Informatik II
Tutorial 2

Subho Shankar Basu
subho.basu@inf.ethz.ch
09.03.2017
Overview

- Debriefing Exercise 1
- Briefing Exercise 2
a) Is it possible to prove the correctness by induction over \(a \)?
 - It is **NOT** possible
 - The induction step already fails for \(b > 1 \)
 - The size of \(a \) is growing
 - No conclusion is possible on already proven cases and no induction hypothesis is formulated, hence **no base case**.

b) Does the algorithm terminate?
 - Yes, if we can make the value of \(b \) reach 1
 - Does it always happen?
 - Yes, at each iteration, the value of \(b \) is halved
 - After \(\lfloor \log_2 b \rfloor \) steps, \(b \) will always be 1
c) How do we prove the correctness of the algorithm when \(b = 0 \)?

\[
\begin{align*}
\text{f}(a, b) = \begin{cases}
0, & \text{falls } b = 0 \\
\text{f}(2a, b/2), & \text{falls } b \text{ gerade} \\
a + \text{f} \left(2a, \frac{b-1}{2} \right), & \text{sonst}
\end{cases}
\end{align*}
\]

- The induction hypothesis becomes:

\[
\forall a \in \mathbb{N}, \forall b \in \{0, \ldots, n\} : f(a, b) = a \cdot b
\]

- In 1b) we have shown that the case of \(b = 1 \) is always reached. Since the integer division of 0 (or 1) by 2 gives 0, then the case of \(b = 0 \) is also always reached. No change in the proof of this step is required.
U1.A2a

- **Gerade**

  ```java
  static boolean gerade(int x) {
      if (x == 0) return true;
      return !gerade(x-1);
  }
  ```

- **Verdopple**

  ```java
  static int verdopple(int x) {
      if (x == 0) return 0;
      return 2 + verdopple(x-1);
  }
  ```

- **Halbiere**

  ```java
  static int halbiere(int x) {
      if (x == 0) return 0;
      if (x == 1) return 0;
      return 1 + halbiere(x-2);
  }
  ```

How many recursive calls?

- X or (X +1)

\[
\left\lfloor \frac{x}{2} \right\rfloor \text{ or } (\left\lfloor \frac{x}{2} \right\rfloor +1)
\]
The total number of method calls in terms of \(a\) and \(b\), for a single call to \(f\)

\[
\text{static int } f\text{(int } a, \text{ int } b) \{ \\
\quad \text{if (} b == 0 \text{) return } 0; \\
\quad \text{if (gerade}(b)\text{) return } f(\text{verdopple}(a), \text{halbiere}(b)); \\
\quad \text{return } a + f(\text{verdopple}(a), \text{halbiere}(b)); \\
\}
\]

- \(\text{gerade}(b) \Rightarrow b+1\)
- \(\text{verdopple}(a) \Rightarrow a+1\)
- \(\text{halbiere}(b) \Rightarrow \lfloor b/2 \rfloor + 1\)

Total:
- \(b+1 + a+1 + \lfloor b/2 \rfloor + 1 \approx a + 3b/2 + 3\)
U1.A2c

The total number of method calls:

- K recursive steps

\[k \times (a + \frac{3b}{2} + 3) \]

This is not correct!

\[
N(a, b) = \left(a + \frac{3b}{2} + 3 \right) + N \left(2a, \frac{b}{2} \right)
\]

\[
= \left(a + \frac{3b}{2} + 3 \right) + \left(2a + \frac{3b}{4} + 3 \right) + N \left(4a, \frac{b}{4} \right)
\]

\[
= \left(a + 2^1a + 2^2a + \ldots \right) + \left(\frac{3b}{2^1} + \frac{3b}{2^2} + \frac{3b}{2^3} + \ldots \right) + (3 + 3 + \ldots)
\]

\[
= \sum_{i=0}^{k-1} 2^i a + \sum_{i=1}^{k} \frac{3b}{2^i} + k \cdot 3 \approx 2ab - a + 3b
\]

\[k = \lceil \log_2 b \rceil + 1 \]
U1.A3

- Validating inputs
- Throw `IllegalArgumentException`
- Javadoc

```java
/**
 * This function implements the ancient Egyptian multiplication.
 *
 * @param a must be a positive integer
 * @param b must be a positive integer
 * @return the product of a and b
 * @throws IllegalArgumentException if a or b is not positive
 */
public static int mult(int a, int b) throws IllegalArgumentException {
    if (a < 1) throw new IllegalArgumentException("Parameter a must be a positive integer but is " + a);
    if (b < 1) throw new IllegalArgumentException("Parameter b must be a positive integer but is " + b);
    return f(a, b);
}
```
public static int mult(int a, int b)
{
 try
 {
 if (a <= 0)
 throw new IllegalArgumentException("A negative!");
 }
 catch(IllegalArgumentException e)
 {
 . . .
 }
}
Overview

- Debriefing Exercise 1
- Briefing Exercise 2
Exercise 2

1. Rooted trees (theory)
 a) Given a tree, represent using:
 i. Brackets
 ii. Indented
 b) Given a bracket representation,
 i. draw tree
 ii. indented
 c) Can the tree in 1b) be clearly reconstructed? Why/why not?
 d) For the trees in 1a) and 1b) give:
 i. Height
 ii. Longest paths (trees are directed)
 iii. Set of leaves
Exercise 2

2. Recursive sorting
 a. Constructor: Create array of given size and fill with random numbers
 b. Build method toString
 c. Create recursiveSort(int until) to sort numbers in descending order

3. Binary trees
 a. Functions: leftChild, rightChild, father
 b. toString function that returns the indented tree
 c. Check if a given array is a valid representation of a tree
U2, A1 and A3: Overview of trees

General tree

Binary search tree

Binary tree
U2.A2

- Recursive Sorting

- How to generate random numbers?

```java
import java.util.Random;

Random randomGenerator = new Random(); // Constructor to create a new random number generator
int randVal = randomGenerator.nextInt(100); // How to use it, [0, 100); 0 inclusive, 100 exclusive

- Method toString()

String s = "";
for (int i=0; i<array.length; i++) {
    // Code to create String s
}

return s;
```
Recursion = try to split the large problem intro smaller problems that can be solved easier

recursiveSort(int until)
- until is an index from an array
- E.g. recursiveSort(4) will sort the elements from index 0 to 3

Given a list with N elements
- recursiveSort(i) sorts the elements from 0 to i-1
- In position i we need to add the maximum element remaining in the list (index i to N-1)
recursiveSort(4)

recursiveSort(3)

recursiveSort(2)

recursiveSort(1)

Ist sortiert!

2 <- findLargest(0,3)
swap(0,2)

2 <- findLargest(1,3)
swap(1,2)

3 <- findLargest(2,3)
swap(2,3)

Swap is not necessary anymore...

→ List sorted in descending order!
Binary trees can be represented as an array

Root is always at index 0

Node (i)
- Left child: position ($2i + 1$) in the array
- Right child: position ($2i + 2$) in the array

$2^{\text{height}-1} \leq \text{length} < 2^{\text{height}}$

Considering height of $A=1$
U2.A3

- Verify if a list is a valid representation of a binary tree
 - checkTree()
 - Root at index 0
 - Direct successors for i are at position $2i + 1$ and $2i + 2$
 - What about array length?

- Check if this applies for the passed array
 - Test: Every element has a parent node
 - "The root is its own father."
 - What about the empty nodes?
Have Fun!
Tree traversal...

- **Pre-Order** (root, left, right)
 - 8, 3, 1, 6, 4, 7, 10, 14, 13

- **In-Order** (left, root, right)

- **Post-Order** (left, right, root)

```java
preOrder(node) {
    print(node)
    if left != null then preOrder(left)
    if right != null then preOrder(right)
}
```
Tree traversal...

- Pre-Order (root, left, right)
- In-Order (left, root, right)
- Post-Order (left, right, root)

```
inOrder(node) {
    if left != null then inOrder(left)
    print(node)
    if right != null then inOrder(right)
}
```

8, 3, 1, 6, 4, 7, 10, 14, 13

1, 3, 4, 6, 7, 8, 10, 13, 14
Tree traversal...

```java
postOrder(node) {
    if left != null then postOrder(left)
    if right != null then postOrder(right)
    print(node)
}
```

- **Pre-Order (root, left, right)**
 - 8, 3, 1, 6, 4, 7, 10, 14, 13

- **In-Order (left, root, right)**
 - 1, 3, 4, 6, 7, 8, 10, 13, 14

- **Post-Order (left, right, root)**
 - 1, 4, 7, 6, 3, 13, 14, 10, 8