Informatik II
Tutorial 2
Subho Shankar Basu
subho.basu@inf.ethz.ch
09.03.2016
Overview

- Debriefing Exercise 1

- Briefing Exercise 2
a) Is it possible to prove the correctness by induction over a?
 - It is **NOT** possible
 - The induction step already fails for $b > 1$
 - The size of a is growing
 - No conclusion is possible on already proven cases and no induction hypothesis is formulated

b) Does the algorithm terminate?
 - Yes, if we can make the value of b reach 1
 - Does it always happen?
 - Yes, at each iteration, the value of b is halved
 - After $\lfloor \log_2 b \rfloor$ steps, b will always be 1
c) How do we prove the correctness of the algorithm when \(b=0 \)?

\[
f(a, b) = \begin{cases}
0 & \text{falls } b = 0 \\
 f(2a, b/2) & \text{falls } b \text{ gerade} \\
 a + f \left(2a, \frac{b-1}{2} \right) & \text{sonst}
\end{cases}
\]

- The induction hypothesis becomes:

\[
\forall a \in \mathbb{N}, \forall b \in \{0, \ldots, n\} : f(a, b) = a \cdot b
\]

- In 1b) we have shown that the case of \(b=1 \) is always reached. Since the integer division of 0 (or 1) by 2 gives 0, then the case of \(b = 0 \) is also always always reached. No change in the proof of this step is required.
Gerade

```java
static boolean gerade(int x) {
    if (x == 0) return true;
    return !gerade(x-1);
}
```

Verdopple

```java
static int verdopple(int x) {
    if (x == 0) return 0;
    return 2 + verdopple(x-1);
}
```

Halbiere

```java
static int halbiere(int x) {
    if (x == 0) return 0;
    if (x == 1) return 0;
    return 1 + halbiere(x-2);
}
```

How many recursive calls?

- **Gerade**
 - X or (X +1)

- **Verdopple**
 - X or (X +1)

- **Halbiere**
 - $\left\lfloor \frac{x}{2} \right\rfloor \text{ or } (\left\lfloor \frac{x}{2} \right\rfloor +1)$
The total number of method calls in terms of a and b, for a single call to f

```java
static int f(int a, int b) {
    if (b == 0) return 0;
    if (gerade(b)) return f(verdopple(a), halbiere(b));
    return a + f(verdopple(a), halbiere(b));
}
```

- $\text{gerade}(b) \Rightarrow b+1$
- $\text{verdopple}(a) \Rightarrow a+1$
- $\text{halbiere}(b) \Rightarrow \lfloor b/2 \rfloor + 1$

Total:

$b+1 + a+1 + \lfloor b/2 \rfloor + 1 \approx a + 3b/2 + 3$
The total number of method calls:

- K recursive steps

\[k \times \left(a + \frac{3b}{2} + 3 \right) \]

This is not correct!

\[N(a, b) = \left(a + \frac{3b}{2} + 3 \right) + N\left(2a, \frac{b}{2} \right) \]
\[= \left(a + \frac{3b}{2} + 3 \right) + \left(2a + \frac{3b}{4} + 3 \right) + N\left(4a, \frac{b}{4} \right) \]
\[= (a + 2^1a + 2^2a + \ldots) + \left(\frac{3b}{2^1} + \frac{3b}{2^2} + \frac{3b}{2^3} + \ldots \right) + (3 + 3 + \ldots) \]
\[= \sum_{i=0}^{k-1} 2^i a + \sum_{i=1}^{k} \frac{3b}{2^i} + k \cdot 3 \]
\[\approx 2ab - a + 3b \]

\[k = \lfloor \log_2 b \rfloor + 1 \]
U1.A3

- Validating inputs
- Throw `IllegalArgumentException`
- Javadoc

```java
/**
 * This function implements the ancient Egyptian multiplication.
 *
 * @param a must be a positive integer
 * @param b must be a positive integer
 * @return the product of a and b
 * @throws IllegalArgumentException if a or b is not positive
 */
public static int mult(int a, int b) throws IllegalArgumentException {
    if (a < 1) throw new IllegalArgumentException("Parameter a must be a positive integer but is " + a);
    if (b < 1) throw new IllegalArgumentException("Parameter b must be a positive integer but is " + b);
    return f(a, b);
}
```
Try/Catch

public static int mult(int a, int b)
{
 try
 {
 if (a <= 0)
 throw new IllegalArgumentException("A negative!");
 }
 catch(IllegalArgumentException e)
 {
 . . .
 }
}
Overview

- Debriefing Exercise 1
- Briefing Exercise 2
Exercise 2

1. Rooted trees (theory)
 a) Given a tree, represent using:
 i. Brackets
 ii. Indented
 b) Given a bracket representation,
 i. draw tree
 ii. indented
 c) Can the tree in 1b) be clearly reconstructed? Why/why not?
 d) For the trees in 1a) and 1b) give:
 i. Height
 ii. Longest paths (trees are directed)
 iii. Set of leaves
Exercise 2

2. Recursive sorting
 a. Constructor: Create array of given size and fill with random numbers
 b. Build method toString
 c. Create recursiveSort(int until) to sort numbers in descending order

3. Binary trees
 a. Functions: leftChild, rightChild, father
 b. toString function that returns the indented tree
 c. Check if a given array is a valid representation of a tree
U2, A1 and A3: Overview of trees

General tree

Binary search tree

Binary tree
Recursive Sorting

How to generate random numbers?

```java
import java.util.Random;

Random randomGenerator = new Random(); // Constructor to create a new random number generator
int randVal = randomGenerator.nextInt(100); // How to use it, [0, 100]; 0 inclusive, 100 exclusive
```

Method toString()

```java
String s = "";
for (int i=0; i<array.length; i++) {
    // Code to create String s
}

return s;
```
Recursion = try to split the large problem intro smaller problems that can be solved easier

recursiveSort(int until)

 until is an index from an array

 E.g. recursiveSort(4) will sort the elements from index 0 to 3

Given a list with N elements

 recursiveSort(i) sorts the elements from 0 to i-1

 In position i we need to add the maximum element remaining in the list (index i to N-1)
Recursive sorting algorithm:

```
| 5 1 9 2 |
| 5 1 9 2 |
| 5 1 9 2 |
| 5 1 9 2 |
| 5 1 9 2 |
| 9 1 5 2 |
| 9 1 5 2 |
| 9 5 1 2 |
| 9 5 1 2 |
| 9 5 2 1 |
| 9 5 2 1 |
```

```
recursiveSort(4)

recursiveSort(3)

recursiveSort(2)

recursiveSort(1)

Ist sortiert!

2 <- findLargest(0,3)
swap(0,2)

2 <- findLargest(1,3)
swap(1,2)

3 <- findLargest(2,3)
swap(2,3)

Swap is not necessary anymore...

→ List sorted in descending order!
Binary trees can be represented as an array

Root is always at index 0

Node (i)
- Left child: position $2i + 1$ in the array
- Right child: position $2i + 2$ in the array

$2^{\text{height}-1} \leq \text{length} < 2^{\text{height}}$

Considering height of A=1
U2.A3

- Verify if a list is a valid representation of a binary tree
  - checkTree()
  - Root at index 0
  - Direct successors for i are at position $2i + 1$ and $2i + 2$
  - What about array length?

- Check if this applies for the passed array
  - Test: Every element has a parent node
  - "The root is its own father."
  - What about the empty nodes?
Have Fun!
Tree traversal...

- Pre-Order (root, left, right)
  ```java
 preOrder(node) {
 print(node)
 if left != null then preOrder(left)
 if right != null then preOrder(right)
 }
  ```

- In-Order (left, root, right)

- Post-Order (left, right, root)
Tree traversal...

- **Pre-Order** (root, left, right)
  - 8, 3, 1, 6, 4, 7, 10, 14, 13

- **In-Order** (left, root, right)
  - 1, 3, 4, 6, 7, 8, 10, 13, 14

- **Post-Order** (left, right, root)

```java
inOrder(node) {
 if left != null then inOrder(left)
 print(node)
 if right != null then inOrder(right)
}
```
Tree traversal...

- Pre-Order (root, left, right)
  
- In-Order (left, root, right)

- Post-Order (left, right, root)

```java
postOrder(node) {
 if left != null then postOrder(left)
 if right != null then postOrder(right)
 print(node)
}
```

- Pre-Order: 8, 3, 1, 6, 4, 7, 10, 14, 13
- In-Order: 1, 3, 4, 6, 7, 8, 10, 13, 14
- Post-Order: 1, 4, 7, 6, 3, 10, 13, 14, 8