
Algorithms for Monitoring Real-time Properties?◦

David Basin, Felix Klaedtke, and Eugen Zălinescu

Computer Science Department, ETH Zurich, Switzerland

Abstract. We present and analyze monitoring algorithms for a safety
fragment of metric temporal logics, which differ in their underlying time
model. The time models considered have either dense or discrete time
domains and are point-based or interval-based. Our analysis reveals dif-
ferences and similarities between the time models for monitoring and
highlights key concepts underlying our and prior monitoring algorithms.

1 Introduction

Real-time logics [2] allow us to specify system properties involving timing con-
straints, e.g., every request must be followed within 10 seconds by a grant. Such
specifications are useful when designing, developing, and verifying systems with
hard real-time requirements. They also have applications in runtime verification,
where monitors generated from specifications are used to check the correctness
of system behavior at runtime [10]. Various monitoring algorithms for real-time
logics have been developed [4,5,7,12,14,15,17,20] based on different time mod-
els. These time models can be characterized by two independent aspects. First, a
time model is either point-based or interval-based. In point-based time models,
system traces are sequences of system states, where each state is time-stamped.
In interval-based time models, system traces consist of continuous (Boolean) sig-
nals of state variables. Second, a time model is either dense or discrete depending
on the underlying ordering on time-points, i.e., whether there are infinitely many
or finitely many time-points between any two distinct time-points.

Real-time logics based on a dense, interval-based time model are more natural
and general than their counterparts based on a discrete or point-based model.
In fact, both discrete and point-based time models can be seen as abstractions
of dense, interval-based time models [2, 18]. However, the satisfiability and the
model-checking problems for many real-time logics with the more natural time
model are computationally harder than their corresponding decision problems
when the time model is discrete or point-based. See the survey [16] for further
discussion and examples.

In this paper, we analyze the impact of different time models on monitor-
ing. We do this by presenting, analyzing, and comparing monitoring algorithms

? This work was supported by the Nokia Research Center, Switzerland.
◦ Due to space restrictions, some proof details have been omitted. They can be found

in the full version of the paper, which is available from the authors’ web pages.

2 David Basin, Felix Klaedtke, and Eugen Zălinescu

for real-time logics based on different time models. More concretely, we present
monitoring algorithms for the past-only fragment of propositional metric tem-
poral logics with a point-based and an interval-based semantics, also considering
both dense and discrete time domains. We compare our algorithms on a class of
formulas for which the point-based and the interval-based settings coincide. To
define this class, we distinguish between event propositions and state proposi-
tions. The truth value of a state proposition always has a duration, whereas an
event proposition cannot be continuously true between two distinct time-points.

Our analysis explains the impact of different time models on monitoring.
First, the impact of a dense versus a discrete time domain is minor. The algo-
rithms are essentially the same and have almost identical computational com-
plexities. Second, monitoring in a point-based setting is simpler than in an
interval-based setting. The meaning of “simpler” is admittedly informal here
since we do not provide lower bounds. However, we consider our monitoring
algorithms for the point-based setting as conceptually simpler than the interval-
based algorithms. Moreover, we show that our point-based monitoring algorithms
perform better than our interval-based algorithms on the given class of formulas
on which the two settings coincide.

Overall, we see the contributions as follows. First, our monitoring algorithms
simplify and clarify key concepts of previously presented algorithms [4,13–15]. In
particular, we present the complete algorithms along with a detailed complexity
analysis for monitoring properties specified in the past-only fragment of propo-
sitional metric temporal logic. Second, our monitoring algorithm for the dense,
point-based time model has better complexity bounds than existing algorithms
for the same time model [20]. Third, our comparison of the monitoring algo-
rithms illustrates the similarities, differences, and trade-offs between the time
models with respect to monitoring. Moreover, formulas in our fragment benefit
from both settings: although they describe properties based on a more natural
time model, they can be monitored with respect to a point-based time model,
which is more efficient.

2 Preliminaries

Time Domain and Intervals. If not stated differently, we assume the dense
time domain1 T = Q≥0 with the standard ordering ≤. Adapting the following
definitions to a discrete time domain like N is straightforward.

A (time) interval is a non-empty set I ⊆ T such that if τ < κ < τ ′ then κ ∈ I,
for all τ, τ ′ ∈ I and κ ∈ T. We denote the set of all time intervals by I. An interval
is either left-open or left-closed and similarly either right-open or right-closed.
We denote the left margin and the right margin of an interval I ∈ I by `(I) and
r(I), respectively. For instance, the interval I = {τ ∈ T | 3 ≤ τ}, which we also
write as [3,∞), is left-closed and right-open with margins `(I) = 3 and r(I) =∞.

1 We do not use R≥0 as dense time domain because of representation issues. Namely,
each element in Q≥0 can be finitely represented, which is not the case for R≥0.
Choosing Q≥0 instead of R≥0 is without loss of generality for the satisfiability of
properties specified in real-time logics like the metric interval temporal logic [1].

Algorithms for Monitoring Real-time Properties 3

For an interval I ∈ I, we define the extension I≥ := I ∪ (`(I),∞) to the right
and its strict counterpart I>:=I≥\I, which excludes I. We define ≤I :=[0, r(I))∪I
and <I := (≤I) \ I similarly. An interval I ∈ I is singular if |I| = 1, bounded if
r(I) < ∞, and unbounded if r(I) = ∞. The intervals I, J ∈ I are adjacent if
I ∩J = ∅ and I ∪J ∈ I. For I, J ∈ I, I ⊕J is the set {τ + τ ′ | τ ∈ I and τ ′ ∈ J}.

An interval partition of T is a sequence 〈Ii〉i∈N of time intervals with N = N
or N = {0, . . . , n} for some n ∈ N that fulfills the following properties: (i) Ii−1

and Ii are adjacent and `(Ii−1) ≤ `(Ii), for all i ∈ N \{0}, and (ii) for each τ ∈ T,
there is an i ∈ N such that τ ∈ Ii. The interval partition 〈Jj〉j∈M refines
the interval partition 〈Ii〉i∈N if for every j ∈ M , there is some i ∈ N such
that Jj ⊆ Ii. We often write Ī for a sequence of intervals instead of 〈Ii〉i∈N .
Moreover, we abuse notation by writing I ∈ 〈Ii〉i∈N if I = Ii, for some i ∈ N .

A time sequence 〈τi〉i∈N is a sequence of elements τi ∈ T that is strictly
increasing (i.e., τi < τj , for all i, j ∈ N with i < j) and progressing (i.e., for all τ ∈
T, there is i ∈ N with τi > τ). Similar to interval sequences, τ̄ abbreviates 〈τi〉i∈N.

Boolean Signals. A (Boolean) signal γ is a subset of T that fulfills the following
finite-variability condition: for every bounded interval I ∈ I, there are intervals
I0, . . . , In−1 ∈ I such that γ ∩ I = I0 ∪ · · · ∪ In−1, for some n ∈ N. The least such
n ∈ N is the size of the signal γ on I. We denote it by ||γ ∩ I||.

We use the term “signal” for such a set γ because its characteristic function
χγ : T → {0, 1} represents, for example, the values over time of an input or
an output of a sequential circuit. Intuitively, τ ∈ γ iff the signal of the circuit
is high at the time τ ∈ T. The finite-variability condition imposed on the set
γ prevents switching infinitely often from high to low in finite time. Note that
||γ ∩ I|| formalizes how often a signal γ is high on the bounded interval I, in
particular, ||γ ∩ I|| = 0 iff γ ∩ I = ∅.

A signal γ is stable on an interval I ∈ I if I ⊆ γ or I ∩ γ = ∅. The induced
interval partition ııp(γ) of a signal γ is the interval partition Ī such that γ is stable
on each of the intervals in Ī and any other stable interval partition refines Ī. We
write ııp1(γ) for the sequence of intervals I in ııp(γ) such that I∩γ 6= ∅. Similarly,
we write ııp0(γ) for the sequence of intervals I in ııp(γ) such that I ∩ γ = ∅.
Intuitively, ııp1(γ) and ııp0(γ) are the sequences of maximal intervals on which
the signal is γ is high and low, respectively.

Metric Temporal Logics. To simplify the exposition, we restrict ourselves to
monitoring the past-only fragment of metric temporal logic in a point-based and
an interval-based setting. However, future operators like �I , where the interval I
is bounded, can be handled during monitoring by using queues that postpone
the evaluation until enough time has elapsed. See [4], for such a monitoring
algorithm that handles arbitrary nesting of past and bounded future operators.

Let P be a non-empty set of propositions. The syntax of the past-only frag-
ment of metric temporal logic is given by the grammar φ::=p | ¬φ | φ∧φ | φSI φ,
where p ∈ P and I ∈ I. In Figure 1, we define the satisfaction relations |= and

•|=,
where γ̂ = (γp)p∈P is a family of signals, τ̄ a time sequence, τ ∈ T, and i ∈ N.
Note that |= defines the truth value of a formula for every τ ∈ T. In contrast, a

4 David Basin, Felix Klaedtke, and Eugen Zălinescu

γ̂, τ |= p iff τ ∈ γp
γ̂, τ |= ¬φ iff γ̂, τ 6|= φ
γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ
γ̂, τ |= φ SI ψ iff there is τ ′ ∈ [0, τ] with

τ − τ ′ ∈ I,
γ̂, τ ′ |= ψ, and
γ̂, κ |= φ, for all κ ∈ (τ ′, τ]

(a) interval-based semantics

γ̂, τ̄ , i
•|= p iff τi ∈ γp

γ̂, τ̄ , i
•|= ¬φ iff γ̂, τ̄ , i 6 •|= φ

γ̂, τ̄ , i
•|= φ ∧ ψ iff γ̂, τ̄ , i

•|= φ and γ̂, τ̄ , i
•|= ψ

γ̂, τ̄ , i
•|= φ SI ψ iff there is i′ ∈ [0, i] ∩ N with

τi − τi′ ∈ I,
γ̂, τ̄ , i′

•|= ψ, and
γ̂, τ̄ , k

•|= φ, for all k ∈ (i′, i] ∩ N

(b) point-based semantics

Fig. 1. Semantics of past-only metric temporal logic.

formula’s truth value with respect to
•|= is defined at the “sample-points” i ∈ N

to which the “time-stamps” τi ∈ T from the time sequence τ̄ are attached.
We use the standard binding strength of the operators and standard syntactic

sugar. For instance, φ ∨ ψ stands for the formula ¬(¬φ ∧ ¬ψ) and �I ψ stands
for (p∨¬p)SI ψ, for some p ∈ P . Moreover, we often omit the interval I = [0,∞)
attached to a temporal operator. We denote the set of subformulas of a formula φ
by sf(φ). Finally, |φ| is the number of nodes in φ’s parse tree.

3 Point-based versus Interval-based Time Models

3.1 State Variables and System Events

State variables and system events are different kinds of entities. One distinguish-
ing feature is that events happen at single points in time and the value of a state
variable is always constant for some amount of time. In the following, we distin-
guish between these two entities. Let P be the disjoint union of the proposition
sets S and E. We call propositions in S state propositions and propositions in E
event propositions. Semantically, a signal γ ⊆ T is an event signal if γ ∩ I is
finite, for every bounded interval I, and the signal γ is a state signal if for every
bounded interval I, the sets γ ∩ I and (T \ γ) ∩ I are the finite unions of non-
singular intervals. Note that there are signals that are neither event signals nor
state signals. A family of signals γ̂ = (γp)p∈S∪E is consistent with S and E if γp
is a state signal, for all p ∈ S, and γp is an event signal, for all p ∈ E.

The point-based semantics is often motivated by the study of real-time sys-
tems whose behavior is determined by system events. Intuitively, a time se-
quence τ̄ records the points in time when events occur and the signal γp for a
proposition p ∈ E consists of the points in time when the event p occurs. The
following examples, however, demonstrate that the point-based semantics can
be unintuitive in contrast to the interval-based semantics.

Example 1. A state proposition p ∈ S can often be mimicked by the formula
¬f S s with corresponding event propositions s, f ∈ E representing “start” and
“finish.” For the state signal γp, let γs and γf be the event signals where γs
and γf consist of the points in time of γp when the Boolean state variable starts
and respectively finishes to hold. Then (γs, γf), τ |= ¬f S s iff γp, τ |= p, for any
τ ∈ T, under the assumption that I ∩ γp is the finite union of left-closed and
right-open intervals, for every bounded left-closed and right-open interval I.

However, replacing p by ¬f S s does not always capture the essence of a
Boolean state variable when using the point-based semantics. Consider the for-
mula �[0,1] p containing the state proposition p and let γp = [0, 5) be a state

Algorithms for Monitoring Real-time Properties 5

signal. Moreover, let (γs, γf) be the family of corresponding event signals for
the event propositions s and f , i.e., γs = {0} and γf = {5}. For a time se-
quence τ̄ with τ0 = 0 and τ1 = 5, we have that (γs, γf), τ̄ , 1 6 •|= �[0,1](¬f S s) but
γp, τ1 |= �[0,1] p. Note that τ̄ only contains time-stamps when an event occurs.
An additional sample-point between τ0 and τ1 with, e.g., the time-stamp 4 would
result in identical truth values at time 5.

Example 2. Consider the (event) signals γp = {τ ∈ T | τ = 2n, for some n ∈ N}
and γq = ∅ for the (event) propositions p and q. One might expect that these
signals satisfy the formula p → �[0,1] ¬q at every point in time. However, for a
time sequence τ̄ with τ0 = 0 and τ1 = 2, we have that γ̂, τ̄ , 1 6 •|= p → �[0,1] ¬q.
The reason is that in the point-based semantics, the �I operator requires the
existence of a previous point in time that also occurs in the time sequence τ̄ .

As another example consider the formula �[0,1] �[0,1] p. One might expect
that it is logically equivalent to �[0,2] p. However, this is not the case in the
point-based semantics. To see this, consider a time sequence τ̄ with τ0 = 0 and
τ1 = 2. We have that γ̂, τ̄ , 1 6 •|= �[0,1] �[0,1] p and γ̂, τ̄ , 1

•|= �[0,2] p if τ0 ∈ γp.

The examples above suggest that adding additional sample-points restores a
formula’s intended meaning, which usually stems from having the interval-based
semantics in mind. However, a drawback of this approach for monitoring is that
each additional sample-point increases the workload of a point-based monitoring
algorithm, since it is invoked for each sample-point. Moreover, in the dense time
domain, adding sample-points does not always make the two semantics coincide.
For instance, for γp = [0, 1) and τ ≥ 1, we have that γp, τ 6|= ¬p S p and
γp, τ̄ , i

•|= ¬p S p, for every time sequence τ̄ with τ0 < 1 and every i ∈ N.

3.2 Event-relativized Formulas

In the following, we identify a class of formulas for which the point-based and the
interval-based semantics coincide. For formulas in this class, a point-based mon-
itoring algorithm can be used to soundly monitor properties given by formulas
interpreted using the interval-based semantics. We assume that the propositions
are typed, i.e., P = S ∪ E, where S contains the state propositions and E the
event propositions, and a family of signals γ̂ = (γp)p∈S∪E is consistent with S
and E. Moreover, we assume without loss of generality that there is always at
least one event signal γ in γ̂ that is the infinite union of singular intervals, e.g.,
γ is the signal of a clock event that regularly occurs over time.

We inductively define the sets rel∀ and rel∃ for formulas in negation normal
form. Recall that a formula is in negation normal form if negation only occurs
directly in front of propositions. A logically-equivalent negation normal form
of a formula can always be obtained by eliminating double negations and by
pushing negations inwards, where we consider the Boolean connective ∨ and the
temporal operator “trigger” TI as primitives. Note that φTI ψ = ¬(¬φ SI ¬ψ).

¬p ∈ rel∀ if p ∈ E (∀1)

φ1 ∨ φ2 ∈ rel∀ if φ1 ∈ rel∀ or φ2 ∈ rel∀ (∀2)

φ1 ∧ φ2 ∈ rel∀ if φ1 ∈ rel∀ and φ2 ∈ rel∀ (∀3)

6 David Basin, Felix Klaedtke, and Eugen Zălinescu

p ∈ rel∃ if p ∈ E (∃1)

φ1 ∧ φ2 ∈ rel∃ if φ1 ∈ rel∃ or φ2 ∈ rel∃ (∃2)

φ1 ∨ φ2 ∈ rel∃ if φ1 ∈ rel∃ and φ2 ∈ rel∃ (∃3)

A formula φ is event-relativized if α ∈ rel∀ and β ∈ rel∃, for every subformula
of φ of the form αSI β or βTI α. We call the formula φ strongly event-relativized
if φ is event-relativized and φ ∈ rel∀ ∪ rel∃.

The following theorem relates the interval-based semantics and the point-
based semantics for event-relativized formulas.

Theorem 1. Let γ̂ = (γp)p∈S∪E be a family of consistent signals and τ̄ the
time sequence listing the occurrences of events in γ̂, i.e., τ̄ is the time sequence
obtained by linearly ordering the set

⋃
p∈E γp. For an event-relativized formula φ

and every i ∈ N, it holds that γ̂, τi |= φ iff γ̂, τ̄ , i
•|= φ. Furthermore, if φ is

strongly event-relativized, then it also holds that (a) γ̂, τ 6|= φ if φ ∈ rel∃ and
(b) γ̂, τ |= φ if φ ∈ rel∀, for all τ ∈ T \ {τi | i ∈ N}.

Observe that the formulas in Example 1 and 2 are not event-relativized. The
definition of event-relativized formulas and Theorem 1 straightforwardly extend
to richer real-time logics that also contain future operators and are first-order.
We point out that most formulas that we encountered when formalizing security
policies in such a richer temporal logic are strongly event-relativized [3].

From Theorem 1, it follows that the interval-based semantics can simulate
the point-based one by using a fresh event proposition sp with its signal γsp =
{τi | i ∈ N}, for a time sequence τ̄ . We then event-relativize a formula φ with
the proposition sp, i.e., subformulas of the form ψ1 SI ψ2 are replaced by (sp →
ψ1) SI (sp ∧ ψ2) and ψ1 TI ψ2 by (sp ∧ ψ1) TI (sp → ψ2).

4 Monitoring Algorithms

In this section, we present and analyze our monitoring algorithms for both the
point-based and the interval-based setting. Without loss of generality, the algo-
rithms assume that the temporal subformulas of a formula φ occur only once
in φ. Moreover, let P be the set of propositions that occur in φ.

4.1 A Point-based Monitoring Algorithm

Our monitoring algorithm for the point-based semantics iteratively computes
the truth values of a formula φ at the sample-points i ∈ N for a given time
sequence τ̄ and a family of signals γ̂ = (γp)p∈P . We point out that τ̄ and γ̂ are
given incrementally, i.e., in the (i+ 1)st iteration, the monitor obtains the time-
stamp τi and the signals between the previous time-stamp and τi. In fact, in the
point-based setting, we do not need to consider “chunks” of signals; instead, we
can restrict ourselves to the snapshots Γi := {p ∈ P | τi ∈ γp}, for i ∈ N, i.e., Γi
is the set of propositions that hold at time τi.

Each iteration of the monitor is performed by executing the procedure step•.
At sample-point i ∈ N, step• takes as arguments the formula φ, the snapshot Γi,
and i’s time-stamp τi. It computes the truth value of φ at i recursively over

Algorithms for Monitoring Real-time Properties 7

step•(φ, Γ, τ)
case φ = p

return p ∈ Γ
case φ = ¬φ′

return not step•(φ′, Γ, τ)
case φ = φ1 ∧ φ2

return step•(φ1, Γ, τ) and step•(φ2, Γ, τ)
case φ = φ1 SI φ2

update•(φ, Γ, τ)
if Lφ = 〈〉 then return false

else return τ − head(Lφ) ∈ I

init•(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do
Lψ := 〈〉

update•(φ, Γ, τ)
let φ1 SI φ2 = φ

b1 = step•(φ1, Γ, τ)
b2 = step•(φ2, Γ, τ)
L = if b1 then drop•(Lφ, I, τ) else 〈〉

in if b2 then Lφ := L++ 〈τ〉
else Lφ := L

Fig. 2. Monitoring in a point-based setting.

φ’s structure. For efficiency, the procedure step• maintains for each subformula
ψ of the form ψ1 SI ψ2 a sequence Lψ of time-stamps. These sequences are
initialized by the procedure init• and updated by the procedure update•. These
three procedures2 are given in Figure 2 and are described next.

The base case of step• where φ is a proposition and the cases for the Boolean
connectives ¬ and ∧ are straightforward. The only involved case is where φ is
of the form φ1 SI φ2. In this case, step• first updates the sequence Lφ and then
computes φ’s truth value at the sample-point i ∈ N.

Before we describe how we update the sequence Lφ, we describe the elements
that are stored in Lφ and how we obtain from them φ’s truth value. After
the update of Lφ by update•, the sequence Lφ stores the time-stamps τj with
τi − τj ∈ ≤I (i.e., the time-stamps that satisfy the time constraint now or that
might satisfy it in the future) at which φ2 holds and from which φ1 continuously
holds up to the current sample-point i (i.e., φ2 holds at j ≤ i and φ1 holds at
each k ∈ {j+1, . . . , i}). Moreover, if there are time-stamps τj and τj′ with j < j′

in Lφ with τi − τj ∈ I and τi − τj′ ∈ I then we only keep in Lφ the time-stamp
of the later sample-point, i.e., τj′ . Finally, the time-stamps in Lφ are ordered
increasingly. Having Lφ at hand, it is easy to determine φ’s truth value. If Lφ is
the empty sequence then obviously φ does not hold at sample-point i. If Lφ is
non-empty then φ holds at i iff the first time-stamp κ in Lφ fulfills the timing
constraints given by the interval I, i.e., τi − κ ∈ I. Recall that φ holds at i iff
there is a sample-point j ≤ i with τi − τj ∈ I at which φ2 holds and since then
φ1 continuously holds.

Initially, Lφ is the empty sequence. If φ2 holds at sample-point i, then update•

adds the time-stamp τi to Lφ. However, prior to this, it removes the time-stamps
of the sample-points from which φ1 does not continuously hold. Clearly, if φ1

does not hold at i then we can empty the sequence Lφ. Otherwise, if φ1 holds
at i, we first drop the time-stamps for which the distance to the current time-
stamp τi became too large with respect to the right margin of I. Afterwards, we
drop time-stamps until we find the last time-stamp τj with τi − τj ∈ I. This is
done by the procedures drop• and drop′• shown in Figure 3.

Theorem 2. Let φ be a formula, γ̂ = (γp)p∈P be a family of signals, τ̄ be
a time sequence, and n > 0. The procedure step•(φ, Γn−1, τn−1) terminates,

2 Our pseudo-code is written in a functional-programming style using pattern match-
ing. 〈〉 denotes the empty sequence, ++ sequence concatenation, and x :: L the
sequence with head x and tail L.

8 David Basin, Felix Klaedtke, and Eugen Zălinescu

drop•(L, I, τ)
case L = 〈〉

return 〈〉
case L = κ :: L′

if τ − κ 6∈ ≤I then return drop•(L′, I, τ)

else return drop′•(κ, L′, I, τ)

drop′•(κ, L′, I, τ)

case L′ = 〈〉
return 〈κ〉

case L′ = κ′ :: L′′

if τ − κ′ ∈ I then return drop′•(κ′, L′′, I, τ)

else return κ :: L′

Fig. 3. Auxiliary procedures.

and returns true iff γ̂, τ̄ , n − 1
•|= φ, whenever init•(φ), step•(φ, Γ0, τ0), . . . ,

step•(φ, Γn−2, τn−2) were called previously in this order, where Γi = {p ∈ P |
τi ∈ γp}, for i < n.

We end this subsection by analyzing the monitor’s computational complexity.
Observe that we cannot bound the space that is needed to represent the time-
stamps in the time sequence τ̄ . They become arbitrarily large as time progresses.
Moreover, since the time domain is dense, they can be arbitrarily close to each
other. As a consequence, operations like subtraction of elements from T cannot
be done in constant time. We return to this point in Section 4.3.

In the following, we assume that each τ ∈ T is represented by two bit strings
for the numerator and denominator. The representation of an interval I consists
of the representations for `(I) and r(I) and whether the left margin and right
margin is closed or open. We denote the maximum length of these bit strings by
||τ || and ||I||, respectively. The operations on elements in T that the monitoring
algorithm performs are subtractions and membership tests. Subtraction τ − τ ′
can be carried out in time O(m2), where m = max{||τ ||, ||τ ′||}.3 A membership
test τ ∈ I can also be carried out in time O(m2), where m = max{||τ ||, ||I||}.

The following theorem establishes an upper bound on the time complexity
of our monitoring algorithm.

Theorem 3. Let φ, γ̂, τ̄ , n, and Γ0, . . . , Γn−1 be as in Theorem 2. Executing the
sequence init•(φ), step•(φ, Γ0, τ0), . . . , step•(φ, Γn−1, τn−1) requires O

(
m2 ·n·|φ|

)
time, where m = max

(
{||I|| | α SI β ∈ sf(φ)} ∪ {||τ0||, . . . , ||τn−1||}

)
.

4.2 An Interval-based Monitoring Algorithm

Our monitoring algorithm for the interval-based semantics determines, for a
given family of signals γ̂ = (γp)p∈P , the truth value of a formula φ, for any τ ∈ T.
In other words, it determines the set γφ,γ̂ := {τ ∈ T | γ̂, τ |= φ}. We simply
write γφ instead of γφ,γ̂ when the family of signals γ̂ is clear from the context.
Similar to the point-based setting, the monitor incrementally receives the input γ̂
and incrementally outputs γφ, i.e., the input and output signals are split into
“chunks” by an infinite interval partition J̄ . Concretely, the input of the (i+1)st
iteration consists of the formula φ that is monitored, the interval Ji of J̄ , and the
family ∆̂i = (∆i,p)p∈P of sequences of intervals ∆i,p = ııp1(γp ∩ Ji), for propo-
sitions p ∈ P . The output of the (i+ 1)st iteration is the sequence ııp1(γφ ∩ Ji).
3 Note that p

q
− p′

q′ = p·q′−p′·q
q·q′ and that O(m2) is an upper bound on the multiplication

of two m bit integers. There are more sophisticated algorithms for multiplication that
run in O(m logm log logm) time [19] and O(m logm2log∗m) time [8]. For simplicity,
we use the quadratic upper bound.

Algorithms for Monitoring Real-time Properties 9

step(φ, ∆̂, J)
case φ = p

return ∆p
case φ = ¬φ′

let ∆′ = step(φ′, ∆̂, J)

in return invert(∆′, J)
case φ = φ1 ∧ φ2

let ∆1 = step(φ1, ∆̂, J)

∆2 = step(φ2, ∆̂, J)
in return intersect(∆1, ∆2)

case φ = φ1 SI φ2

let (∆′1, ∆
′
2) = update(φ, ∆̂, J)

in return merge(combine(∆′1, ∆
′
2, I, J))

init(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do
Kψ := ∅
∆ψ := 〈〉

update(φ, ∆̂, J)
let φ1 SI φ2 = φ

∆1 = step(φ1, ∆̂, J)

∆2 = step(φ2, ∆̂, J)

∆′1 = prepend(Kφ, ∆1)

∆′2 = concat(∆φ, ∆2)

in Kφ := if ∆′1 = 〈〉 then ∅ else last(∆′1)

∆φ := drop(∆′2, I, J)

return (∆′1, ∆
′
2)

Fig. 4. Monitoring in an interval-based setting

cons(K,∆)
if K = ∅ then

return ∆
else

return K :: ∆

invert(∆, J)
case ∆ = 〈〉

return 〈J〉
case ∆ = K :: ∆′

return cons(J ∩ <K, invert(∆′, J ∩ (K>)))

intersect(∆1, ∆2)
if ∆1 = 〈〉 or ∆2 = 〈〉 then

return 〈〉
else

let K1 :: ∆′1 = ∆1

K2 :: ∆′2 = ∆2

in if K1 ∩ (K>
2) = ∅ then

return cons(K1 ∩K2, intersect(∆′1, ∆2))
else

return cons(K1 ∩K2, intersect(∆1, ∆
′
2))

Fig. 5. The auxiliary procedures for the Boolean connectives.

Observe that the sequence ııp1(γp ∩ Ji) only consists of a finite number of
intervals since the signal γp satisfies the finite-variability condition and Ji is
bounded. Moreover, since γp is stable on every interval in ııp(γp) and an interval
has a finite representation, the sequence ııp1(γp∩Ji) finitely represents the signal
chunk γp ∩ Ji. Similar observations are valid for the signal chunk γφ ∩ Ji.

Each iteration is performed by the procedure step. To handle the since op-
erator efficiently, step maintains for each subformula ψ of the form ψ1 SI ψ2, a
(possibly empty) interval Kψ and a finite sequence of intervals ∆ψ. These global
variables are initialized by the procedure init and updated by the procedure
update. These three procedures are given in Figure 4 and are described next.

The procedure step computes the signal chunk γφ ∩ Ji recursively over the
formula structure. It utilizes the right-hand sides of the following equalities:

γp ∩ Ji =
⋃
K∈ııp1(γp∩Ji)K (1)

γ¬φ′ ∩ Ji = Ji \
(⋃

K∈ııp1(γφ′∩Ji)
K
)

(2)

γφ1∧φ2
∩ Ji =

⋃
K1∈ııp1(γφ1∩Ji)
K2∈ııp1(γφ2∩Ji)

(K1 ∩K2) (3)

γφ1SIφ2
∩ Ji =

⋃
K1∈ııp1(γφ1) with K1∩Ji 6=∅
K2∈ııp1(γφ2) with (K2⊕I)∩(J

≥
i)6=∅

((
(K2 ∩ +K1)⊕ I

)
∩K1 ∩ Ji

)
(4)

where +K := {`(K)} ∪K, for K ∈ I, i.e., making the interval K left-closed.
The equalities (1), (2), and (3) are obvious and their right-hand sides are

directly reflected in our pseudo-code. The case where φ is a proposition is
straightforward. For the case φ = ¬φ′, we use the procedure invert, shown in
Figure 5, to compute ııp1(γφ ∩ Ji) from ∆′ = ııp1(γφ′ ∩ Ji). This is done by
“complementing” ∆′ with respect to the interval Ji. For instance, the output
of invert

(
〈[1, 2] (3, 4)〉, [0, 10)

)
is 〈[0, 1) (2, 3] [4, 10)〉. For the case φ = φ1 ∧ φ2,

10 David Basin, Felix Klaedtke, and Eugen Zălinescu

prepend(K,∆)
if K = ∅ then

return ∆
else

case ∆ = 〈〉
return 〈K〉

case ∆ = K′ :: ∆′

if adjacent(K,K′) or K ∩K′ 6= ∅ then

return K ∪K′ :: ∆′

else
return K :: ∆

combine(∆′1, ∆
′
2, I, J)

if ∆′1 = 〈〉 or ∆′2 = 〈〉 then return 〈〉
else

let K2 :: ∆′′2 = ∆′2
in if (K2 ⊕ I) ∩ J = ∅ then return 〈〉

else

let K1 :: ∆′′1 = ∆′1
∆ = if K>

2 ∩
+K1 = ∅ then

combine(∆′′1 , ∆
′
2, I, J)

else

combine(∆′1, ∆
′′
2 , I, J)

in return (K2 ∩ +K1)⊕ I) ∩K1 ∩ J :: ∆

concat(∆1, ∆2)
case ∆1 = 〈〉

return ∆2

case ∆1 = ∆′1 ++ 〈K1〉
return ∆′1 ++ prepend(K1, ∆2)

merge(∆)
case ∆ = 〈〉

return ∆

case ∆ = K :: ∆′

return prepend(K,merge(∆′))

drop(∆′2, I, J)

case ∆′2 = 〈〉
return 〈〉

case ∆′2 = K2 :: ∆′′2
let K = (K2 ⊕ I) ∩ (J>)

in if K = ∅ then return drop(∆′′2 , I, J)

else return drop′(K,∆′2, I, J)

drop′(K,∆′2, I, J)

case ∆′2 = 〈〉
return 〈K〉

case ∆′2 = K2 :: ∆′′2
let K′ = (K2 ⊕ I) ∩ (J>)

in if K ⊆ K′ then return drop′(K′, ∆′′2 , I, J)

else return ∆′2

Fig. 6. The auxiliary procedures for the since operator.

we use the procedure intersect, also shown in Figure 5, to compute ııp1(γφ ∩ Ji)
from ∆1 = ııp1(γφ1

∩ Ji) and ∆2 = ııp1(γφ2
∩ Ji). This procedure returns the

sequence of intervals that have a non-empty intersection of two intervals in the
input sequences. The elements in the returned sequence are ordered increasingly.

The equality (4) for φ = φ1 SI φ2 is less obvious and using its right-hand side
for an implementation is also less straightforward since the intervals K1 and K2

are not restricted to occur in the current chunk Ji. Instead, they are intervals in
ııp1(γφ1

) and ııp1(γφ2
), respectively, with certain constraints.

Before giving further implementation details, we first show why equality (4)
holds. To prove the inclusion ⊆, assume τ ∈ γφ1SIφ2

∩Ji. By the semantics of the
since operator, there is a τ2 ∈ γφ2 with τ−τ2 ∈ I and τ1 ∈ γφ1 , for all τ1 ∈ (τ2, τ].

– Obviously, τ2 ∈ K2, for some K2 ∈ ııp1(γφ2). By taking the time constraint I

into account, K2 satisfies the constraint (K2⊕ I)∩ (J≥i) 6= ∅. Note that even
the more restrictive constraint (K2⊕ I)∩ Ji 6= ∅ holds. However, we employ
the weaker constraint in our implementation as it is useful for later iterations.

– Since ııp(γφ1
) is the coarsest interval partition of γφ1

, there is an interval
K1 ∈ ııp1(γφ1

) with (τ2, τ] ⊆ K1. As τ ∈ Ji, the constraint K1∩Ji 6= ∅ holds.

It follows that τ ∈ K1 and τ2 ∈ +K1, and thus τ2 ∈ K2 ∩ +K1. From τ − τ2 ∈ I,
we obtain that τ ∈ (K2 ∩ +K1) ⊕ I. Finally, since τ ∈ K1 ∩ Ji, we have that
τ ∈ ((K2 ∩ +K1)⊕ I) ∩K1 ∩ Ji. The other inclusion ⊇ can be shown similarly.

For computing the signal chunk γφ1SIφ2 ∩ Ji, the procedure step first deter-
mines the subsequences ∆′1 and ∆′2 of ııp1(γφ1) and ııp1(γφ2) consisting of those
intervals K1 and K2 appearing in the equality (4), respectively. This is done
by the procedure update. Afterwards, step computes the sequence ııp1(γφ ∩ Ji)
from ∆′1 and ∆′2 by using the procedures combine and merge, given in Fig-

Algorithms for Monitoring Real-time Properties 11

ure 6. We now explain how merge(combine(∆′1, ∆
′
2, I, J)) returns the sequence

ııp1(γφ1SIφ2
∩ Ji). First, combine(∆′1, ∆

′
2, I, J) computes a sequence of intervals

whose union is γφ1SIφ2 ∩ Ji. It traverses the ordered sequences ∆′1 and ∆′2 and
adds the interval ((K2∩+K1)⊕I)∩K1∩Ji to the resulting ordered sequence, for
K1 in ∆′1 and K2 in ∆′2. The test K>

2 ∩ +K1 = ∅ determines in which sequence
(∆′1 or ∆′2) we advance next: if the test succeeds then K ′2∩+K1 = ∅ where K ′2 is
the successor of K2 in ∆′2, and hence we advance in ∆′1. The sequence ∆′2 is not
necessarily entirely traversed: when (K2⊕I)∩Ji = ∅, one need not inspect other
elements K ′2 of the sequence ∆′2, as then ((K ′2 ∩ +K1) ⊕ I) ∩K1 ∩ Ji = ∅. The
elements in the sequence returned by the combine procedure might be empty, ad-
jacent, or overlapping. The merge procedure removes empty elements and merges
adjacent or overlapping intervals, i.e., it returns the sequence ııp1(γφ1SIφ2

∩ Ji).
Finally, we explain the contents of the variables Kφ and ∆φ and how they

are updated. We start with Kφ. At the (i + 1)st iteration, for some i ≥ 0, the
following invariant is satisfied by Kφ: before the update, the interval Kφ is the
last interval of ııp1(γφ1 ∩ ≤Ji−1) if i > 0 and this sequence is not empty, and
Kφ is the empty set otherwise. The interval Kφ is prepended to the sequence
ııp1(γφ1

∩ Ji) using the prepend procedure from Figure 6, which merges Kφ with
the first interval of ∆1 = ııp1(γφ1

∩ Ji) if these two intervals are adjacent. The
obtained sequence ∆′1 is the maximal subsequence of ııp1(γφ1

∩ ≤Ji) such that
K1 ∩ Ji 6= ∅, for each interval K1 in ∆′1. Thus, after the update, Kφ is the last
interval of ııp1(γφ1 ∩ ≤Ji) if this sequence is not empty, and Kφ is the empty set
otherwise. Hence the invariant on Kφ is preserved at the next iteration.

The following invariant is satisfied by ∆φ at the (i + 1)st iteration: before
the update, the sequence ∆φ is empty if i = 0, and otherwise, if i > 0, it
stores the intervals K2 in ııp1(γφ2

∩ ≤Ji−1) with (K2 ⊕ I) ∩ (J>i−1) 6= ∅ and
(K2 ⊕ I) ∩ (J>i−1) 6⊆ (K ′2 ⊕ I) ∩ (J>i−1), where K ′2 is the successor of K2 in

ııp1(γφ2 ∩ ≤Ji−1). The procedure concat concatenates the sequence ∆φ with the
sequence ∆2 = ııp1(γφ2

∩ Ji). Since the last interval of ∆φ and the first interval
of ∆2 can be adjacent, concat might need to merge them. Thus, the obtained
sequence ∆′2 is a subsequence of ııp1(γφ2

∩≤Ji) such that (K2⊕I)∩(J≥i) 6= ∅, for

each element K2. Note that J>i−1 = J≥i . The updated sequence ∆φ is obtained
from ∆′2 by removing the intervals K2 with (K2 ⊕ I) ∩ (J>i) = ∅, i.e., the
intervals that are irrelevant for later iterations. The procedure drop from Figure 6
removes these intervals. Moreover, if there are intervals K2 and K ′2 in ∆φ with
(K2 ⊕ I) ∩ (J>i) ⊆ (K ′2 ⊕ I) ∩ (J>i) then only the interval that occurs later is
kept in ∆φ. This is done by the procedure drop′. Thus, after the update, the
sequence ∆φ stores the intervals K2 in ııp1(γφ2

∩ ≤Ji) with (K2 ⊕ I) ∩ (J>i) 6= ∅
and (K2 ⊕ I) ∩ (J>i) 6⊆ (K ′2 ⊕ I) ∩ (J>i), where K ′2 is the successor of K2 in
ııp1(γφ2 ∩ ≤Ji). Hence the invariant on ∆φ is preserved at the next iteration.

Theorem 4. Let φ be a formula, γ̂ = (γp)p∈P a family of signals, J̄ an infi-

nite interval partition, and n > 0. The procedure step(φ, ∆̂n−1, Jn−1) terminates
and returns the sequence ııp1(γφ ∩ Jn−1), whenever init(φ), step(φ, ∆̂0, J0), . . . ,

step(φ, ∆̂n−2, Jn−2) were called previously in this order, where ∆̂i = (∆i,p)p∈P
with ∆i,p = ııp1(γp ∩ Ji), for i < n.

12 David Basin, Felix Klaedtke, and Eugen Zălinescu

Finally, we analyze the monitor’s computational complexity. As in the point-
based setting, we take the representation size of elements of the time domain T
into account. The basic operations here in which elements of T are involved are
operations on intervals like checking emptiness (i.e. I = ∅), “extension” (e.g. I>),
and “shifting” (i.e. I ⊕ J). The representation size of the interval I ⊕ J is
inO(||I||+||J ||). The time to carry out the shift operation is inO(max{||I||, ||J ||}2).
All the other basic operations that return an interval do not increase the repre-
sentation size of the resulting interval with respect to the given intervals. How-
ever, the time complexity is quadratic in the representation size of the given
intervals whenever the operation needs to compare interval margins.

The following theorem establishes an upper bound on the time complexity
of our monitoring algorithm.

Theorem 5. Let φ, γ̂, J̄ , n, and ∆̂i be given as in Theorem 4. Executing the
sequence init(φ), step(φ, ∆̂0, J0), . . . , step(φ, ∆̂n−1, Jn−1) requires O

(
m2 · (n +

δ · |φ|) · |φ|3
)

time, where m = max
(
{||I|| | α SI β ∈ sf(φ)} ∪ {||J0||, . . . , ||Jn−1||} ∪⋃

p∈P {||K|| | K ∈ ııp1(γp ∩ (<Jn))}
)

and δ =
∑
p∈P ||γp ∩ (<Jn)||.

We remark that the factor m2 · |φ|2 is due to the operations on the margins of
intervals. With the assumption that the representation of elements of the time
domain is constant, we obtain the upper bound O

(
(n+ δ · |φ|) · |φ|

)
.

4.3 Time Domains

The stated worst-case complexities of both monitoring algorithms take the rep-
resentation size of the elements in the time domain into account. In practice, it is
often reasonable to assume that these elements have a bounded representation,
since arbitrarily precise clocks do not exist. For example, for many applications it
suffices to represent time-stamps as Unix time, i.e., 32 or 64 bit signed integers.
The operations performed by our monitoring algorithms on the time domain
elements would then be carried out in constant time. However, a consequence
of this practically motivated assumption is that the time domain is discrete and
bounded rather than dense and unbounded.

For a discrete time domain, we must slightly modify the interval-based mon-
itoring algorithm, namely, the operator +K used in the equality (4) must be
redefined. In a discrete time domain, we extend K by one point in time to the
left if it exists, i.e., +K := K ∪ {k − 1 | k ∈ K and k > 0}. No modifications are
needed for the point-based algorithm. If we assume a discrete and unbounded
time domain, we still cannot assume that the operations on elements from the
time domain can be carried out in constant time. But multiplication is no longer
needed to compare elements in the time domain and thus the operations can be
carried in time linear in the representation size. The worst-case complexity of
both algorithms improves accordingly.

When assuming limited-precision clocks, which results in a discrete time do-
main, a so-called fictitious-clock semantics [2, 18] is often used. This semantics
formalizes, for example, that if the system event e happens strictly before the
event e′ but both events fall between two clock ticks, then we can distinguish

Algorithms for Monitoring Real-time Properties 13

them by temporal ordering, not by time. In a fictitious-clock semantics, we time-
stamp e and e′ with the same clock value and in a trace e appears strictly
before e′. For ordering e and e′ in a trace, signals must be synchronized. Our
point-based monitoring algorithm can directly be used for a fictitious-clock se-
mantics. It iteratively processes a sequence of snapshots 〈Γ0, Γ1, . . . 〉 together
with a sequence of time-stamps 〈τ0, τ1, . . . 〉, which is increasing but not nec-
essarily strictly increasing anymore. In contrast, our interval-based monitoring
algorithm does not directly carry over to a fictitious-clock semantics.

4.4 Comparison of the Monitoring Algorithms

In the following, we compare our two algorithms when monitoring a strongly
event-relativized formula φ. By Theorem 1, the point-based setting and the
interval-based setting coincide on this formula class.

First note that the input for the (i+1)th iteration of the point-based monitor-
ing algorithm can be easily obtained online from the given signals γ̂ = (γ)p∈S∪E .
Whenever an event occurs, we record the time τi ∈ T, determine the current
truth values of the propositions, i.e., Γi = {p ∈ P | τi ∈ γp}, and invoke the
monitor by executing step•(φ, Γi, τi). The worst-case complexity of the point-
based monitoring algorithm of the first n iterations is O(m2 · n · |φ|

)
, where m

is according to Theorem 3.
When using the interval-based monitoring algorithm, we are more flexible in

that we need not invoke the monitoring algorithm whenever an event occurs.
Instead, we can freely split the signals into chunks. Let J̄ be a splitting in which
the n′th interval Jn′−1 is right-closed and r(Jn′−1) = τn−1. We have the worst-
case complexity of O

(
m′2 · (n′ + δ · |φ|) · |φ|3

)
, where m′ and δ are according to

Theorem 5. We can lower this upper bound, since the formula φ is strongly event-
relativized. Instead of the factor m′2 · |φ|2 for processing the interval margins in
the n′ iterations, we only have the factor m′2. The reason is that the margins
of the intervals in the signal chunks of subformulas of the form ψ1 SI ψ2 already
appear as interval margins in the input.

Note that m′ ≥ m and that δ is independent of n′. Under the assumption
that m′ = m, the upper bounds on the running times for different splittings
only differ by n′, i.e., how often we invoke the procedure step. The case where
n′ = 1 corresponds to the scenario where we use the monitoring algorithm offline
(up to time τn−1). The case where n′ = n corresponds to the case where we
invoke the monitor whenever an event occurs. Even when using the interval-
based monitoring algorithm offline and assuming constant representation of the
elements in T, the upper bounds differ by the factors n and δ · |φ|. Since δ ≥ n,
the upper bound of the point-based monitoring algorithm is lower. In fact, there
are examples showing that the gap between the running times matches our upper
bounds and that δ · |φ| can be significantly larger than n.

5 Related Work

We only discuss the monitoring algorithms most closely related to ours, namely,
those of Basin et al. [4], Thati and Roşu [20], and Nickovic and Maler [14,15].

14 David Basin, Felix Klaedtke, and Eugen Zălinescu

The point-based monitoring algorithms here simplify and optimize the mon-
itoring algorithm of Basin et al. [4] given for the future-bounded fragment of
metric first-order temporal logic. We restricted ourselves here to the proposi-
tional setting and to the past-only fragment of metric temporal logic to compare
the effect of different time models on monitoring.

Thati and Roşu [20] provide a monitoring algorithm for metric temporal logic
with a point-based semantics, which uses formula rewriting. Their algorithm is
more general than ours for the point-based setting since it handles past and
future operators. Their complexity analysis is based on the assumption that op-
erations involving elements from the time domain can be carried out in constant
time. The worst-case complexity of their algorithm on the past-only fragment is
worse than ours, since rewriting a formula can generate additional formulas. In
particular, their algorithm is not linear in the number of subformulas.

Nickovic and Maler’s [14,15] monitoring algorithms are for the interval-based
setting and have ingredients similar to our algorithm for this setting. These in-
gredients were first presented by Nickovic and Maler for an offline version of their
monitoring algorithms [13] for the fragment of interval metric temporal logic with
bounded future operators. Their setting is more general in that their signals are
continuous functions and not Boolean values for each point in time. Moreover,
their algorithms also handle bounded [15] and unbounded [14] future operators
by delaying the evaluation of subformulas. The algorithm in [14] slightly differs
from the one in [15]: [14] also handles past operators and before starting monitor-
ing, it rewrites the given formula to eliminate the temporal operators until and
since with timing constraints. The main difference to our algorithm is that Maler
and Nickovic do not provide algorithmic details for handling the Boolean con-
nectives and the temporal operators. In fact, the worst-case complexity, which
is only stated for their offline algorithm [13], seems to be too low even when
ignoring representation and complexity issues for elements of the time domain.

We are not aware of any work that compares different time models for runtime
verification. The surveys [2, 6, 16] on real-time logics focus on expressiveness,
satisfiability, and automatic verification of real-time systems. A comparison of a
point-based and interval-based time model for temporal databases with a discrete
time domain is given by Toman [21]. The work by Furia and Rossi [9] on sampling
and the work on digitization [11] by Henzinger et al. are orthogonal to our
comparison. These relate fragments of metric interval temporal logic with respect
to a discrete and a dense time domain.

6 Conclusions

We have presented, analyzed, and compared monitoring algorithms for real-time
logics with point-based and interval-based semantics. Our comparison provides a
detailed explanation of trade-offs between the different time models with respect
to monitoring. Moreover, we have presented a practically relevant fragment for
the interval-based setting by distinguishing between state variables and system
events, which can be more efficiently monitored in the point-based setting.

Algorithms for Monitoring Real-time Properties 15

As future work, we plan to extend the monitoring algorithms to handle
bounded future operators. This includes analyzing their computational complex-
ities and comparing them experimentally. Another line of research is to establish
lower bounds for monitoring real-time logics. Thati and Roşu [20] give lower
bounds for future fragments of metric temporal logic including the next opera-
tor. However, we are not aware of any lower bounds for the past-only fragment.

References

1. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

2. R. Alur and T. Henzinger. Logics and models of real time: A survey. In REX
Workshop on Real-Time: Theory in Practice, vol. 600 of LNCS, pp. 74–106, 1992.

3. D. Basin, F. Klaedtke, and S. Müller. Monitoring security policies with metric
first-order temporal logic. In SACMAT’10, pp. 23–33, 2010.

4. D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric
first-order temporal properties. In FSTTCS’08, pp. 49–60, 2008.

5. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
FSTTCS’06, vol. 4337 of LNCS, pp. 260–272, 2006.

6. P. Bouyer. Model-checking times temporal logics. In 5th Workshop on Methods
for Modalities, vol. 231 of ENTCS, pp. 323–341, 2009.

7. D. Drusinsky. On-line monitoring of metric temporal logic with time-series con-
straints using alternating finite automata. J. UCS, 12(5):482–498, 2006.

8. M. Fürer. Faster integer multiplication. In STOC’07, pp. 55–67, 2007.
9. C. Furia and M. Rossi. A theory of sampling for continuous-time metric temporal

logic. ACM Trans. Comput. Log., 12(1), 2010.
10. A. Goodloe and L. Pike. Monitoring distributed real-time systems: A survey and fu-

ture directions. Tech. rep. CR-2010-216724, NASA Langley Research Center, 2010.
11. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

ICALP’92, vol. 623 of LNCS, pp. 545–558, 1992.
12. K. Kristoffersen, C. Pedersen, and H. Andersen. Runtime verification of timed

LTL using disjunctive normalized equation systems. In RV’03, vol. 89 of ENTCS,
pp. 210–225, 2003.

13. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals.
In FORMATS’04 / FTRTFT’04, vol. 3253 of LNCS, pp. 152–166, 2004.

14. D. Ničković. Checking Timed and Hybrid Properties: Theory and Applications.
PhD thesis, Université Joseph Fourier, Grenoble, France, 2008.

15. D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog
systems. In FORMATS’07, vol. 4763 of LNCS, pp. 304–319, 2007.

16. J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In
FORMATS’08, vol. 5215 of LNCS, pp. 1–13, 2008.

17. L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard real-time runtime
monitor. In RV’10, vol. 6418 of LNCS, pp. 345–359, 2010.

18. J.-F. Raskin and P.-Y. Schobbens. Real-time logics: Fictitious clock as an abstrac-
tion of dense time. In TACAS’97, vol. 1217 of LNCS, pp. 165–182, 1997.

19. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,
7(3–4):281–292, 1971.

20. P. Thati and G. Ro̧su. Monitoring algorithms for metric temporal logic specifica-
tions. In RV’04, vol. 113 of ENTCS, pp. 145–162, 2005.

21. D. Toman. Point vs. interval-based query languages for temporal databases. In
PODS’96, pp. 58–67, 1996.

