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ABSTRACT
We show the practical feasibility of monitoring complex se-
curity properties using a runtime monitoring approach for
metric first-order temporal logic. In particular, we show how
a wide variety of security policies can be naturally formal-
ized in this expressive logic, ranging from traditional policies
like Chinese Wall and separation of duty to more specialized
usage-control and compliance requirements. We also explain
how these formalizations can be directly used for monitoring
and experimentally evaluate the performance of the result-
ing monitors.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Languages; D.2.5 [Software Engineering]: Test-
ing and Debugging—Monitors, Tracing ; D.4.6 [Operating
Systems]: Security and Protection; J.1 [Computer Ap-
plications]: Administrative Data Processing—Business, Law

General Terms
Security, Verification, Legal Aspects

Keywords
Temporal Logic, Monitoring, Security Policies, Access Con-
trol, Separation of Duty, Compliance, Usage Control

1. INTRODUCTION
Security policies specify the allowed behavior of organiza-

tions and systems. These policies take many forms and are
given at varying degrees of abstraction. When the policies
are sufficiently formal, they provide a precise description
of which behaviors are allowed and, conversely, forbidden.
Moreover, their formalization provides a starting point for
monitoring and even enforcing policy compliance.

What kinds of formalisms are adequate for these tasks?
If we only intend to formalize policies, then any sufficiently
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expressive logic will do. However, if we also wish to monitor
whether systems comply to policies, then we are confronted
with the standard tradeoff between expressiveness and com-
plexity. The logic should be expressive enough to formalize
a wide class of policies but checking policy compliance—
satisfiability, in logical terms—should be decidable and effi-
cient enough for practical use.

In this paper, we show that metric first-order tempo-
ral logic (MFOTL) is well suited for both of these tasks.
MFOTL is an expressive first-order language with metric
temporal operators. The first-order fragment is well suited
for formalizing relations on system data, while the metric
temporal operators can be used to specify properties de-
pending on the times associated with past, present, and
even future system events. Moreover, the monitoring ap-
proach for MFOTL that we recently presented in [9] can be
used to monitor whether system behavior is policy conform.
Namely, given a time-stamped sequence of first-order struc-
tures, representing system events and when they occur, the
monitor determines whether the sequence satisfies, up to the
current time, a policy expressed as an MFOTL formula and,
if not, reports the violations.

Through a series of examples, we support our claim that
MFOTL is well suited for both specifying and monitoring
complex, realistic security policies. We formalize security
policies from different areas including reporting and transac-
tion requirements in banking, data retention requirements,
and requirements based on Chinese Wall and separation-of-
duty (SoD) policies. The examples illustrate both standard
access-control requirements and more specialized usage-con-
trol and policy compliance requirements. An example from
financial reporting is the requirement: every transaction of
a customer who has within the last 30 days been involved in
a previous suspicious transaction, must be reported as suspi-
cious within 2 days. We will see how we can formalize such
requirements in Section 3 and in Section 4 we describe our
experimental results in monitoring such policies.

Contributions. We see our contributions as follows. First,
our examples provide strong evidence that MFOTL is well
suited for specifying a wide range of practically-relevant se-
curity policies. The class of policies covered constitute safety
properties [5], where compliance can be checked by monitor-
ing system traces. This class encompasses most traditional
access-control policies as well as usage-control policies and
policies arising in regulatory compliance. As we will see,
such policies often combine events and state predicates, re-
lations on data, and complex temporal relationships; all of



these aspects can be naturally represented by MFOTL for-
mulae interpreted over a point-based, metric semantics.

Second, our experimental results provide evidence of the
practical feasibility of our approach for monitoring policy
compliance. These are the first experimental results ob-
tained using our monitoring algorithm from [9]. The re-
sults show that both the time and space requirements are
manageable, as measured on synthetic, but realistic, data
streams. They indicate that our monitoring algorithm can
be used with modest computing and storage requirements
for applications such as monitoring system logs to detect
policy violations. Indeed, as our experiments show, events
can be processed in milliseconds; the efficiency is such that
our monitor could be used online to detect policy violations.

Related work. Monitors are a widely used mechanism for
enforcing security policies or detecting policy violations [30,
33]. Several approaches have been developed that can be
used to monitor such polices, e.g., [11, 22, 31]. However,
these approaches mainly focus on access control and are
of limited use in application areas such as compliance or
business-activity monitoring [16, 18] since they cannot han-
dle the temporal relations that occur in security policies from
those areas [22] or at best can handle them in restricted
ways [11,31].

Temporal logics can naturally formalize many of these
temporal relationships. For example, Lamport’s temporal
logic of action TLA has been used in [38] and a distributed
variant of the propositional linear-time temporal logic LTL
has been used in [21] to formalize and categorize usage-
control policies. Both logics lack some of MFOTL’s features.
For example, their temporal operators are non-metric and
thus cannot express quantitative timing constraints, which
often occur in complex security policies. Furthermore, mon-
itoring and enforcement issues are not addressed. The in-
terval temporal logic ITL has also been used to formally
reason about security policies and their enforcement mecha-
nisms [23,24,34]. However, the monitors obtained from ITL
specifications require that subjects and objects in a system
are fixed in advance, i.e., they cannot be created and deleted
during runtime. Furthermore, no experimental results for
the obtained monitors are given. In [8], a first-order exten-
sion of LTL has been used to formalize and reason about
policies. However, since the temporal operators are non-
metric, the logic does not allow one to formalize timing con-
straints. Moreover, the reasoning in [8] about polices is lim-
ited, since it is carried out by a reduction to propositional
LTL, assuming that variables range over a fixed and finite
domain.

Summarizing the current state of the art of existing mon-
itoring techniques for temporal logics, most fall short in at
least one of the following points: they either only support
properties expressed in propositional temporal logics and
thus cannot cope with variables ranging over infinite do-
mains [10,20,37], do not provide both universal and existen-
tial quantification [7,15,29,32] or only in restricted ways [7,
19, 36], do not allow arbitrary quantifier alternation [7], do
not provide quantitative temporal operators [20,32], or can-
not simultaneously handle both past and future temporal
operators [14, 19, 29, 35]. Our monitoring algorithm for a
fragment of MFOTL overcomes most of these limitations.
However, this monitoring approach has not previously been
evaluated experimentally.

Organization. The remainder of this paper is organized
as follows. In Section 2, we introduce MFOTL and explain
how we use it to formalize and monitor security policies.
In Section 3, we formalize different security policies and in
Section 4 we present our experimental results in monitoring
these policies. Finally, we draw conclusions in Section 5.

2. MONITORING METRIC FIRST-ORDER
TEMPORAL PROPERTIES

In this section, we define metric first-order temporal logic
(MFOTL), with a semantics based on timed temporal struc-
tures. We then sketch our runtime monitoring approach for
MFOTL, originally presented in [9]. Finally, we describe
applications to formalizing and monitoring security policies.

2.1 Timed temporal structures
A (first-order) signature S is a triple (C,R, a), where C

is a set of constant symbols, R is a finite set of relation
symbols, and a : R → N associates each relation symbol
s ∈ R with an arity a(s) ≥ 1. A (relational) structure D over
the signature S = (C,R, a) consists of a domain |D| 6= ∅ and

interpretations cD ∈ |D| and rD ⊆ |D|a(r), for each c ∈ C
and r ∈ R.

A timed temporal structure is a sequence of relational
structures over the same signature, where each relational
structure is associated with a time stamp. More formally:

Definition 2.1. A timed temporal structure over the sig-
nature S = (C,R, a) is a pair (D, τ), where D = (D0, D1, . . . )
and τ = (τ0, τ1, . . . ) are infinite sequences of structures Di
over S and time stamps τi ∈ N with the following properties:

(i) D has constant domains, i.e., |Di| = |Di+1|, for all
i ≥ 0. We denote the domain by |D| and require that
|D| is linearly ordered by the relation <.

(ii) Each constant symbol c ∈ C has a rigid interpretation,
i.e., cDi = cDi+1 , for all i ≥ 0. We denote the inter-
pretation of c by cD.

(iii) The sequence of time stamps τ is monotonically in-
creasing and progressing, i.e., τi ≤ τi+1, for all i ≥ 0
and for every i ≥ 0, there is some j > i such that
τj > τi.

Because the structures in the sequence D have a possibly in-
finite domain |D|, timed temporal structures can represent
system executions with an unbounded number of individu-
als. Many other common system execution models, such as
(timed) ω-words or database histories, are special cases of
this execution model [28].

We remark that a timed temporal structure associates
with each time point i ∈ N a structure Di and a time stamp
τi. While the sequence D = (D0, D1, . . . ) provides a qual-
itative ordering on the individual structures, the sequence
of time stamps τ = (τ0, τ1, . . . ) associates each structure
Di with quantitative time information, where adjacent time
points i and i+1 can have equal time stamps, i.e., τi = τi+1.
The metric temporal operators in MFOTL, which we define
in Section 2.2, take both orderings into account.

Finally, we remark that as an alternative to our point-
based time semantics, one might chose an interval-based se-
mantics, where each structure Di in D is associated with
an interval from an appropriate time domain. While the



point-based semantics is better suited for modeling system
events, the interval-based semantics lends itself better to
representing system states. As we will show in Section 3,
many interval-based properties can be naturally expressed
and monitored using a purely point-based semantics.

2.2 Metric first-order temporal logic
We now introduce metric first-order temporal logic [14],

MFOTL for short, which extends propositional metric tem-
poral logic [6,25] with predicates and quantification over an
infinite domain of individuals.

Syntax. Let I be the set of nonempty intervals over N.
We often write an interval in I as [c, d), where c ∈ N, d ∈
N ∪ {∞}, and c < d, i.e, [c, d) := {a ∈ N | c ≤ a < d}. For
the rest of this paper, V denotes a countably infinite set of
variables, where we assume that V ∩ (C ∪ R) = ∅, for every
signature S = (C,R, a).

Definition 2.2. The set of (MFOTL) formulae over a
signature S = (C,R, a) is given by the grammar

φ ::= t1 ≈ t2
∣∣ t1 ≺ t2 ∣∣ r(t1, . . . , ta(r)) ∣∣

(¬φ)
∣∣ (φ ∧ φ)

∣∣ (∃x. φ)
∣∣

( I φ)
∣∣ (#I φ)

∣∣ (φ SI φ)
∣∣ (φ UI φ)

where r ranges over the elements in R, t1, t2, . . . range over
V ∪ C, x ranges over V, and I ranges over I.

A formula φ is temporal if its outermost connective is a
temporal operator, i.e., φ is of the form ( I ψ), (#I ψ), (ψSI
ψ′), or (ψ UI ψ′), where ψ and ψ′ are formulae and I ∈ I.
A formula φ is bounded if the interval I is finite, for every
operator UI that occurs in φ.

We use standard conventions to omit parentheses, e.g., ¬
binds stronger than ∧, which in turn binds stronger than
∃. Moreover, temporal operators bind weaker than Boolean
connectives and quantifiers. Furthermore, we use standard
syntactic sugar like true for ∃x. x ≈ x, θ1 ∨ θ2 for ¬(¬θ1 ∧
¬θ2), and ∀x. θ for ¬∃x.¬θ. The classical unary temporal
operators are defined as follows �I θ := true SI θ, �I θ :=
¬�I ¬θ, ♦I θ := true UI θ, and �I θ := ¬♦I ¬θ, where I ∈ I.
The non-metric variants of the temporal operators are easily
defined, e.g., θ S θ′ := θ S[0,∞) θ

′ and � θ := �[0,∞) θ.

Semantics. The semantics of MFOTL is defined with re-
spect to timed temporal structures. A valuation is a map-
ping v : V → |D|. We abuse notation by also applying a
valuation v to constant symbols c ∈ C, with v(c) = cD. For
a valuation v, a variable x ∈ V, and d ∈ |D|, v[x/d] is the
valuation that maps x to d and the valuation of the other
variables is unaltered.

Definition 2.3. Let (D, τ) be a timed temporal struc-
ture over the signature S, with D = (D0, D1, . . . ) and τ =
(τ0, τ1, . . . ), φ a formula over the signature S, v a valuation,

and i ∈ N. We define the relation (D, τ, v, i) |= φ as follows:

(D, τ, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D, τ, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D, τ, v, i) |= r(t1, . . . , ta(r)) iff (v(t1), . . . , v(ta(r))) ∈ rDi

(D, τ, v, i) |= (¬φ1) iff (D, τ, v, i) 6|= φ1

(D, τ, v, i) |= φ1 ∧ φ2 iff (D, τ, v, i) |= φ1 and
(D, τ, v, i) |= φ2

(D, τ, v, i) |= ∃x. φ1 iff (D, τ, v[x/d], i) |= φ1,
for some d ∈ |D|

(D, τ, v, i) |=  I φ1 iff i > 0, τi − τi−1 ∈ I, and
(D, τ, v, i− 1) |= φ1

(D, τ, v, i) |= #I φ1 iff τi+1 − τi ∈ I and
(D, τ, v, i+ 1) |= φ1

(D, τ, v, i) |= φ1 SI φ2 iff for some j ≤ i, τi−τj ∈ I,
(D, τ, v, j) |= φ2, and
(D, τ, v, k) |= φ1,
for all k ∈ [j + 1, i+ 1)

(D, τ, v, i) |= φ1 UI φ2 iff for some j ≥ i, τj−τi ∈ I,
(D, τ, v, j) |= φ2, and
(D, τ, v, k) |= φ1,
for all k ∈ [i, j)

Example 2.4. To illustrate our use of MFOTL for for-
malizing security policies, consider a security policy about
publishing business reports within a company. For ease of
exposition, we consider here a simplistic policy where reports
must be approved before they are published. In Section 3.1,
we give a more realistic version of this policy.

We assume that the events for publishing and approving
reports are logged in relations. Specifically, for each time
point i ∈ N, we have the unary relations PUBLISH i and
APPROVE i such that (i) f ∈ PUBLISH i iff report f is
published at time i and (ii) f ∈ APPROVE i iff report f
is approved at time i. Observe that there can be multiple
approvals at the same time point for different reports. Fur-
thermore, every time point i has a time stamp τi ∈ N.

The corresponding temporal structure (D, τ) with D =
(D0, D1, . . . ) and τ = (τ0, τ1, . . . ) of a sequence of logged
publishing and approval events is as follows. The only re-
lational symbols in D’s signature are publish and approve,
both of arity 1. The domain of D consists of all reports. The
ith structure in D is time-stamped with τi and contains the
relations PUBLISH i and APPROVE i.

We express the policy by the MFOTL formula

�∀f. publish(f)→ � approve(f) . (P1)

The following formula also formalizes an additional con-
straint. Namely, an approval is only valid for at most 10
time units:

�∀f. publish(f)→ �[0,11) approve(f) . (P2)

Note that in this last formula we speak of time units when
measuring the time difference τj−τi between the time stamps
τi and τj of two time points i and j, with i ≤ j. The in-
terpretation of a time unit within a system depends on the
granularity in which time is tracked. For instance, if the
system only time-stamps each time point with the current
date, i.e., year, month, and day, then the smallest possible
time unit is a day. If the time stamps additionally contain
the time of the day, then we could choose hours, minutes, or
seconds as time units. In subsequent examples, the meaning
of time units will be clear from the context.



2.3 Monitoring algorithm
We now sketch our monitoring algorithm from [9] for a

fragment of MFOTL. In the following, let (D, τ) be a timed
temporal structure over the signature S = (C,R, a), repre-
senting an infinite execution of some system. We assume
here that at each time point the given relations are finite,
i.e., rDi is finite, for each r ∈ R and i ≥ 0. Furthermore, let
φ be an MFOTL formula over the signature S that we want
to monitor. We assume that φ is of the form �ψ, where ψ
is bounded. From these syntactic restrictions it follows that
φ describes a safety property [5] and hence violations can
be detected in finite time. Note that these assumptions on
(D, τ) and φ are natural in our application domain, namely,
monitoring security policies. First, a system generates at
each time point i only finitely many events, which are given
as the elements in the relations rDi . Second, a policy should
be fulfilled at every time point. Third, at each time point,
policies usually only relate events from a bounded time win-
dow.

Since we want to detect violations, the monitor works with
the negated formula, i.e., ♦¬ψ, and outputs for each time
point the satisfying assignments of ¬ψ. Note that to iden-
tify violations, ♦¬ψ usually contains free variables. For in-
stance, when monitoring the policy from Example 2.4, for-
malized by the formula (P1), we monitor its negation, which
can be simplified to ♦ publish(f)∧�¬approve(f). We leave
the variable f free since we wish to learn which reports have
been published and not previously approved.

In a nutshell, the monitor works as follows. It sequen-
tially processes the timed temporal structure (D, τ) and de-
termines for each time point those elements in (D, τ) that
violate φ. More precisely, the monitor iterates over the
structures Di and their associated time stamps τi, where
i is initially 0 and is incremented with each iteration. At
each iteration, the monitor incrementally maintains a col-
lection of finite relations for previous time points. Roughly
speaking, these relations for each time point j ≤ i store
the elements that satisfy the temporal subformulae of ¬ψ
at the time point j. If the temporal subformula of ¬ψ
refers to future time points, the monitor might need to
postpone the construction of such an auxiliary relation to
a later iteration, until the processed prefix of (D, τ) is long
enough to evaluate the subformula at time point j. How-
ever, since ¬ψ is bounded, we never must postpone such
a construction indefinitely. Moreover, the monitor discards
auxiliary relations whenever they become irrelevant for de-
tecting further violations. In fact, we prove in [9] that un-
der the additional restriction that the stuttering of equal
time stamps is bounded, then in each iteration i the moni-
tor’s space consumption is only polynomial in the cardinality
of the so-called active domain of the processed prefix, i.e.,
adom(D, i) :=

⋃
j≤i adom(Dj), where adom(Dj) := {cD ∈

|D| | c ∈ C} ∪
⋃
r∈R{dk ∈ |D| | (d1, . . . , da(r)) ∈ r

Dj and 1 ≤
k ≤ a(r)}.

Observe that in the above description of the monitor, we
implicitly require that the auxiliary relations are finite. In
order to guarantee this requirement, we assume that ¬ψ is
temporal-subformula domain independent [14], which gener-
alizes the well-known notion of domain-independent queries
from classical database theory, see, e.g., [4]. Unfortunately,
even for database queries, it is undecidable whether they
are domain independent. However, along the lines taken
in database theory, we can identify syntactic fragments of

MFOTL that only contain temporal-subformula-domain-in-
dependent formulae as described in [9].

2.4 Specification methodology
Although more complex, the security policies in Section 3

are formalized analogously to Example 2.4. In the follow-
ing, we outline the steps we take when using MFOTL to
formalize security policies:

1. Fix a signature that describes the objects and events
that are to be monitored.

2. Specify the assumptions, if any, on the objects and
events, that all “well-formed” systems should satisfy.
These assumptions specify basic system requirements
that are prerequisites to formalizing security policies.
For example, for systems implementing RBAC such a
well-formedness assumption is that users can only be
assigned to existing roles.

3. Specify the security policy as formulae φ1, . . . , φn in
the MFOTL fragment for which we can use the moni-
toring algorithm described in Section 2.3.

The monitors for the formulae φ1, . . . , φn can be used offline
to read log files and report policy violations. When the
monitors are built into a policy decision point, they can be
used online to enforce policies in many cases. We return to
this point in Section 3.6.

3. FORMALIZATION OF SECURITY
POLICIES

In this section, we show how MFOTL can be used to
formalize a wide variety of security policies including com-
pliance and history-based access-control policies, which are
important for many enterprises and which govern the access
and the usage of sensitive data. Later, in Section 4, we use
our formalizations for monitoring and auditing such policies.

3.1 Approval requirements
Recall from Example 2.4 the policy that whenever a busi-

ness report is published, its publication must have been pre-
viously approved. We formalized this by the MFOTL for-
mula �∀f. publish(f) → � approve(f). This formalization
is somewhat simplistic. In realistic settings, we would also
require, for example, that the person who publishes the re-
port must be an accountant and the person who approves
the publication must be the accountant’s manager. More-
over, the approval must happen within a given time window,
such as at most 10 days before the publication.

Before we give our MFOTL formalization of this refined
policy, we point out that predicates like approving a report
and being somebody’s manager are different in the follow-
ing respect. The act of approving a report is an event : it
happens at a time point and does not have a duration. In
contrast, being someone’s manager describes a state that has
a duration. Since the semantics of MFOTL is point-based, it
naturally captures events. Entities like system states have
a duration and they do not have a direct counterpart in
MFOTL. However, we can model such entities by start and
finish events. The following formalization of the above secu-
rity policy illustrates these two different kinds of entities and
how we deal with them in MFOTL. To distinguish between
them, we use the terms event predicate and state predicate.



Signature. The signature consists of the unary relation
symbols accS and accF , and the binary relation symbols
mgrS , mgrF , publish, and approve. Intuitively speaking,
mgrS(m,a) marks the time when m becomes a’s manager
and mgrF (m,a) marks the corresponding finishing time.
Analogously, accS(a) and accF (a) mark the starting and fin-
ishing times when a is an accountant. With these markers,
we can simulate state predicates in MFOTL, e.g., the for-
mula acc(a) := ¬accF (a)S accS(a) holds at the time points
where a is an accountant. It states that a starting event for a
being an accountant has previously occurred and the corre-
sponding finishing event has not occurred since then. Anal-
ogously, we use the formula mgr(m,a) := ¬mgrF (m,a) S
mgrS(m,a) for the state predicate that m is a’s manager.

Formalization. Before we formalize the refined approval
policy, we formally state the assumptions about the start
and finish events in a timed temporal structure (D, τ). These
assumptions reflect the system requirement that those events
are generated in a well-formed way. First, we assume that
start and finish events do not occur at the same time point,
since their ordering would then be unclear. Formally, for the
start and finish events of being an accountant, we assume
that (D, τ) satisfies the formula

�∀a.¬
(
accS(a) ∧ accF (a)

)
. (A1)

In other words, we require that a cannot become an ac-
countant and, at the same time point, a stops being an ac-
countant. Furthermore, we assume that every finish event is
preceded by a matching start event and between two start
events, there is a finish event. Formally, for the start and
finish events of being an accountant, we assume that (D, τ)
satisfies the formulae

�∀a. accF (a)→  
(
¬accF (a) S accS(a)

)
(A2)

and

�∀a. accS(a)→ ¬ 
(
¬accF (a) S accS(a)

)
. (A3)

The assumptions for the predicates mgrS and mgrF are sim-
ilar and we omit them.

Our formalization of the policy that whenever a report is
published, it must be published by an accountant and the
report must be approved by her manager within at most 10
time units prior to publication is now given by the formula

�∀a.∀f. publish(a, f) →
acc(a) ∧ �[0,11) ∃m.mgr(m,a) ∧ approve(m, f) .

(P3)
Note that the state predicates acc and mgr can change over
time and that such changes are accounted for in our MFOTL
formalization of this security policy. In particular, at the
time point where m approves the report f , the formula (P3)
requires that m is a’s manager. However, m need no longer
be a’s manager when a publishes f , although a must be an
accountant at that time point.

Remark 3.1. Our approach of formalizing state predi-
cates like acc and mgr in MFOTL using start and finish
events generalizes to state predicates of any arity. For the
sake of brevity, in the following we will just introduce the
predicate P of arity n ≥ 1 and implicitly assume that the
signature contains the corresponding n-ary relation symbols
PS and PF . Moreover, we require that a given timed tempo-
ral structure satisfies the corresponding assumptions (A1)–

(A3) for P Finally, we use P (x1, . . . , xn) as an abbreviation
of the formula ¬PF (x1, . . . , xn) S PS(x1, . . . , xn).

A syntactically-defined state predicate like being an ac-
countant (acc(a) = ¬accF (a)SaccS(a)) does not always cap-
ture the intuitive meaning of the corresponding state predi-
cate. For example, consider the formula �[3,4) acc(a), which
not only requires that a was previously, say at time point j
an accountant, it additionally requires that between the cur-
rent time point i and the time point j exactly 3 time units
have passed. As a result, even when there was a start event
and no finish event for a being an accountant, the formula
�[3,4) acc(a) is false at the current time point i for a when no
previous time point j satisfies the timing constraint τi−τj =
3. To avoid these non-intuitive aspects, we stipulate that
metric temporal operators are relativized by event predicates
like in the subformula �[0,11) ∃m.mgr(m,a)∧approve(m, f)
of (P3). In this example, the existence of a time point in
the past, required by the temporal operators �[0,11), is con-
strained by the occurrence of an approval event.

3.2 Transaction requirements
Our next example is a compliance policy for a banking

system that processes customer transactions. The require-
ments stem from anti-money laundering regulations such as
the Bank Secrecy Act [1] and the USA Patriot Act [3].

Signature. We use the signature (C,R, a), with C := {th},
R := {trans, auth, report}, and a(trans) := 3, a(auth) := 2,
and a(report) := 1. The ternary predicate trans represents
the execution of a transaction of some customer transferring
a given amount of money. The binary predicate auth de-
notes the authorization of a transaction by some employee.
Finally, the unary predicate report represents the situation
where a transaction is reported as suspicious.

Formalization. We first formalize the requirement that
executed transactions t of any customers c must be reported
within at most 5 days if the transferred money a exceeds a
given threshold th:

�∀c.∀t.∀a. trans(c, t, a) ∧ th ≺ a→ ♦[0,6) report(t) . (P4)

Moreover, transactions that exceed the threshold must be
authorized by some employee e before they are executed. A
formalization of this requirement is given by the formula

�∀c.∀t.∀a. trans(c, t, a) ∧ th ≺ a→ �[2,21) ∃e. auth(e, t) .
(P5)

Here we require that the authorization takes place at least 2
days and at most 20 days before executing the transaction.

Our last requirement concerns the transactions of a cus-
tomer that has previously made transactions that were clas-
sified as suspicious. Namely, every executed transaction t of
a customer c, who has within the last 30 days been involved
in a suspicious transaction t′, must be reported as suspicious
within 2 days:

�∀t. ∀c.∀a. trans(t, c, a)∧(
�[0,31) ∃t′.∃a′. trans(t′, c, a′) ∧ ♦[0,6) report(t′)

)
→

♦[0,3) report(t) .
(P6)

3.3 Data retention requirements
In privacy-sensitive areas such as healthcare, the handling

of patient data is usually subject to strong restrictions. We



now show how to formalize typical data retention require-
ments inspired by privacy regulations like the Health Insur-
ance Portability and Accountability Act (HIPAA) [2].

Signature. We use the unary relation symbols hospitalize
and release, the binary relation symbols update and delete,
and the ternary relation symbol copy . Their intuitive mean-
ing is as follows: hospitalize(p) holds at those time points
when the patient p is hospitalized, release(p) holds when
the patient p is released from the hospital, delete(d, p) holds
when the patient p’s health record is deleted from the data-
base d, and copy(d, d′, p) holds when patient p’s health record
is copied from the database d to the database d′. Further-
more, we use the constant symbols db and archive to refer
to the hospital’s central database and the archive database,
respectively.

Formalization. A typical data retention requirement, which
a hospital might put into place to comply to HIPAA, is that
the patients’ health records are only stored for a limited
time in the hospital’s central database. However, the hospi-
tal must archive the health records for auditing and liability
purposes.

The following formula states that a patient’s health record
must be deleted from the hospital database within at most
14 days after the patient has been released from the hospital,
unless the patient is readmitted to the hospital within this
14 day time window:

�∀p. release(p)→ ♦[0,15) delete(db, p) ∨ hospitalize(p) .
(P7)

Furthermore, we require that a health record is archived at
most 7 days before it is deleted from the central database:

�∀p. delete(db, p)→ �[0,8) copy(db, archive, p) . (P8)

Finally, archived data must be stored for at least 8 years:

�∀p. copy(db, archive, p)→ �[0,9) ¬delete(archive, p) .
(P9)

3.4 Chinese Wall
The Chinese Wall policy (also known as the Brewer and

Nash model) [13] forbids a subject s to access an object o
when s has previously accessed another object in a different
dataset than o and both datasets are in the same conflict-
of-interest class.

Signature. We assume here that every access is logged
and stored in a relation and that the events that manipu-
late the datasets and the conflict-of-interest classes are also
logged. Specifically, we consider timed temporal structures
over the signature with the binary relation symbols access
and binary relation symbols for dataset and conflict . Their
intuitive meaning is as follows: access(s, o) holds at those
time points when the system allows subject s to access ob-
ject o, dataset(o, d) holds when object o is in the dataset
d, and conflict(d, d′) holds when the datasets d and d′ con-
flict. Recall that underlined predicates like dataset are de-
rived from the corresponding start and finish events and that
dataset(d, d′) abbreviates ¬datasetF (d, d′) S datasetS(d, d′).

Formalization. We first formalize the assumption that an
object cannot be in two datasets at the same time point:

�∀o. ∀d.∀d′. dataset(o, d) ∧ dataset(o, d′)→ d ≈ d′ . (A4)

Two further assumptions are that the conflict-of-interest re-
lation is irreflexive and symmetric at every time point; these
are easily expressed in MFOTL and we omit their formal-
ization.

We formalize the Chinese Wall policy as

�∀s.∀o. ∀d. ∀d′. access(s, o) ∧ dataset(o, d)∧(
∃o′. (� access(s, o′)) ∧ dataset(o′, d′)

)
→

¬conflict(d, d′) .
(P10)

A variant of the policy, where we only forbid mutual access
to conflicting objects by the same subject for a restricted
amount of time, say 3 years, can be formalized as

�∀s. ∀o.∀d. ∀d′. access(s, o) ∧ dataset(o, d)∧(
∃o′. (�[0,4) access(s, o′)) ∧ dataset(o′, d′)

)
→

¬conflict(d, d′) .

(P11)

Remark 3.2. Our formalizations allow both datasets and
conflict-of-interest classes to change over time. For example,
the formula (A4) does not require that an object belongs to
different datasets at different time points. This is in contrast
to the description in [13], where the datasets and conflict-of-
interest classes are assumed to be rigid. However, changes to
these relations are realistic since companies might trade ob-
jects. In particular, note that the formulae (P10) and (P11)
require that the conflict of interest between d and d′ should
not exist at the time point where the subject s accesses the
object o and that the object o′, which was previously ac-
cessed, is in the dataset d′. Other interpretations of the
Chinese Wall policy are possible here, e.g., the datasets d
and d′ should not conflict at all time points between the
time points where s has accessed the objects o′ and o. Our
MFOTL formalization could be adapted for this stricter pol-
icy. Furthermore, note that the additional timing constraint
in formula (P11) formalizes a more realistic policy than for-
mula (P10). Contracts and nondisclosure agreements are
usually only valid for a given time frame.

3.5 Separation of duty
Last but not least, we formalize in MFOTL different types

of separation-of-duty (SoD) constraints. SoD is a security
principle that aims to prevent fraud and errors by requiring
multiple users to be involved in critical processes. SoD con-
straints are often stated on top of the standard model for
role-based access control (RBAC) [17]. In a nutshell, RBAC
controls access to resources by assigning users to sets of roles,
where each role is associated with a set of permissions. A
user acquires permissions by being assigned to one or more
roles. In the context of RBAC, SoD constraints are usually
specified by means of mutually exclusive roles.

Signature. We first describe the signature for formaliz-
ing RBAC. It contains unary relation symbols for the state
predicates U , R, A, O, and S, the binary relation sym-
bols for the state predicates UA, user , and roles, and the
ternary relation symbols for the state predicate PA. The
unary predicates represent the sets of users U, roles R, ac-
tions A, objects O, and sessions S in the RBAC system at a
given time point. The predicates UA and PA represent the
user-assignment relation UA ⊆ U × R and the permission-
assignment relation PA ⊆ R × A × O at a given time point.
Furthermore, the predicate user indicates a user’s sessions
at a time point and roles represents the roles that are active
in a session at a time point.



In order to formalize different SoD polices, our signature
also contains binary relation symbols for X and the ternary
relation symbol exec. The intuitive meaning of these pred-
icates is that X(r, r′) holds at those time points when the
roles r and r′ are mutually exclusive and exec(s, a, o) holds
when action a is executed on object a in session s.

Formalization. Before we formalize different SoD con-
straints, we state our assumptions, which reflect system re-
quirements that, intuitively speaking, ensure the desired
RBAC semantics of the predicates U , R, A, etc. The for-
mula (A5) requires that, at every time point, the predicate
UA is correctly typed, i.e., it always only relates currently
existing users with currently existing roles:

�∀u. ∀r.UA(u, r)→ U(u) ∧R(r) . (A5)

The formulae that ensure that the other predicates are cor-
rectly typed at each time point are similar and we omit
them. Formulae (A6)–(A9) state that each running session
is associated with exactly one user. In other words, the pred-
icate user represents a function from sessions to users that
is constant over a session’s lifetime:

�∀s. SS(s)→ ∃u. U(u) ∧ user(s, u) , (A6)

�∀s. ∀u. ∀u′. user(s, u) ∧ user(s, u′)→ u ≈ u′ , (A7)

�∀s.∀u. ∀u′. user(s, u) ∧
(
# user(s, u′)

)
→ u ≈ u′ , (A8)

and

�∀s. ∀u. ∀u′.¬
(
userF (s, u) ∧ userS(s, u′)

)
. (A9)

The formula (A10) ensures that only those roles may be
activated in a session that are presently assigned to the user
associated with the session:

�∀s. ∀r. rolesS(s, r)→ ∃u. user(s, u) ∧UA(u, r) . (A10)

The formula (A11) expresses that actions can only be carried
out on objects when the necessary credentials are available:

�∀s.∀a.∀o. exec(s, a, o)→ ∃r. roles(s, r) ∧ PA(r, a, o) .
(A11)

Finally, we assume that X is irreflexive and symmetric at
every time point. We omit the straightforward MFOTL for-
malization of this assumption.

We now turn to the formalization of the static and dy-
namic SoD constraints. Static SoD states that no user may
be assigned to a pair of roles that are considered mutually
exclusive. This is formalized by

�∀r. ∀r′. X(r, r′)→ ¬∃u.UA(u, r) ∧UA(u, r′) . (P12)

Simple dynamic SoD states that a user may be a member of
any two exclusive roles as long as he does not activate them
both in the same session. This is formalized by

�∀r. ∀r′. X(r, r′) →
¬∃s. roles(s, r) ∧

(
¬SF (s) S roles(s, r′)

)
.

(P13)

Recall that a session is always associated with the same user
and that the user remains constant over the session’s life-
time. The formula (P14) formalizes object-based SoD, which
states that a user may be a member of any two exclusive
roles and may also activate them both at the same time
(i.e., in the same session), but he must not act on the same

object through both:

�∀r.∀r′. X(r, r′) →
¬∃s. ∃o.

(
∃a. exec(s, a, o)∧

roles(s, r) ∧ PA(r, a, o)
)
∧(

¬SF (s) S ∃a′. exec(s, a′, o)∧
roles(s, r′) ∧ PA(r′, a′, o)

)
.

(P14)
This prevents the execution of an action on an object when-
ever the same user has executed another action on the same
object associated with a conflicting role in a single session.

3.6 Discussion
The examples illustrate how MFOTL can be used to di-

rectly formalize different kinds of security policies. To begin
with, many security policies have an operational character:
an event like accessing an object is only authorized when
a condition is satisfied in the present or past, i.e., a provi-
sion in the sense of [12], or the event triggers an obligation
for the future. Despite the different application domains,
almost all the policies considered in Sections 3.1–3.3 are of
this form. This is reflected in MFOTL by their common
syntactic form, �ψ → ψ′, where the antecedent ψ refers
just to the present and the succedent ψ′ either refers just to
the past and present or to the present and future.

Not all security policies are formulated in an operational
way, however. Often policies specify general constraints on
which behaviors are (un)acceptable. The policies in Sec-
tions 3.4 and 3.5 provide examples of this. Another example
is (P6), which expresses constraints on the past, present, and
future. Such policies can be directly formulated in MFOTL-
where we can freely combine state and event predicates with
temporal operators.

We remark that in MFOTL a policy might have syntac-
tically distinct but semantically equivalent formalizations.
In fact, in any rich language there are many syntactically
equivalent ways of expressing the same semantic property.
For example, the formula (P9) is logically equivalent to

�∀p. delete(archive, p)→ �[0,9) ¬copy(db, archive, p) .
(P9’)

Moreover, and less obvious, the formula (P7) is logically
equivalent to the conjunction

Φ≥15 ∧
∧

1≤k<15 Φ=k , (P7’)

where Φ≥15 is the formula

�∀p. ( [15,∞) true) →
 ¬

(
¬
(
delete(db, p) ∨ hospitalize(p)

)
S release(p)

)
and for k ∈ {1, . . . , 14}, Φ=k is the formula

�∀p. ( [k,k+1) true) →
 ¬

(
¬
(
delete(db, p) ∨ hospitalize(p)

)
S[15−k,∞)

release(p)
)
.

Note that both (P9’) and the conjuncts of (P7’) also have
the syntactic form �ψ → ψ′. However, each succedent in
the conjuncts of (P7’) is triggered not by the occurrence of
some particular event, but by the passage of time. Namely,
if more than 14 time units have passed between the adjacent
time points i and i+1, i.e., τi+1−τi ≥ 15, then the succedent
in the formula Φ≥15 is checked and if τi+1−τi = k, with k ∈
{1, . . . , 14}, we check the succedent in the formula Φ=k. No



succedent needs to be checked if no time has elapsed between
two adjacent time points i and i+ 1, i.e., τi+1 − τi = 0.

Our focus in this paper is on system monitoring to deter-
mine policy compliance. All the given policy formalizations
can be directly used for monitoring. We benefit here from
the fact that our MFOTL fragment of [9] is one of the most
expressive fragments of a temporal logic available for which
we can effectively obtain monitors. However, the formaliza-
tion of a policy has an impact on the efficiency of the ob-
tained monitors. In this respect, (P7) is superior over (P7’)
because (P7) is smaller in length than (P7’) and, more im-
portantly, it has fewer temporal operators. We investigate
the efficiency of the obtained monitors in detail in the fol-
lowing section.

We now consider to what extent monitoring can be used
for enforcement. With the exceptions of (P6), (P7), and
(P7’), all given policies can be enforced by suppressing events
(i.e., denying access). Enforceability by execution monitor-
ing and suppressing events is actually independent of the
formalization and can be characterized semantically [33].
Concretely, both (P9) and (P9’) can be enforced by dis-
allowing delete events whenever there was a corresponding
copy event within the given time window. Note that, for
each time point, the monitoring algorithm of [9] checks for
policy violations only when sufficient information is avail-
able, otherwise the check is delayed. Hence it can only be
used as an enforcement mechanism when this check always
coincides with the event to be suppressed. This is the case
for formulae like (P9’) but not the equivalent form (P9).
The monitor obtained from (P9) detects a violation at a
time point q when processing the first time point i where
the time difference is larger than 8 years, i.e., τi − τq > 8.
So here syntax matters!

In contrast to (P9), (P7) and thus also (P7’) cannot be
enforced by suppressing events, since we cannot stop the
progression of time. Edit automata [27] might be an ap-
propriate enforcement mechanism here since they can not
only suppress events but also insert events. However, this
would require first solving the problem of how events should
best be inserted, i.e., how such a mechanism should choose
between different corrective actions.

4. EXPERIMENTAL EVALUATION
We now report on our experiments evaluating the feasibil-

ity of monitoring security policies like those from Section 3
using our monitoring algorithm from [9].

All our experiments were carried out on a 1.4 GHz dual
core computer with 3 GBytes of RAM.

4.1 Setup
We implemented a Java prototype of our monitoring al-

gorithm and evaluated its performance. In particular, we
investigated its memory consumption and its incremental
updating speed in processing events.

Methodology. Recall that the monitoring algorithm it-
eratively processes timed temporal structures. Since these
structures consist of infinite sequences of time stamps and re-
lational structures, our evaluation focuses on the algorithm’s
performance in the long run. To properly assess its long-
run performance, we conducted a steady-state analysis [26],
which is a standard evaluation method for estimating the

behavior of non-terminating processes in the limit.1 For
the test cases in which we observed large variances, we did
not carry out a steady-state analysis, since the steady-state
estimates resulting from such test cases can greatly differ
from the real performance. For those test cases, namely, the
formulae (P10), (P12), (P13), and (P14), we determined
instead the average performance over a finite sample set of
finite prefixes of timed temporal structures. The reason that
these formulae do not satisfy the statistical requirements for
a meaningful steady-state analysis is because these formulae
describe an unbounded time window.

Since the actual input processed by a monitor will vary
considerably between different organizations, we evaluated
the monitoring algorithm on finite prefixes of synthetically-
generated timed temporal structures. This allowed for study-
ing the algorithm’s behavior under different parameter set-
tings. These are (1) the monitored formula, (2) the sample
space, i.e., the different data domains, and (3) the event fre-
quency, i.e., the average number of time points in a given
time interval.

Inputs. For our experiments, we used the formulae from
the previous sections that formalize security policies. For
each formula, we synthesized finite prefixes of timed tempo-
ral structures over the formula’s signature by drawing the
time stamps and the elements of the relations from prede-
fined sample spaces using a discrete uniform distribution.
We restricted ourselves to relational structures with sin-
gleton relations. For example, for the formula (P2), each
synthesized relational structure consists of relations for the
unary predicates publish and approve, each consisting of an
element drawn from the sample space Ω25000, i.e., the num-
bers between 1 and 25000. The sample space of the time
stamps Ωτ was chosen so that the different lengths of the
generated timed temporal structures simulate scenarios with
the (approximate) event frequencies 110, 220, . . . , 550. For
example, for the formula (P2), the event frequency 110, and
for monitoring a prefix of length 15000 of a timed temporal
structure, we drew time stamps so that they are uniformly
distributed over a time period of 1350 time units. Note
that (P2) describes a time window of 10 time units and
15000 · 10/110 ≈ 1350.

Finally, the generated prefixes were modified where needed
so that the well-formedness assumptions from Section 3 for
the scenario were fulfilled. For example, we removed fin-
ish events from relational structures without corresponding
start events. In some cases, we also made minor optimiza-
tions. For instance, for formula (P4), instead of choosing
a concrete value for the constant th and drawing values for
a, we drew a Boolean value indicating whether a relational
structure satisfies the atomic formula th ≺ a.

Measurements. Since the monitoring algorithm iteratively
processes timed temporal structures, we measured the time
needed to process a single relational structure in the synthe-
sized finite prefixes of timed temporal structures. To evalu-
ate the algorithm’s memory usage, we recorded the cardinal-

1In contrast to determining the average performance over a finite
sample set, a steady-state analysis has the advantage that the
results are not distorted by the warm-up phase. Namely, in this
initial phase, the monitoring algorithm usually stores and updates
fewer events than in the long run. Furthermore, computing the
average performance over a finite sample set just provides infor-
mation about the observed behaviors. In contrast, a steady-state
analysis provides a point estimate of the behavior in the long run.



ities of the auxiliary relations after processing a relational
structure. This has the advantage of measuring the algo-
rithm’s space consumption in an abstract way. In particular,
the actual memory consumption is dominated by these sizes.
Moreover, these sizes are general in the sense that they are
representation and implementation independent, i.e., they
do not depend on the kind of data elements and the data
structures used to store the auxiliary relations.

We also recorded for each time point, the cardinality of
the relevant active domain, i.e., the set of all data elements
in the timed temporal structure that appear in the formula’s
time window at the time point. Although these cardinalities
are only a rough complexity measure for the processed in-
put prefix, they help us judge the algorithm’s performance
better than more simplistic measures like the cardinality of
the active domain of the processed prefix or the length of
the prefix. In particular, the cardinalities of the relevant
active domains relate the incremental update time and the
cardinalities of the auxiliary relations to the input prefix of a
timed temporal structure with respect to the formula to be
monitored. The elements that do not occur in the relevant
active domain for a time point are irrelevant for detecting
policy violations at that time point.

4.2 Results
We summarize the results of our steady-state analysis in

Table 1. For each formula, we present a point estimate of
the steady-state mean space consumption, where the actual
average space consumption lies in the specified interval with
a probability of 95%. Table 2 and Figure 1 summarize the
experimental results of the average performance analysis for
the formulae (P10), (P12), (P13), and (P14). The average
values were determined from 12 input prefixes, where we
used the same input prefixes for the formulae (P12), (P13),
and (P14). Note that the event frequency does not have an
impact on the performance of the runtime algorithm for the
formulae (P10), (P12), (P13), and (P14), since the temporal
operators that occur in these formulae are non-metric.

The results of the steady-state analysis (Table 1) predict
low space consumption and running times of the monitoring
algorithm in the long-run for our experimental setting. Fur-
thermore, the monitoring algorithm scales well with respect
to the event frequency. Observe that the growth rates for
space, radom, omax , and ssmipt with respect to the event
frequency is approximately linear. The results of the average
space consumption (Figure 1) for the formulae (P10), (P12),
(P13), and (P14) and their average incremental processing
times (Table 2) also show that the monitoring algorithm per-
formed well. The average space consumption remained low
with respect to the sizes of the active domains. Moreover, for
the formulae (P12) and (P14), the average space consump-
tion stabilized after a short initial phase. Not surprisingly,
the average work load (space consumptions and incremental
processing times) for (P10) are higher than the correspond-
ing work load for (P11), since for the formula (P10), the
monitor must take all past events into account. For the
formula (P11), only the events in the specified time window
are relevant for detecting policy violations. Note that in con-
trast to the SoD policies given by (P12), (P13), and (P14),
the average space consumption for the Chinese Wall pol-
icy (P10) is higher with respect to the average sizes of the
active domain. One reason for this is that for SoD, the use

Table 1: Experimental results of steady-state anal-
ysis: point estimates (α = 95%) of the steady-
state mean space consumption of the monitoring al-
gorithm (space), steady-state mean cardinalities of
relevant active domains (radom), observed maxima
(omax), and steady-state mean incremental process-
ing times (ssmipt, in milliseconds).

event frequency
formula aspect 110 220 330 440 550

(P2)

space 119±1.6 235±2.7 350± 3.7 464± 4.6 579±5.5
radom 276 525 765 1,006 1,238
omax 165 288 406 529 658
ssmipt 1.4 2.8 4.2 5.5 6.9

sample space Ω25000

(P3)

space 672±70.5 1,267±135.2 1,857±200.3 2,442±265.4 3,024±331.2
radom 281 477 661 818 950
omax 1,208 2,155 3,006 3,988 4,884
ssmipt 14.1 21.8 26.0 37.7 39.4

sample space Ω20×20×2000

(P4)

space 353±4.4 700±8.7 1,044±12.0 1,386±15.2 1,725±20.7
radom 404 762 1,098 1,422 1,726
omax 2,135 3,959 5,172 7,377 8,714
ssmipt 7.0 13.1 17.9 21.0 29.6

sample space Ω1000×25000×2

(P5)

space 119±1.3 235±2.6 350±3.9 465±5.0 579±5.6
radom 492 893 1,252 1,583 1,893
omax 158 282 412 545 659
ssmipt 1.7 2.8 3.7 4.8 10.4

sample space Ω1000×25000×2×200

(P6)

space 140±2.8 405±9.0 801±19.1 1,334±32.2 1,994±47.8
radom 404 762 1,098 1,422 1,726
omax 723 1,270 2,242 3,302 4,360
ssmipt 2.2 3.5 4.7 6.0 7.6

sample space Ω1000×25000×2

(P7)

space 469±4.5 928±10.0 1, 386±14.2 1,840±18.4 2,292±22.9
radom 400 751 1,081 1,398 1,705
omax 3,150 6,004 7,801 12,432 17,547
ssmipt 8.9 16.0 24.5 32.5 40.6

sample space Ω10000×2

(P8)

space 30±0.7 60±1.4 89±2.0 118±2.5 147±2.9
radom 276 518 753 970 1,184
omax 52 87 122 148 181
ssmipt 1.1 1.7 1.9 2.2 2.5

sample space Ω2×10000×2

(P9)

space 148±2.2 292±4.5 436±6.8 579±8.4 721±2.9
radom 276 518 753 970 1,184
omax 1,126 2,173 2,667 4,607 5,764
ssmipt 4.8 9.6 14.4 18.0 21.8

sample space Ω2×10000×2

(P9’)

space 30±0.7 60±1.4 89±2.0 118±2.5 147±2.9
radom 276 518 753 970 1,184
omax 52 87 122 148 181
ssmipt 0.8 1.2 1.4 1.8 2.2

sample space Ω2×10000×2

(P11)

space 521±57.4 632±57.5 747±60.8 852±57.9 961±58.1
radom 261 399 517 627 695
omax 867 988 1,140 1,222 1,335
ssmipt 37.6 48.5 61.2 73.3 79.3

sample space Ω100×3000×50

of sessions limits the amount of past data that is stored for
detecting policy violations.

Our experimental results also shed light on the relative
efficiency of our monitor for different classes of formulae.
When comparing the results for the different formulae, we
see that the monitoring algorithm performed better for for-
mulae that only refer to the past at each time point, i.e., past
operators were handled more efficiently than future opera-
tors. Observe that the maximal observed space consumption
omax is close to the estimated mean steady-state space con-
sumption space for formulae that only refer to the past at
each time point. For formulae that contain future operators
like (P9), these values differ up to a factor of 10. The reason
for this is that the monitoring algorithm delays the policy
check at a time point when it depends on future events. To
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Figure 1: Average space consumption for the formulae (P10), (P12), (P13), and (P14).

Table 2: Observed maxima (omax), average incre-
mental processing times (aipt, in milliseconds), and
sample spaces of the average performance analysis.

formula omax aipt sample space

(P10) 3,267 615.7 Ω100×3000×50

(P12) 169 8.4
Ω50×50×50×500×500(P13) 56 3.6

(P14) 248 13.5

perform this check later, information at the current time
point must be stored in the auxiliary relations.

Another observation is that the estimated space consump-
tion in the long run for the formulae that contain state pred-
icates is higher than for formulae without state predicates.
This is not surprising since the elements of a state predicate
at a time point are stored in an auxiliary relation. Recall
from Remark 3.1 that we simulate state predicates by start
and finish events. Moreover, since these predicates need to
be updated at each iteration, the estimated incremental pro-
cessing times are also higher but still manageable.

Summing up, our monitoring algorithm can be used to
monitor complex policies with modest overhead. Therefore
this approach is well suited for auditing and policy enforce-
ment.

5. CONCLUSION
Through a series of examples we have shown that the logic

MFOTL can be used both to formalize and monitor a wide
variety of realistic security policies. For the application do-
mains considered, the formalizations were natural and the
runtime monitors had good performance.

We emphasize though that our approach is not a panacea:
there is no one silver bullet that covers all applications equally
well. Policies outside the scope of MFOTL include those
whose formalization is not domain independent or those re-
quiring a more expressive logic. An example of the latter,
which involves the aggregation operator for summation, is
a report must be filed within 3 days when all transactions
of a trader over the last week sum up to more than $50
million. Similarly, our experiments indicate that the algo-
rithm of [9] does not handle all policies equally well since a
policy’s syntactic form plays a role in monitoring efficiency.
For example, past-time formulae are usually handled more
efficiently than future-time formulae. Furthermore, as in-
dicated in Section 3.6, the syntactic form plays a role in

how soon violations are reported. In general, for monitor-
ing those properties formalizable in MFOTL, there may be
more efficient, specialized algorithms than ours given in [9].
Still, despite these limitations, MFOTL appears to sit in the
sweet-spot between expressivity and complexity: it is a large
hammer, applicable to many problems, and has acceptable
runtime performance.

We have indicated that, in some cases, our monitors can
be used for policy enforcement. As future work we would
like to explore how this can be done best and compare the
performance against competing approaches. We would also
like to carry out concrete case studies in the application
domains presented in this paper.
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