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Abstract. Traditional security protocols are mainly concerned with key
establishment and principal authentication and rely on predistributed
keys and properties of cryptographic operators. In contrast, new appli-
cation areas are emerging that establish and rely on properties of the
physical world. Examples include protocols for secure localization, dis-
tance bounding, and device pairing.

We present a formal model that extends inductive, trace-based approaches
in two directions. First, we refine the standard Dolev-Yao model to ac-
count for network topology, transmission delays, and node positions. This
results in a distributed intruder with restricted, but more realistic, com-
munication capabilities. Second, we develop an abstract message theory
that formalizes protocol-independent facts about messages, which hold
for all instances. When verifying protocols, we instantiate the abstract
message theory, modeling the properties of the cryptographic operators
under consideration. We have formalized this model in Isabelle/HOL and
used it to verify distance bounding protocols where the concrete message
theory includes exclusive-or.

1 Introduction

Situating Adversaries in the Physical World. There are now over three decades of
research on symbolic models and associated formal methods for security protocol
verification. The models developed represent messages as terms rather than bit
strings, take an idealized view of cryptography, and focus on the communication
of agents over a network controlled by an active intruder. The standard intruder
model used, the Dolev-Yao model, captures the above aspects. Noteworthy for
our work is that this model abstracts away all aspects of the physical environ-
ment, such as the location of principals and the speed of the communication
medium used. This is understandable: the Dolev-Yao model was developed for
authentication and key-exchange protocols whose correctness is independent of
the principals’ physical environment. Abstracting away these details, effectively
by identifying the network with the intruder, results in a simpler model that is
adequate for verifying such protocols.

With the emergence of wireless networks, protocols have been developed
whose security goals and assumptions differ from those in traditional wireline
networks. A prominent example is distance bounding [1–5], where one device
must determine an upper bound on its physical distance to another, potentially



untrusted, device. The goal of distance bounding is neither message secrecy
nor authentication, but rather to establish a physical property. To achieve this,
distance bounding protocols typically combine cryptographic guarantees, such as
message-origin authentication, with properties of the physical (communication)
layer, for example that attackers cannot relay messages between locations faster
than the speed of light. Other examples of “physical protocols” include secure
time synchronization, wormhole and neighborhood detection, secure localization,
broadcast authentication, and device pairing.

In [6], we presented the first formal model that is capable of modeling and
reasoning about a wide class of physical protocols and their properties. The key
idea is to reflect relevant aspects of the physical world in the model, namely net-
work topology, transmission delays, and node positions. In particular, all agents
are modeled as network nodes. This includes the intruder, who is no longer a
single entity but instead is distributed and therefore corresponds to a set of
nodes. Communication between nodes is subject to restrictions reflecting the
nodes’ physical environment and communication capabilities. For example, not
all nodes can communicate and communication takes time determined by the
network topology and the propagation delays of the communication technologies
used. Hence, nodes require time to share their knowledge and information cannot
travel at speeds faster than the speed of light. Possible communication histories
are formalized as traces and the resulting model is an inductively-defined, sym-
bolic, trace-based model, along the lines of Paulson’s Inductive Approach [7].

In [6], we formalized this model in Isabelle/HOL [8] and verified the se-
curity properties of three physical protocols: an authenticated ranging proto-
col [9], a protocol for distance bounding using ultrasound [5], and a broadcast-
authentication protocol based on delayed key disclosure [10].

Verifying distance bounding protocols. Our starting point in this paper is a family
of distance bounding protocols proposed by Meadows [4]. The family is defined
by a protocol pattern containing a function variable F , where different instances
of F result in different protocols. We present two security properties, which
distinguish between the cases of honest and dishonest participants. For each
property, we reduce the security of a protocol defined by an instance of F to
conditions on F . Afterwards, we analyze several instances of F , either showing
that the conditions are fulfilled or presenting counterexamples to the security
properties.

This protocol family is interesting as a practically-relevant case study in
applying our framework to formalize and reason about nontrivial physical pro-
tocols. Moreover, it also illustrates how we can extend our framework (originally
defined over a free term algebra) to handle protocols involving equationally-
defined operators on messages and how this can be done in a general way. Alto-
gether, we have worked with five different protocols and two different message
theories. To support this, we have used Isabelle’s locales construct to formalize
an abstract message theory and a general theory of protocols. Within the locales,
we prove general, protocol-independent facts about (abstract) messages, which



hold when we subsequently instantiate the locales with our different concrete
message theories and protocols.

Contributions. First, we show that our framework for modeling physical security
protocols can be extended to handle protocols involving equationally-defined op-
erators. This results in a message theory extended with an XOR operator and
a zero element, consisting of equivalence classes of messages with respect to the
equational theory of XOR. We use normalized terms here as the representatives
of the equivalence classes. With this extension, we substantially widen the scope
of our approach. Note that this extension is actually independent of our “phys-
ical” refinement of communication and also could be used in protocol models
based on the standard Dolev-Yao intruder.

Second, we show how such extensions can be made in a generic, modular way.
Noteworthy here is that we could formulate a collection of message-independent
and protocol-independent facts that hold for a large class of intended extensions.
An example of such a fact is that the minimal message-transmission time between
two agents A and B determines a lower bound on the time difference between
A creating a fresh nonce and B learning it.

Finally, physical protocols often contain time-critical steps, which must be
optimized to reduce computation and communication time. As a result, these
steps typically employ low-level operations like XOR, in contrast to more con-
ventional protocols where nanosecond time differences are unimportant. Our
experience indicates that the use of such low-level, equationally-defined opera-
tors results in substantial additional complexity in reasoning about protocols in
comparison to the standard Dolev-Yao model. Moreover, the complexity is also
higher because security properties are topology dependent and so are attacks.
Attacks now depend not only on what the attackers know, but also their own
physical properties, i.e., the possible constellations of the distributed intruders.
Due to this complexity, pencil-and-paper proofs quickly reach their limits. Our
work highlights the important role that Formal Methods can play in the system-
atic development and analysis of physical protocols.

Organization. In Section 2, we provide background on Isabelle/HOL and the
distance bounding protocols that we analyze in this paper. In Section 3, we
present our formal model of physical protocols, which we apply in Section 4.
Finally, in Section 5, we discuss related work and draw conclusions.

2 Background

2.1 Isabelle/HOL

Isabelle [8] is a generic theorem prover with a specialization for higher-order logic
(HOL). We will avoid Isabelle-specific details in this paper as far as possible or
explain them in context, as needed.

We briefly review two aspects of Isabelle/HOL that are central to our work.
First, Isabelle supports the definition of (parameterized) inductively-defined sets.



An inductively-defined set is defined by sets of rules and denotes the least set
closed under the rules. Given an inductive definition, Isabelle generates a rule
for proof by induction.

Second, Isabelle provides a mechanism, called locales [11] that can be used
to structure generic developments, which can later be specialized. A locale can
be seen as either a general kind of proof context or, alternatively, as a kind of
parameterized module. A locale declaration contains:

– a name, so that the locale can be referenced and used,
– typed parameters, e.g., ranging over relations or functions,
– assumptions about the parameters (the module axioms), and
– functions defined using the parameters.

In the context of a locale, one can make definitions and prove theorems that
depend on the locale’s assumptions and parameters. Finally, a locale can be
interpreted by instantiating its parameters so that the assumptions are theorems.
After interpretation, not only can the assumptions be used for the instance, but
also all theorems proved and definitions made in the locale’s context.

2.2 Distance Bounding Protocols

Distance bounding protocols are two-party protocols involving a verifier who
must establish a bound on his distance to a prover. These protocols were origi-
nally introduced in [1] to prevent a man-in-the-middle attack called Mafia Fraud.
Suppose, for example, that an attacker possesses a fake automated teller ma-
chine (ATM). When a user uses his banking card to authenticate himself to
the fake ATM, the attacker simply forwards the authenticating information to
a real ATM. After successful authentication, the attacker can plunder the user’s
account. Distance bounding protocols prevent this attack by determining an up-
per bound on the distance between the ATM and the banking card. The ATM
is the verifier and checks that the card, acting as the prover, is sufficiently close
by to rule out the man-in-the-middle.

The idea behind distance bounding is simple. The verifier starts by sending
a challenge to the prover. The prover’s reply contains an authenticated message
involving the challenge, which shows that it has been received by the prover.
After receiving the reply, the verifier knows that the challenge has traveled back
and forth between him and the prover. Assuming that the signal encoding the
challenge travels with a known speed, the verifier can compute an upper bound
on the distance to the prover by multiplying the measured round-trip time of
his challenge by the signal’s velocity.

For distance bounding to yield accurate results, the verifier’s round-trip time
measurement should correspond as close as possible to the physical distance
between the prover and verifier. This is achieved by having the prover generate
his response as quickly as possible. Expensive cryptographic operations such as
digital signatures should therefore be avoided. A distance bounding protocol can
typically be decomposed into three phases: a setup phase, a measurement phase,
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Fig. 1. Pattern for Distance Bounding Protocols

and a validation phase. Only the measurement phase is time-critical. The prover
makes computationally inexpensive operations, such as XOR, during this phase
and may use more sophisticated cryptographic algorithms, such as commitment
schemes and message-authentication codes, in the other phases.

In [4], Meadows et al. present a suite of distance bounding protocols, follow-
ing the pattern shown in Figure 1. Here, V denotes the verifier and P is the
prover. Both parties initially create nonces NV and NP . V then sends a request
to P , followed by a nonce NV . Upon receiving NV , P replies as quickly as pos-
sible with F (NV,NP, P ), where F is instantiated with an appropriate function.
Finally P uses a key KV P shared with V to create a message-authentication
code (MAC). This proves that the nonce NP originated with P and binds the
reply in the measurement phase to P ’s identity.

This protocol description is schematic in F . [4] provides four examples of
instantiations of F (NV,NP, P ) built from different combinations of concatena-
tion, exclusive-or, and hashing, e.g. (NV ⊕P,NP ) or, even simpler, (NV,NP, P ).
Each instantiation uses only simple cryptographic operations, which could even
be implemented in hardware to further reduce their computation time.

The security property we want to prove is: “If V has successfully finished a
protocol run with P , then V ’s conclusion about the distance to P is an upper
bound on the physical distance between the two nodes.” We will formalize this
property, along with associated provisos, in subsequent sections.

3 Formal Model

In this section, we present our model of physical protocols. To support the verifi-
cation of multiple protocols, we use locales to parameterize our model both with
respect to the concrete protocol and message theory. Figure 2 depicts the theories
we formalized in Isabelle and their dependencies. Some of these theories are con-
crete to begin with (e.g. Geometric Properties of R3) whereas other theories con-
sist of locales or their interpretations. For example, the Abstract Message Theory
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contains a locale describing message theories, which is interpreted in our two con-
crete message theories (Free and XOR). In the theory Parametrized Communica-
tion Systems, we abstractly define the set of valid traces as a set of (parametric)
inductive rules. In formalizations of concrete protocols using either of the two
concrete message theories, we can therefore use both message-theory indepen-
dent and message-theory specific facts by importing the required theories.

3.1 Agents and Environment

Agents are either honest agents or dishonest intruders. We model each kind using
the natural numbers nat . Hence there are infinitely many agents of each kind.

datatype agent = Honest nat | Intruder nat

We refer to agents using capital letters like A and B. We also write HA and HB

for honest agents and IA and IB for intruders, when we require this distinction.
In contrast to the Dolev-Yao setting, agents’ communication abilities are subject
to the network topology and physical laws. Therefore, we cannot reduce a set of
dishonest users at different locations to a single one.

Location and Physical Distance. To support reasoning about physical proto-
cols, we associate every node A with a location locA. We define loc : agent→ R3

as an uninterpreted function constant. Protocol-specific assumptions about the
position of nodes can be added as local assumptions to the corresponding the-
orems or using Isabelle/HOL’s specification mechanism.1 We use the standard
1 Definition by specification allows us to assert properties of an uninterpreted function.

It uses Hilbert’s ε-operator and requires a proof that a function with the required
properties exists.



Euclidean metric on R3 to define the physical distance between two agents A
and B as | locA− locB |.

Taking the straight-line distance between the locations of the agents A and
B in R3 as the shortest path (taken for example by electromagnetic waves
when there are no obstacles), we define the line-of-sight communication distance
cdistLoS : agent× agent→ R as

cdistLoS (A, B) =
| locA− locB |

c
,

where c is the speed of light. Note that cdistLoS depends only on A and B’s
location and is independent of the network topology.

Transmitters, Receivers, and Communication Distance. To distinguish
communication technologies with different characteristics, we equip each agent
with an indexed set of transmitters.

datatype transmitter = Tx agent nat

The constructor Tx returns a transmitter, given an agent A and an index i,
denoted Tx i

A. Receivers are formalized analogously.

datatype receiver = Rx agent nat

We model the network topology using the uninterpreted function constant
cdistNet : transmitter × receiver → R≥0 ∪ {⊥}. We use cdistNet(Tx i

A, Rx j
B) =

⊥ to denote that Rx j
B cannot receive transmissions from Tx i

A. In contrast,
cdistNet(Tx i

A, Rx j
B) = t, where t 6= ⊥, describes that Rx j

B can receive signals
(messages) emitted by Tx i

A after a delay of at least t time units. This function
models the minimal signal-transmission time for the given configuration. The
time delay reflects environmental factors such as the communication medium
used by the given transceivers and obstacles between transmitters and receivers.
Since we assume that information cannot travel faster than the speed of light, we
always require that cdistLoS (A, B) ≤ cdistNet(Tx i

A, Rx j
B) using the specification

mechanism.
We use the formalization of real numbers and vectors provided in Isabelle’s

standard library for time and location. Additionally, we use the formalization of
the Cauchy-Schwarz inequality [12] to establish that cdistLoS is a pseudometric.

3.2 Messages

Instead of restricting our model to a concrete message theory, we first define a
locale that specifies a collection of message operators and their properties. In
the context of this locale, we prove a number of properties independent of the
protocol and message theory. For example, cdistLoS (A, B) is a lower bound on
the time required for a nonce freshly created by A to become known by another
agent B, since the nonce must be transmitted. For the results in [6], we have



instantiated the locale with a message theory similar to Paulson’s [7], modeling
a free term algebra. In Section 3.6, we describe the instantiation with a message
theory that includes the algebraic properties of the XOR operator, which we use
in Section 4.

The theory of keys is shared by all concrete message theories and reuses
Paulson’s formalization. Keys are represented by natural numbers. The function
inv : key → key partitions the set of keys into symmetric keys, where inv k = k,
and asymmetric keys. We model key distributions as functions from agents to
keys, e.g. the theory assumes that KAB returns a shared symmetric key for a
pair of agents A and B.

Abstract Message Theory Our Message Theory locale is parametric in
the message type ’msg and consists of the following function constants.

Nonce : agent → nat → ’msg Key : key → ’msg
Int : int → ’msg Real : real → ’msg
Hash : ’msg → ’msg Crypt : key → ’msg → ’msg
MPair : ’msg → ’msg → ’msg parts : ’msg set → ’msg set
subterms : ’msg set → ’msg set dm : agent → ’msg set → ’msg set

This formalizes that every interpretation of the Message Theory locale de-
fines the seven given message construction functions and three functions on
message sets. A Nonce is tagged with a unique identifier and the name of the
agent who created it. This ensures that independently created nonces never col-
lide. Indeed, even colluding intruders must communicate to share a nonce. The
constructor Crypt denotes signing, asymmetric, or symmetric encryption, de-
pending on the key used. We also require that functions for pairing (MPair),
hashing (Hash), integers (Int), and reals (Real) are defined. We use the ab-
breviations 〈A, B〉 for MPair A B and {m}k for Crypt k m. Moreover, we de-
fine MAC k(m) = Hash〈Key k, m〉 as the keyed MAC of the message m and
MACM k(m) = 〈MAC k(m), m〉 as the pair consisting of m and its MAC . Ad-
ditionally, every interpretation of Message Theory must define the functions
subterms, parts, and dm. These respectively formalize the notions of subterms,
extractable subterms, and the set of messages derivable from a set of known mes-
sages by a given agent. In the free message theory, subterms corresponds to syn-
tactic subterms, for example x ∈ subterms({Hash x}) while x /∈ parts({Hash x}).

We assume that the following properties hold for any interpretation of parts.

X ∈ H

X ∈ parts(H)
X ∈ parts(H)

∃Y ∈ H.X ∈ parts({Y })
G ⊆ H

parts(G) ⊆ parts(H)

parts(parts(H)) = parts(H) parts(H) ⊆ subterms(H)

These properties allow us to derive most of the lemmas about parts from Paul-
son’s formalization [7] in our abstract setting. For example,

parts(G) ∪ parts(H) = parts(G ∪H) .



Similar properties are assumed to hold for the subterms function.
We also assume properties of the message-derivation operator dm that state

that no agent can guess another agent’s nonces or keys, or forge encryptions
or MAC s. These assumptions are reasonable for message theories formalizing
idealized encryption.

Nonce B NB ∈ subterms(dm A H) A 6= B

Nonce B NB ∈ subterms(H)
Key k ∈ parts(dm A H)

Key k ∈ parts(H)

{m}k ∈ subterms(dm A H)
{m}k ∈ subterms(H) ∨Key k ∈ parts(H)

MAC k(m) ∈ subterms(dm A H)
MAC k(m) ∈ subterms(H) ∨Key k ∈ parts(H)

3.3 Events and Traces

We distinguish between three types of events: an agent sending a message, re-
ceiving a message, or making a claim. We use a polymorphic data type to model
these different message types.

datatype ’msg event = Send transmitter ’msg (’msg list)
| Recv receiver ’msg | Claim agent ’msg

A trace is a list of timed events, where a timed event (t, e) ∈ real × event pairs
a time-stamp with an event.

A timed event (tS , Send Tx i
A m L) denotes that the agent A has sent the

message m using his transmitter Tx i
A at time tS and has associated the protocol

data L with the event. The list of messages L models local state information
and contains the messages used to construct m. The sender may require these
messages in subsequent protocol steps. Storing L with the Send event is necessary
since we support non-free message construction functions like XOR where a
function’s arguments cannot be recovered from the function’s image alone.

A send event like the above may result in multiple timed Recv -events of the
form (tR, Recv Rxj

B m), where the time-stamps tR and the receivers Rxj
B must

be consistent with the network topology. Note that the protocol data stored in
L when sending the message does not affect the events on the receiver’s side.

A Claim-event models a belief or conclusion made by a protocol participant,
formalized as a message. For example, after successfully completing a run of a
distance bounding protocol with a prover P , the verifier V concludes at time t
that d is an upper bound on the distance to P . We model this by adding the
timed event (t, Claim V 〈P, Real d〉) to the trace. The protocol is secure if the
conclusion holds for all traces containing this claim event.

Note that the time-stamps used in traces and the rules use the notion of
absolute time. However, agents’ clocks may deviate arbitrarily from absolute
time. We must therefore translate the absolute time-stamps to model the local
views of agents. We describe this translation in Section 3.4.



tr ∈ Tr tR ≥ maxtime(tr)

(tS ,Send Tx i
A m L) ∈ tr

cdistNet(Tx i
A,Rx j

B) = tAB

tAB 6= ⊥ tR ≥ tS + tAB

tr.(tR,Recv Rx j
B m) ∈ Tr

Net

tr ∈ Tr t ≥ maxtime(tr)
m ∈ dmIA(knowsIA(tr))

tr.(t,Send Txk
IA

m [ ]) ∈ Tr
Fake

[ ] ∈ Tr
Nil

tr ∈ Tr t ≥ maxtime(tr) step ∈ proto
(act,m) ∈ step(view(HA, tr), HA, ctime(HA, t))

m ∈ dmHA(knowsHA(tr))

tr.(t, translateEv(HA, act,m)) ∈ Tr
Proto

Fig. 3. Rules for Tr

Knowledge and Used Messages. Each agent A initially possesses some
knowledge, denoted initKnowsA, which depends on the protocol executed. We
use locales to underspecify the initial knowledge. We define a locale InitKnows
that only includes the constant initKnows : agent → ’msg set. Different key
distributions are specified by locales extending InitKnows with additional as-
sumptions. For example, the locale InitKnows Shared assumes that any two
agents A and B share a secret key Key KAB . In a system run with trace tr, A’s
knowledge consists of all messages he received together with his initial knowl-
edge.

knowsA(tr) = {m |∃ k t.(t, Recv Txk
A m) ∈ tr} ∪ initKnowsA

Each agent can derive all messages in the set dmA(knowsA(tr)) by applying the
derivation operator to the set of known messages. We use the subterms function
to define the set of messages used in a trace tr.

used(tr) = {n | ∃ A k t m L.(t, Send Txk
A m L) ∈ tr ∧ n ∈ subterms({m})}

A nonce is fresh for a trace tr if it is not in used(tr). Note that since a nonce is
not fresh if its hash has been sent, we cannot use parts instead of subterms in
the above definition.

3.4 Network, Intruder, and Protocols

We now describe the rules used to inductively define the set of traces Tr for a sys-
tem parameterized by a protocol proto, an initial knowledge function initKnows,
and the parameters from the abstract message theory. The base case, modeled
by the Nil rule in Figure 3, states that the empty trace is a valid trace for
all protocols. The other rules describe how valid traces can be extended. The
rules model the network behavior, the possible actions of the intruders, and the
actions taken by honest agents following the protocol steps.



Network Rule. The Net-rule models message transmission from transmitters
to receivers, constrained by the network topology as given by cdistNet . A Send -
event from a transmitter may induce a Recv -event at a receiver only if the
receiver can receive messages from the transmitter as specified by cdistNet . The
time delay between these events is bounded below by the communication distance
between the transmitter and the receiver.

If there is a Send -event in the trace tr and the Net-rule’s premises are
fulfilled, a corresponding Recv -event is appended (denoted by xs.x) to the trace.
The restriction on connectivity and transmission delay are ensured by tAB 6= ⊥
and tR ≥ tS +tAB . Here, tAB is the communication distance between the receiver
and transmitter, tS is the sending time, and tR is the receiving time.

Note that one Send -event can result in multiple Recv -events at the same
receiver at different times. This is because cdistNet models the minimal com-
munication distance and messages may also arrive later, for example due to the
reflection of the signal carrying the message. Moreover, a Send -event can result
in multiple Recv -events at different receivers, modeling for example broadcast
communication. Finally, note that transmission failures and jamming by an in-
truder, resulting in message loss, are captured by not applying the Net-rule for
a given Send -event and receiver, even if all premises are fulfilled.

The time-stamps associated with Send -events and Recv -events denote the
starting times of message transmission and reception. Thus, our network rule
captures the latency of links, but not the message-transmission time, which also
depends on the message’s size and the transmission speed of the transmitter and
the receiver. Some implementation-specific attacks, such as those described in
[5, 13], are therefore not captured in our model.

The premise t ≥ maxtime(tr), included in every rule (except Nil), ensures
that time-stamps increase monotonically within each trace. Here t denotes the
time-stamp associated with the new event and maxtime(tr) denotes the latest
time-stamp in the trace tr. This premise guarantees that the partial order on
events induced by their time-stamps (note that events can happen simultane-
ously) is consistent with the order of events in the list representing the trace.

Intruder Rule. The Fake-rule in Figure 3 describes the intruders’ behavior. An
intruder can always send any message m derivable from his knowledge. Intruders
do not need any protocol state since they behave arbitrarily.

Since knowledge is distributed, we use explicit Send -events and Recv -events
to model the exchange of information between colluding intruders. With an ap-
propriate cdistNet function, it is possible to model an environment where the
intruders are connected by high-speed links, allowing them to carry out worm-
hole attacks. Restrictions on the degree of cooperation between intruders can be
modeled as predicates on traces. Internal and external attackers are both cap-
tured since they differ only in their initial knowledge (or associated transceivers).

Protocols. In contrast to intruders who can send arbitrary derivable messages,
honest agents follow the protocol. A protocol is defined by a set of step functions.



Each step function takes the local view and time of an agent as input and returns
all possible actions consistent with the protocol specification.

There are two types of possible actions, which model an agent either sending
a message with a given transmitter id and storing the associated protocol data
or making a claim.

datatype ’msg action = SendA nat (’msg list ) | ClaimA

Note that message reception has already been modeled by the Net-rule.
An action associated with an agent and a message can be translated into the

corresponding trace event using the translateEv function.

translateEv(A, SendA k L, m) = Send Txk
A m L

translateEv(A, ClaimA , m) = Claim A m

A protocol step is therefore of type agent× trace×real → (action×msg) set.
Since our protocol rule Proto (described below) is parameterized by the proto-
col, we define a locale Protocol that defines a constant proto of type step set
and inductively define Tr in the context of this locale.

Since the actions of an agent A only depend on his own previous actions and
observations, we define A’s view of a trace tr as the projection of tr on those
events involving A. For this purpose, we introduce the function occursAt , which
maps events to associated agents, e.g. occursAt(Send Tx i

A m L) = A.

view(A, tr) = [(ctime(A, t), ev) |(t, ev) ∈ tr ∧ occursAt(ev) = A]

Since the time-stamps of trace events refer to absolute time, the view function
accounts for the offset of A’s clock by translating times using the ctime function.
Given an agent and an absolute time-stamp, the uninterpreted function ctime :
agent × real → real returns the corresponding time-stamp for the agent’s clock.

Using the above definitions, we define the Proto-rule in Figure 3. For a
given protocol, specified as a set of the step functions, the Proto rule describes
all possible actions of honest agents, given their local views of a valid trace tr at
a given time t. If all premises are met, the Proto-rule appends the translated
event to the trace. Note that agents’ behavior, modeled by the function step, is
based only on the local clocks of the agents, i.e., agents cannot access the global
time. Moreover, the restriction that all messages must be in dmHA

(knowsHA
(tr))

ensures that agents only send messages derivable from their knowledge.

3.5 Protocol-independent Results

The set of all possible traces Tr is inductively defined by the rules Nil, Net,
Fake, and Proto in the context of the Message Theory, InitKnows, and
Protocol locales. To verify a concrete protocol, we instantiate these locales
thereby defining the concrete set of traces for the given protocol, initial knowl-
edge, and message theory. Additional requirements are specified by defining new
locales that extend Protocol and InitKnows.



Our first lemma specifies a lower bound on the time between when an agent
first uses a nonce and another agent later uses the same nonce. The lemma holds
whenever the initial knowledge of all agents does not contain any nonces.

Lemma 3.1 Let A be an arbitrary (honest or dishonest) agent, N an arbitrary
nonce, and (tSA, Send Tx i

A mA LA) the first event in a trace tr where N ∈
subterms {mA}. If tr contains an event (t, Send Tx j

B mB LB) or (t, Recv Rx j
B

mB) where A 6= B and N ∈ subterms {mB}, then t− tSA ≥ cdistLoS (A, B).

Our next lemma holds whenever agents’ keys are not parts of protocol mes-
sages and concerns when MACs can be created. Note that we need the notion
of extractable subterms here since protocols use keys in MACs, but never send
them in extractable positions.

Lemma 3.2 Let A and B be honest agents and C a different possibly dishon-
est agent. Furthermore let (tSC , Send Tx i

C mC LC) be an event in the trace
tr where MAC KAB

(m) ∈ subterms {mC} for some message m and a shared
secret key KAB. Then, for E either equal to A or B, there is a send event
(tSE , Send Tx j

E mE LE) ∈ tr where MAC KAB
(m) ∈ subterms {mE} and

tSC − tSE ≥ cdistLoS (E,C).

Note that the lemmas are similar to the axioms presented in [4]. The proofs
of these lemmas can be found in our Isabelle/HOL formalization [14].

3.6 XOR Message Theory

In this section, we present a message theory including XOR, which instantiates
the message-theory locale introduced in Section 3.2.

The Free Message Type. We first define the free term algebra of messages.
Messages are built from agent names, integers, reals, nonces, keys, hashes, pairs,
encryption, exclusive-or, and zero.

datatype fmsg = AGENT agent | INT int | REAL real
| NONCE agent nat | KEY key | HASH fmsg
| MPAIR fmsg fmsg | CRYPT key fmsg
| fmsg ⊕̄ fmsg | ZERO

To faithfully model ⊕̄, we require the following set of equations E:

(x ⊕̄ y) ⊕̄ z ≈ x ⊕̄(y ⊕̄ z) (A) x ⊕̄ y ≈ y ⊕̄x (C)
x ⊕̄ZERO ≈ x (U) x ⊕̄x ≈ ZERO (N)

We define the corresponding equivalence relation =E as the reflexive, symmetric,
transitive, and congruent closure of E. We also define the reduction relation→E

as the reflexive, transitive, and congruent closure of E, where the cancellation
rules (U) and (N) are directed from left to right and (A) and (C) can be used in
both directions. Note that x→E y implies x =E y, for all x and y.



reduced (AGENT a)
Agent

reduced (INT i)
Int

reduced (REAL i)
Real

reduced (NONCE a na)
Nonce

reduced h

reduced (HASH h)
Hash

reduced a reduced b

reduced (MPAIR a b)
MPair

reduced m

reduced (CRYPT k m)
Crypt

reduced a reduced b standard a a < first b b 6= ZERO

reduced (a ⊕̄ b)
Xor

Fig. 4. Rules for reduced

Reduced Messages and the Reduction Function. We define the predicate
standard on fmsg that returns true for all messages where the outermost con-
structor is neither equal to ⊕̄ nor ZERO . We also define the projection function
first , where first x equals a when x = a ⊕̄ b for some a and b and equals x
otherwise. We use both functions to define reduced messages. We show below
that every equivalence class with respect to =E contains exactly one reduced
message, used as the classes canonical representative. To handle commutativity,
we define a linear order on fmsg using the underlying orders on nat , int , and
agent . A message is reduced if ⊕̄ messages are right-associated, ordered, and all
cancellation rules have been applied. This is captured by the inductive definition
in Figure 4.

To obtain a decision procedure for x =E y, we define a reduction function ↓
on fmsg that reduces a message, that is x↓ is reduced and (x↓) =E x. We begin
with the definition of an auxiliary function ⊕? : fmsg → fmsg : a⊕? b = if b =
ZERO then a else a ⊕̄ b.

We now define the main part of the reduction: the function ⊕↓ : fmsg →
fmsg → fmsg presented in Figure 5 combines two reduced messages a and b,
yielding (a ⊕̄ b)↓. Note that the order of the equations is relevant: given overlap-
ping patterns, the first applicable equation is used. The algorithm is similar to
a merge-sort on lists. The first two cases are straightforward and correspond to
the application of the (U) rule. The other cases are justified by combinations of
all four rules.

The definition of (·)↓ : fmsg → fmsg is straightforward:

(HASH m)↓ = HASH m↓
(MPAIR a b)↓ = MPAIR (a↓) (b↓)
(CRYPT k m)↓ = CRYPT k (m↓)
(a ⊕̄ b)↓ = (a↓)⊕↓(b↓)
x↓ = x



x⊕↓ ZERO = x (1)

ZERO ⊕↓ x = x (2)

(a1 ⊕̄ a2)⊕↓(b1 ⊕̄ b2) = if a1 = b1 then a2⊕↓ b2 (3)

else if a1 < b1 then a1⊕?(a2⊕↓(b1 ⊕̄ b2)) (4)

else b1⊕?((a1 ⊕̄ a2)⊕↓ b2) (5)

(a1 ⊕̄ a2)⊕↓ b = if a1 = b then a2 (6)

else if a1 < b then a1⊕?(a2⊕↓ b) (7)

else b ⊕̄(a1 ⊕̄ a2) (8)

a⊕↓(b1 ⊕̄ b2) = (b1 ⊕̄ b2)⊕↓ a (9)

a⊕↓ b = if a = b then ZERO (10)

else if a < b then a ⊕̄ b else b ⊕̄ a (11)

Fig. 5. Definition of ⊕↓

We have proved the following facts about reduction: (1) if reduced x then
(x↓) = x, (2) reduced (x↓), and (3) x→E (x↓). Using these facts we establish:

Lemma 3.3 For all messages x and y, x =E y iff (if and only if) (x↓) = (y↓).
Furthermore, if reduced x and reduced y, then x =E y iff x = y.

The Message Type, parts, and dm. Given the above lemma, we use the
function ↓ and the predicate reduced to characterize =E . Isabelle’s typedef mech-
anism allows us to define the quotient type msg with {m | reduced m} as the
representing set. This defines a new type msg with a bijection between the rep-
resenting set in fmsg and msg given by the function Abs msg : fmsg → msg
and its inverse Rep msg : msg → fmsg . Note that =E on fmsg corresponds to
object-logic equality on msg . This is reflected in the following lemma.

Lemma 3.4 For all messages x and y, x = y iff Rep msg(x) =E Rep msg(y).

We define functions on msg by using the corresponding definitions on fmsg
and the embedding and projection functions. That is, we lift the message con-
structors to msg using the ↓ function. For example:

Nonce a n = Abs msg(NONCE a n)
MPair a b = Abs msg(MPAIR (Rep msg(a)) (Rep msg(b)))
Hash m = Abs msg(HASH (Rep msg(m)))
Xor a b = Abs msg((Rep msg(a) ⊕̄Rep msg(b))↓)
Zero = Abs msg(ZERO )

In the following, we write 0 for Zero and x⊕ y for Xor x y. We define a function
fparts on fmsg that returns all extractable subterms of a given message, e.g.



m ∈M
m ∈ dmA(M)

inj
0 ∈ dmA(M)

zero
m ∈ dmA(M)

Hash m ∈ dmA(M)
hash

〈m,n〉 ∈ dmA(M)

m ∈ dmA(M)
fst

〈m,n〉 ∈ dmA(M)

n ∈ dmA(M)
snd

m ∈ dmA(M) n ∈ dmA(M)

〈m,n〉 ∈ dmA(M)
pair

m ∈ dmA(M) n ∈ dmA(M)

m⊕n ∈ dmA(M)
xor

m ∈ dmA(M) Key k ∈ DMA(M)

{m}k ∈ dmA(M)
enc

Nonce A n ∈ dmA(M)
nonce

{m}k ∈ dmA(M) (Key k)−1 ∈ dmA(M)

m ∈ dmA(M)
dec

Agent a ∈ dmA(M)
agent

Int n ∈ dmA(M)
int

Real n ∈ dmA(M)
real

Fig. 6. Rules for dmA(M)

m ∈ fparts({CRYPT k m}), but m /∈ fparts({HASH m}). The function parts
on msg that is used to instantiate the function of the same name in the message-
theory locale is then defined as

parts(H) = {Abs msg(m) | m ∈ fparts {Rep msg(x) | x ∈ H}} .

This defines the parts of a message m in the equivalence class represented by
m↓ as the fparts of m↓. For example parts({X ⊕X}) = {0}. The function
subterms is defined similarly, but returns all subterms and not just the ex-
tractable ones. We give the rules for the inductively-defined message-derivation
operator dm : agent → msg set → msg set in Figure 6. The rules specify message
decryption, projection on pairs, pairing, encryption, signing, hashing, XORing,
and the generation of integers, reals, agent names, and nonces. For example, the
Dec-rule states that if an agent A can derive the ciphertext {m}k and the de-
cryption key (Key k)−1, then he can also derive the plaintext m. When Key k
is used as a signing key, A uses the verification key (Key k)−1 to verify the
signature. The Xor rule uses the constructor Xor , which ensures that the re-
sulting message is reduced. We can now interpret the locale Message Theory
by proving that the defined operators have the required properties.

4 Protocol Correctness

In this section, we present highlights from our verification of instances of the
protocol pattern in Figure 1. Complete details are provided in [14]. We first
formalize the protocol pattern and its desired security properties. Afterwards,



we reduce the security of pattern instances to properties of the rapid-response
function used. Finally, we consider several concrete rapid-response functions pro-
posed in [4] and analyze the security of the corresponding instantiations.

4.1 Protocol Rules

We conduct our security analysis using our XOR message theory. We first de-
fine the concrete initial knowledge as initKnowsA =

⋃
B{Key KAB}, which we

interpret as an instance of the InitKnows Shared locale. Next, we instan-
tiate the Protocol locale by defining the protocol pattern in Figure 1 as
proto = {mdb1 , mdb2 , mdb3 , mdb4}. Each step function mdbi(A, tr, t) yields the
possible actions of the agent A executing the protocol step i with his view of the
trace tr at the local time t.

Our distance bounding protocol definition uses the uninterpreted rapid-response
function F : msg ×msg ×msg → msg and consists of the following steps.2

Start: An honest verifier V can start a protocol run by sending a fresh nonce
using his radio transmitter r at any local time t.

Nonce V NV /∈ used(tr)
(SendA r [ ], Nonce V NV ) ∈ mdb1 (V, tr, t)

Rapid-Response: If a prover P receives a nonce NV , he may continue the pro-
tocol by replying with the message F (NV , NP , P ) and storing the protocol data
[NV , Nonce P NP ]. This information must be stored since it is needed in the au-
thentication step and cannot, in general, be reconstructed from F (NV , NP , P ).

(tRP , Recv Rx r
P NV ) ∈ tr Nonce P NP /∈ used(tr)

(SendA r [NV , Nonce P NP ], F (NV , Nonce P NP , Agent P )) ∈ mdb2 (P, tr, t)

Authentication: After a prover P has answered a verifier’s challenge with a
rapid-response, he authenticates the response with the corresponding MAC.

(tRP , Recv Rx r
P NV ) ∈ tr

(tSP , Send Tx r
P F (NV , Nonce P NP , Agent P ) [NV , Nonce P NP ]) ∈ tr

(SendA r [ ], MACM KV P
(NV , Nonce P NP , Agent P )) ∈ mdb3 (P, tr, t)

Claim: Suppose the verifier receives a rapid-response in the measurement phase
at time tR1 and the corresponding MAC in the validation phase, both involving
the nonce that he initially sent at time tS1 . The verifier therefore concludes that
(tR1 −tS1 )∗c/2 is an upper bound on the distance to the prover P , where c denotes
the speed of light.

(tS1 , Send Tx r
V (Nonce V NV ) [ ]) ∈ tr

(tR1 , Recv (Rx r
V ) F (Nonce V NV , NP , Agent P )) ∈ tr

(tR2 , Recv Rx r
V MACM KV P

(Nonce V NV , NP , Agent P )) ∈ tr

(ClaimA, (Agent P, Real (tR1 − tS1 ) ∗ c/2)) ∈ mdb4 (V, tr, t)
2 We have formalized each step in Isabelle/HOL using set comprehension, but present

the steps here as rules for readability. For each rule r, the set we define by compre-
hension is equivalent to the set defined inductively by the rule r.



The set of traces Tr is inductively defined by the rules Nil, Fake, Net, and
Proto. Note that the same set of traces can be inductively defined by the Nil,
Fake, and Net rules along with rules describing the individual protocol steps.
See [6] for more details on these different representations.

4.2 Security Properties

In this section, we present properties of distance bounding protocols instantiating
the protocol pattern from Figure 1. First, we note that we only consider honest
verifiers. Since successful protocol execution leads to claims on the verifier’s
side, it makes no sense to consider dishonest verifiers. However, we distinguish
between honest and dishonest provers. For honest provers, we require that the
claimed distance after a successful protocol execution denoted by a Claim event
is an upper bound on the physical distance between the prover and the verifier.

Definition 4.1 A distance bounding protocol is secure for honest provers (hp-
secure) iff whenever Claim V 〈P, Real d〉 ∈ tr, then d ≥ | locV − locP |.

In the case of a dishonest prover, it is impossible to distinguish between
different intruders who exchange their keys. Hence, our weaker property must
accommodate for attacks where one intruder pretends to be another intruder.
We therefore require that the claimed distance is an upper bound on the distance
between the verifier and some intruder.

Definition 4.2 A distance bounding protocol is secure for dishonest provers (dp-
secure) iff whenever Claim V 〈P, Real d〉 ∈ tr for an intruder P , then there is
an intruder P ′ such that d ≥ | locV − locP ′ |.

4.3 Security Proofs based on Properties of F

In order to prove security properties of an instance of the protocol pattern, we
show how security properties of the protocol can be reduced to properties of F .
To prove the security of a concrete instantiation, we must then only prove that
it has the required properties.

Definition 4.3 In the following, let X, Y , and Z, be messages, m an atomic
message or a MAC , A, B, and C, agents, and NA, NB, and NC nonce tags.
We define the following properties for a function F : msg ×msg ×msg → msg:

(P0)
(a) If X ∈ H, then F (X, Nonce A NA, Agent A) ∈ dmA H.
(b) If m ∈ parts({F (X, Y, Z)}), then m ∈ parts({X,Y, Z}).
(c) F (X, Nonce A NA, Agent A) 6= Nonce C NC .
(d) F (X, Nonce A NA, Agent A) 6= MACM KBC

(Y, Nonce C NC , Agent C).
(P1) Nonce A NA ∈ subterms(F (Nonce A NA, X, Agent B))
(P2) Nonce B NB ∈ subterms(F (X, Nonce B NB , Agent B))
(P3) Agent B ∈ subterms(F (Nonce A NA, X, Agent B))
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The property (P0) specifies well-formedness conditions on F : (a) F can be
computed from the challenge, (b) F neither introduces new atomic messages nor
MACs, which are not among its arguments, and (c)–(d) F cannot be confused
with the other protocol messages. Properties (P1)–(P3) state that arguments
in certain positions are always subterms of F ’s result as long as the remaining
arguments have the required types. Using these properties, we prove the following
lemmas that give sufficient conditions on F for hp-security and dp-security.

Theorem 4.4 For every function F with properties (P0)–(P2), the resulting
instance of the protocol pattern is an hp-secure distance bounding protocol.

In the proof of Theorem 4.4, (P1) is used to ensure that the nonce sent as
a challenge by the verifier must be involved in the computation of the prover’s
response. Analogously, (P2) ensures that the response can only be computed if
the fresh nonce contributed by the prover is known.

For the case of a dishonest prover, we additionally require (P3) to prevent a
dishonest prover from taking credit for a response sent by an honest one.

Theorem 4.5 For every function F with properties (P0)–(P3), the resulting
instance of the protocol pattern is a dp-secure distance bounding protocol.

We have proved that 〈NV ⊕P, NP〉 and 〈NV , NP , P 〉 have properties (P0)–(P3)
and therefore the corresponding protocol instances are both hp-secure and dp-
secure.

The function F1(NV , NP , P ) = 〈NV ⊕NP , P 〉 lacks (P1) and is not dp-
secure. To see that (P1) fails, consider F1(NV , NV , P ) = 〈0, P 〉, which does not
contain NV as a subterm. Remember that we have defined the subterms of a
message t as the subterms of t↓. A dishonest prover I can use this to execute
the “jumping the gun” attack given in Figure 7. The attack uses the equivalence
F1(NV , NV ⊕NI , I) = 〈NV ⊕(NV ⊕NI ), I〉 = 〈NI , I〉.

In contrast, the function F2(NV , NP , P ) = 〈NV , NP ⊕P 〉 lacks property
(P3) and is therefore hp-secure but not dp-secure. To see that (P3) fails, consider
F2(NV , NI ⊕Agent P, Agent P ) = 〈NV , NI 〉, which does not contain Agent P as
a subterm. This leads to the impersonation attack depicted in Figure 8 violating
the dp-security property. This attack uses the equivalence F2(NV , NP , P ) =
〈NV , NP ⊕P 〉 = F2(NV , NP ⊕I ⊕ P, I).



Overall, proving the properties (P0)–(P4) for a given function and applying
Theorems 4.4 and 4.5 is much simpler than the corresponding direct proofs.
However, finding the correct properties and proving these theorems for the XOR
message theory turned out to be considerably harder than proofs for comparable
theorems about a fixed protocol in the free message theory. This additional
complexity mainly stems from the untyped protocol formalization necessary to
realistically model the XOR operator.

5 Related Work and Conclusions

Our model of physical security protocols extends the Dolev-Yao model with dense
time, network topology, and node location. Each of these properties has been
handled individually in other approaches. For example, discrete and dense time
have been used to reason about security protocols involving timestamps or timing
issues like timeouts and retransmissions [15, 16]. Models encompassing network
topology have been studied in the context of secure routing protocols for ad hoc
networks [17, 18]. Node location and relative distance have been considered in [4,
5]. In [6], we compare our work with these approaches in more detail. While these
approaches address individual physical properties, to the best of our knowledge
our model is the first that provides a general foundation for reasoning about all
three of these properties and their interplay.

The protocol pattern we study comes from Meadows et al. [4]. The authors
give a condition on instances of F (called “simply stable”) under which the re-
sulting protocol is correct in the case of honest provers. They also investigate the
two function instances F1 and F2 that we presented above. They give the attack
on F1. However, as they do not consider the possibility of dishonest provers in
their proof, they classify F2 as secure. Their correctness proofs are based on a
specialized authentication logic, tailored for distance-bounding protocols, that
is presented axiomatically. While they do not provide a semantics, we note that
their axioms can be suitably interpreted and derived within our setting.

From the specification side, our work builds on several strands of research.
The first is the modeling of security protocols as inductively-defined sets of
traces. Our work is not only inspired by Paulson’s inductive method [7], we were
able to reuse some of his theories, in particular his key theory and much of his
free message algebra.

The second strand is research on formalizing equational theories in theorem
provers. Courant and Monin [19] formalize a message algebra including XOR in
Coq, which they use to verify security APIs. They introduce an uninterpreted
normalization function with axiomatically-defined properties, which in turn is
used to define their equivalence relation. Since they do not use a quotient type to
represent equivalence classes, they must account for different representations of
equivalent messages. Paulson’s work on defining functions on equivalence classes
[20] uses a quotient type construction in Isabelle/HOL that is similar to ours,
but represents equivalence classes as sets instead of canonical elements.



The final strand concerns developing reusable results by proving theorems
about families of inductively-defined sets. In our work, we give generic formal-
izations of sets of messages and traces, including lemmas, which hold for different
instances. The key idea is to use one parameterized protocol rule, instead of a
collection of individual rules, for the protocol steps. The inductive definition
is then packaged in a locale, where the locale parameter is the rule parame-
ter, and locale assumptions formalize constraints on the protocol steps (such as
well-formedness). Note that this idea is related to earlier work on structuring
(meta)theory [21–23] using parameterized inductively-defined sets, where the
theorems themselves directly formalize the families of sets. Overall, our work
constitutes a substantial case study in using locales to structure reusable theo-
ries about protocols. Another case study, in the domain of linear arithmetic, is
that of [24].

In conclusion, our model has enabled us to formalize protocols, security prop-
erties, and environmental assumptions that are not amenable to formal analysis
using other existing approaches. As future work, we plan to extend our model
to capture additional properties of wireless security protocols. We also intend to
refine our model to capture message sizes and transmission rate, rapid bit ex-
change, and online guessing attacks, which would allow us to analyze protocols
such as those presented in [1].
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