.

2) f(e) = t. In this case, replace every occurrence of f(e)
in σ with t. After C is built, define Jf(e)KC as JtKC .

3) c ∼ c′. In this case, remove the formula from σ.
4) F (e) = T . In this case, replace every occurrence of

F (e) in σ with T . After C is built, define JF (e)KC as
JT KC .

5) F (e) 6= T . In this case, replace F (e) 6= T with F (e) *
T if JF (e)KC * JT KC and T * F (e) otherwise.

6) c ∈ F (e). In this case, replace this formula in σ with
{c} ⊆ F (e).

7) c /∈ F (e). In this case, replace this formula in σ with
F (e) * Z \ {c}.

8) f(e) /∈ C. In this case, replace f(e) /∈ C with f(e) ∈
Z \ C.

9) T * T ′. In this case, take a new fresh integer variable
t and replace T * T ′ with the two formulas t ∈ T and
t /∈ T ′. The value of JtKC is a number that belongs to
JT KC but not to JT ′KC .

After this, only the following kinds of formulas occur in σ:
c < f(e), f(e) < c, f(e) < f ′(e′), C ⊆ F (e), F (e) ⊆ C,
F (e) ⊆ F ′(e′), f(e) ∈ F (e), f(e) /∈ F (e), and f(e) ∈ C. We
sometimes write [ψ] ∈ σ instead of ψ ∈ σ to prevent awkward
notation like f(e) ∈ F (e) ∈ σ. For two set-valued terms T
and T ′, we say that T ⊆σ T ′ if [T ⊆ T ′] ∈ σ. We denote
with ⊆∗σ the reflexive-transitive closure of ⊆σ .

Note that any certificate that satisfies all formulas in σ will
also satisfy Φ. In particular, C satisfies all formulas in σ.

Let f1(e1), . . ., fm(em) be all the non-constant single-
valued terms that occur in Φ. We suppose that they are

enumerated in a way that Jfj(ej)KC ≤ Jfj+1(ej+1)KC , for
j < m. We build from C a sequence of certificates C = C0, C1,
C2, . . ., Cm that satisfies the following invariant: for Cj , all
Jf1(e1)KCj , Jf2(e2)KCj , . . ., Jfj(ej)KCj are at most j+d, where
d is the largest constant that occurs in Φ. Therefore, they all
have size at most log(j+d) ≤ log(n+d). After that, we build
from Cm a certificate C that satisfies Φ and where for every
set-valued term F (e) the size of JF (e)KC is polynomial in the
length of Φ.

For j ≤ m, suppose that C1, C2, . . . , Cj−1 are already built.
We explain how to build Cj . For any set-valued term F (e), let
JF (e)KCj = JF (e)KC . For i 6= j, let Jfi(ei)KCj = Jfi(ei)KCj−1

and for i > j, let Jfi(ei)KCj = Jfi(ei)KC . Next, we compute a
value for Jfj(ej)KCj small enough that fits all the constraints
in σ that fj(ej) must fulfill. First, we compute the set Aj of
possible values for Jfj(ej)KCj . Let Aj be the set of integers a
such that

1) Jfj−1(ej−1)KCj−1 ≤ a, if j > 1.
2) c < a, for any integer constant c such that [c < fj(ej)] ∈

σ.
3) a ∈ C, for any set of constants C and any set-valued

term F (e) such that [fj(ej) ∈ F (e)] ∈ σ and F (e) ⊆∗σ
C.

4) a /∈ C, for any set of constants C and any set-valued
term F (e) such that [fj(ej) /∈ F (e)] ∈ σ and C ⊆∗σ
F (e).

5) a 6= Jfi(ei)KCj−1
, for any single-valued term fi(ei) with

i < j and any set-valued term T such that
a) [fi(ei) ∈ T ′] ∈ σ, [fj(ej) /∈ T] ∈ σ and T ′ ⊆∗σ T ,

or
b) [fi(ei) /∈ T] ∈ σ, [fj(ej) ∈ T ′] ∈ σ and T ′ ⊆∗σ T .

Note that Aj is an intersection of sets of integer intervals, one
set for every item above. Furthermore, an extreme point in
that interval is either one of fi(ei) with i < j or an integer
constant occurring in σ. Therefore, an extreme point in any
interval of Aj is at most one more than the maximum among
Jf1(e1)KCj−1

, . . . , Jfj−1(ej1)KCj−1
and d, the largest integer

constant occurring in σ. By our invariant, Jfi(ei)KCj−1 ≤ d+
j − 1. Therefore, an extreme point in any interval of Aj is at
most d+ j.

Let fj(ej) be the minimum value of Aj . Note that (i) Aj
is not empty, as Jfj(ej)KCj−1 ∈ Aj and (ii) for j > 1, Aj
has a minimum, as it is bounded below by Jfj−1(ej−1)KCj−1

.
Aj might be unbounded below when j = 1. In that case, let
Jf1(e1)KC1 be an extreme point of A1 and if A1 is the entire
set of integers, then let it be 0.

Recall that Jfj(ej)KCj−1
∈ Aj . Therefore, Jfj(ej)KCj ≤

Jfj(ej)KCj−1
.

Let σS be the subset of σ that contains all atomic formulas
where a set-valued term of the form F (e) occurs.

Lemma 16: If C satisfies all formulas in σ, then Cm satisfies
all formulas in σ \ σS .

Proof. Suppose that C satisfies all formulas in σ. It suffices
to show by induction on j ≤ m that Cj satisfies all formulas
in σ. The base case is obvious, since C0 = C by definition.

14

So suppose that Cj satisfies all formulas in σ. We show that
Cj+1 satisfies all formulas in σ. Cj and Cj+1 differ only on
the interpretation of fj(ej), so it suffices to show that Cj+1

satisfies any atomic formula ψ ∈ σ that involves fj(ej). We
evaluate the possible cases for ψ:

• c < fj(ej). Since Jfj(ej)KCj ∈ Aj , we have by Item 2
of the definition of Aj that c < Jfj(ej)KCj .

• fj(ej) < c. Recall that Jfj(ej)KCj−1
∈ Aj . There-

fore, Jfj(ej)KCj ≤ Jfj(ej)KCj−1
. Also, note that

Jfj(ej)KCj−1 < c as, by the induction hypothesis, Cj−1

satisfies all formulas in σ. Therefore, Jfj(ej)KCj < c.
• fj(ej) < f ′(e′). First, recall that Jfj(ej)KCj ≤

Jfj(ej)KCj−1
. Second, note that Jfj(ej)KCj−1

<
Jf ′(e′)KCj−1

as, by the induction hypothesis,
Cj−1 satisfies all formulas in σ. Therefore,
Jfj(ej)KCj < Jf ′(e′)KCj−1 .

• fj(ej) ∈ F (e) and fj(ej) /∈ F (e). This kind of formulas
do not belong to σ \ σS .

• f(e) ∈ C. Since Jfj(ej)KCj ∈ Aj , we have by Item 3 of
the definition of Aj that Jfj(ej)KCj ∈ C.

Once Cm is built, Jfi(ei)KCm ≤ d+m ≤ d+ n, for i ≤ m.
Recall that d is the largest constant occurring in Φ. Therefore,
the size of Jfi(ei)KCm , for i ≤ m, is at most log(d+ n).

We address now the problem that for a set-valued term of
the form F (e), the size of JF (e)KCm might be very large. We
define a final certificate C where Jf(e)KC = Jf(e)KCm and
JF (e)KC is the least set that satisfies the following:

1) it contains the union of all sets of constants C such that
C ⊆∗σ F (e) and

2) it contains every Jf(e)KC such that f(e) ∈ F ′(e′) for
some set-valued term F ′(e′) and F ′(e′) ⊆∗σ F (e).

Note that there is at least one set that satisfies this: JF (e)KCm .
Therefore, JF (e)KC ⊆ JF (e)KCm .

Lemma 17: If Cm satisfies all formulas in σ \ σS , then C
satisfies all formulas in σ.

Proof. Suppose that Cm satisfies all formulas in σ. Note
that Cm and C agree on the interpretation of single-valued
terms. Therefore, it suffices to show that C satisfies all atomic
formulas ψ ∈ σ that involve set-valued terms. We proceed by
evaluating the possible cases for ψ:

• C ⊆ F (e). By construction, C ⊆ JF (e)KC .
• F (e) ⊆ C. Recall that JF (e)KC ⊆ JF (e)KCm and

that Cm interprets set-valued terms in the same way C
does. Therefore JF (e)KC ⊆ JF (e)KC . Since C satisfies
all formulas in σ, we have JF (e)KC ⊆ C. Therefore
JF (e)KC ⊆ C.

• F (e) ⊆ F ′(e′). The same argument holds. Recall that
JF (e)KC ⊆ JF (e)KCm and that Cm interprets set-valued
terms in the same way C does. Therefore JF (e)KC ⊆
JF (e)KC . Since C satisfies all formulas in σ, we have
JF (e)KC ⊆ JF ′(e′)KC . Therefore JF (e)KC ⊆ JF ′(e′)KC .

• fj(ej) /∈ F (e), with j ≤ m. By the definition of JF (e)KC ,
it suffices to show that

1) Jfj(ej)KC /∈ C, for any set of integer constants
C such that C ⊆∗σ F (e). Recall that Jfj(ej)KC =
Jfj(ej)KCm = Jfj(ej)KCj ∈ Aj , which implies, by
Item 4 of the definition of Aj , that Jfj(ej)KC /∈ C.

2) Jfj(ej)KC 6= Jf`(e`)KC for any single-valued term
f`(e`) such that [f`(e`) ∈ F ′(e′)] ∈ σ and
F ′(e′) ⊆∗σ F (e). We consider two subcases. If
` < j, then since Jfj(ej)KC = Jfj(ej)KCj ∈ Aj ,
[fj(ej) /∈ F (e)] ∈ σ, [f`(e`) ∈ F ′(e′)] ∈ σ
and F ′(e′) ⊆∗σ F (e), by Item 5a of the definition
of Aj , we have that Jfj(ej)KCj 6= Jf`(e`)KCj . If
` > j, then since Jf`(e`)KC = Jf`(e`)KC` ∈ A`,
[fj(ej) /∈ F (e)] ∈ σ, [f`(e`) ∈ F ′(e′)] ∈ σ and
F ′(e′) ⊆∗σ F (e), by Item 5b of the definition of A`,
we have that Jf`(e`)KC` 6= Jfj(ej)KC` .

We conclude then that Jfj(ej)KC /∈ JF (e)KC .

This concludes the proof of Theorem 15.

15

