On Global Induction Mechanisms in a \(\mu \)-Calculus with Explicit Approximations

Christoph Sprenger
Swedish Institute of Computer Science, Kista, Sweden
sprenger@sics.se

Mads Dam
Royal Institute of Technology, Kista, Sweden
mfd@it.kth.se

FICS ’02 Workshop, Copenhagen
July 20, 2002
Motivation

<table>
<thead>
<tr>
<th></th>
<th>Local Induction</th>
<th>Global Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivations</td>
<td>trees</td>
<td>graphs</td>
</tr>
<tr>
<td>soundness</td>
<td>internal, local induction rules</td>
<td>external, discharge condition</td>
</tr>
<tr>
<td>tradition</td>
<td>“classical“ logics</td>
<td>modal/temporal logics</td>
</tr>
<tr>
<td>μ-calculi</td>
<td>Park’s induction [Kozen]</td>
<td>sequent calculus [Dam/Gurov]</td>
</tr>
<tr>
<td></td>
<td>fixed point tagging [Winskel]</td>
<td>model checking [Sti/Wal,Bra]</td>
</tr>
</tbody>
</table>

Programme: relate local and global inductive reasoning (proof translations)

This work: compare global discharge conditions in context of μ-calculi
Overview

1. Gentzen-style proof system for first-order μ-calculus

 (a) μ-Calculus with explicit approximations

 (b) Local proof rules and graph-shaped derivations (pre-proofs)

2. Induction discharge conditions:

 (A) semantical: runs [Dam/Gurov]

 (B) syntactical: traces

 (C) automata-theoretic

Theorem For a given pre-proof (A), (B) and (C) are equivalent.
\(\mu \)-Calculus with Explicit Approximations (1)

Syntax first-order logic + (approximated) fixed points

\[\phi ::= \text{FOL formula} \mid \Phi_X(t) \quad \text{formulas} \]
\[\Phi_X ::= X \mid \mu X(\overline{x}).\phi \mid \mu^\kappa X(\overline{x}).\phi \quad \text{abstractions} \]

Remarks

☞ individual, predicate and ordinal variables

☞ both \(X \) and \(\overline{x} \) are bound in \(\mu X(\overline{x}).\phi \) and \(\mu^\kappa X(\overline{x}).\phi \)

☞ usual syntactic monotonicity condition restricts fixed point formation
\(\mu \)-Calculus with Explicit Approximations (2)

Models \(\mathcal{M} = (\mathcal{A}, \rho) \) \(\mathcal{A} \) a first-order structure, \(\rho \) a valuation

Semantics interpretation in lattice of predicates with point-wise ordering

\[
\| \mu X(\overline{x}).\phi \|_{\rho}^A = \mu \Psi \\
\| \mu^\kappa X(\overline{x}).\phi \|_{\rho}^A = \mu^{\rho(\kappa)} \Psi
\]

where \(\Psi = \lambda P. \lambda \overline{a}. \| \phi \|_{\rho[P/X, \overline{a}/\overline{x}]}^A \) monotone predicate transformer

Proposition

1. \(\mu \Psi = \bigvee_\alpha \mu^\alpha \Psi \)
2. \(\mu^\alpha \Psi = \bigvee_{\beta < \alpha} \Psi(\mu^\beta \Psi) \)
Sequents and Validity

Sequents are of the form

\[\Gamma \vdash \mathcal{O} \Delta \]

where \(\mathcal{O} = (|\mathcal{O}|, \leq_{\mathcal{O}}) \) is a finite partial order on ordinal variables recording ordinal constraints

Validity subsequent \(\Gamma \vdash \mathcal{O} \Delta \) is valid if

\[\bigwedge \Gamma \rightarrow \bigvee \Delta \]

true in all models \((\mathcal{A}, \rho)\) where \(\rho \) respects \(\mathcal{O} \), i.e. \(\rho(\kappa) \leq \rho(\kappa') \) whenever \(\kappa \leq_{\mathcal{O}} \kappa' \)
Local Proof Rules for Fixed Points

\[\begin{align*}
\text{(\(\mu - L\))} & \quad \frac{\Gamma, (\mu X(x).\phi)(\bar{t}) \vdash_{\Theta} \Delta}{\Gamma, (\mu^\kappa X(x).\phi)(\bar{t}) \vdash_{\Theta'} \Delta} \\
\text{(\(\mu - R\))} & \quad \frac{\Gamma \vdash_{\Theta} (\mu X(x).\phi)(\bar{t}), \Delta}{\Gamma \vdash_{\Theta} \phi[\mu X(x).\phi/X, \bar{t}/x], \Delta} \\
\text{(\(\mu^\kappa - L\))} & \quad \frac{\Gamma, (\mu^\kappa X(x).\phi)(\bar{t}) \vdash_{\Theta} \Delta}{\Gamma, \phi[\mu^{\kappa'} X(x).\phi/X, \bar{t}/x] \vdash_{\Theta'} \Delta} \\
\text{(\(\mu^\kappa - R\))} & \quad \frac{\Gamma \vdash_{\Theta} (\mu^\kappa X(x).\phi)(\bar{t}), \Delta}{\Gamma \vdash_{\Theta} \phi[\mu^{\kappa'} X(x).\phi/X, \bar{t}/x], \Delta}
\end{align*}\]

\[\Theta' = \Theta \cup \{\kappa\}\]

\[\Theta' = \Theta \cup \{(\kappa', \kappa)\}\]

\[\kappa' <_{\Theta} \kappa\]
Derivation Trees and Pre-Proofs

Derivation tree $\mathcal{D} = (\mathcal{N}, \mathcal{E}, \mathcal{L})$ sequent-labeled, consistent with proof rules

Repeat $R = (M, N, \sigma)$ leaf $N(\Gamma' \vdash \mathcal{O}, \Delta')$, σ-instance of $M(\Gamma \vdash \mathcal{O}, \Delta)$

☞ more precisely: $\Gamma \sigma \subseteq \Gamma'$, $\Delta \sigma \subseteq \Delta'$ and $\mathcal{O} \sigma \subseteq \mathcal{O}'$

☞ N called repeat node and M its companion

Pre-proof $\mathcal{P} = (\mathcal{D}, \mathcal{R})$ pair of derivation tree \mathcal{D} and set of repeats \mathcal{R}

☞ every non-axiom leaf appears in exactly one repeat of \mathcal{R}

☞ pre-proof graph: $\mathcal{G}(\mathcal{P}) = \mathcal{D} +$ repeat edges
Runs – Semantic Discharge (1)

Run of Pre-Proof \mathcal{P} (rooted) path of $\mathcal{G}(\mathcal{P})$, labeled by valuations:

$$\Pi = (N_0, \rho_0) \cdots (N_i, \rho_i) \cdots$$

labels: ρ_i respects \mathcal{O}_i, and

tree edge: $(N_i, N_{i+1}) \in \mathcal{E}$ implies ρ_{i+1} agrees with ρ_i on all free variable common to N_{i+1} and N_i, and

repeat: $(N_{i+1}, N_i, \sigma) \in \mathcal{R}$ implies $\rho_{i+1} = \rho_i \circ \sigma$
Proofs – Semantic Discharge (2)

Proof pre-proof \mathcal{P} such that all runs of \mathcal{P} are finite

\Rightarrow proof = pre-proof + well-foundedness

\Rightarrow reference discharge condition to which we compare others

Theorem (Soundness) If there is a proof for $\Gamma \vdash \Delta$ then $\Gamma \vdash \Delta$ is valid.
Traces – Syntactic Discharge (1)

Trace path of $\mathcal{G}(\mathcal{P})$ labeled by ordinal constraints:

$$\tau = (N_0, (\kappa_0, \kappa'_0)) \cdots (N_i, (\kappa_i, \kappa'_i)) \cdots$$

labels: $\kappa'_i \leq \mathcal{O}_i \kappa_i$ where $N_i(\Gamma_i \vdash \mathcal{O}_i \Delta_i)$, and

tree edge: $(N_i, N_{i+1}) \in \mathcal{E}$ implies $\kappa'_i = \kappa_{i+1}$, and

repeat: $(N_{i+1}, N_i, \sigma) \in \mathcal{R}$ implies $\kappa'_i = \sigma(\kappa_{i+1})$
Example – Syntactic Discharge (2)

\[(N_0, (\delta, \varepsilon)) \quad (N_1, (\alpha, \beta)) \quad (N_2, (\beta, \gamma)) \quad (N_3, (\gamma, \gamma)) \quad (N_4, (\kappa, \kappa)) \]

repeat \quad companion \quad repeat \quad companion
Progress – Syntactic Discharge (3)

Progress

- **trace** τ progresses at i if $\kappa'_i \prec_{\mathcal{O}_i} \kappa_i$ (strict decrease),

 is progressive if it progresses at infinitely many positions

- **path** π is *progressive* if there is a progressive trace along a suffix of π

Condition (T-DC): all infinite paths of $\mathcal{G}(\mathcal{P})$ are progressive

Theorem A pre-proof \mathcal{P} satisfies (T-DC) iff it is a proof.
Normal Traces – Automata-Theoretic DC (1)

Observation any trace τ can be transformed into a normal trace $\hat{\tau}$ progressing at most at repeat nodes and with equivalent progress characteristics

\[
(N_0, (\delta, \varepsilon)) \quad (N_1, (\alpha, \alpha)) \quad (N_2, (\alpha, \alpha)) \quad (N_3, (\alpha, \gamma)) \quad (N_4, (\kappa, \kappa))
\]

repeat \hspace{1cm} companion \hspace{1cm} repeat \hspace{1cm} companion
Automata-Theoretic Discharge (2)

Idea construct two Buechi automata, B_1 and B_2, over the alphabet \mathcal{R} s.t.

- B_1 recognises sequences of repeats as traversed by paths of $G(\mathcal{P})$,
- B_2 recognises a sequences of repeats potentially connected through a normal trace (provided the sequence is also accepted by B_1)
- $L(B_1) \subseteq L(B_2)$ characterises previous discharge conditions
Automata-Theoretic Discharge (3)

Automaton B_2 Details

States \[\{ (\kappa, R, \lambda) \mid R = (M, N, \sigma) \text{ and } \sigma(\lambda) \leq_{\mathcal{O}_N} \kappa \} \cup \{ \spadesuit \} \]

Accepting \((\kappa, R, \lambda)\) with \(\sigma(\lambda) <_{\mathcal{O}_N} \kappa\) (progress)

Transitions \((\kappa, R, \lambda) \xrightarrow{R} (\lambda, R', \iota)\)

Example B_2 Transition
Main Result and Summary

Theorem Let \mathcal{P} be a pre-proof. Are equivalent:

1. \mathcal{P} is a proof (all runs of \mathcal{P} are finite)
2. \mathcal{P} satisfies (T-DC) (all infinite paths of $\mathcal{G}(\mathcal{P})$ are progressive)
3. $L(B_1) \subseteq L(B_2)$ (ditto, using normal traces)

The latter can be checked in time $2^{O(n^3 \log n)}$, where $n = |\mathcal{N}|$.
Related and Future Work

Gentzen-style proof systems

☞ subsume Rabin-like syntactic conditions by [Sch/Sim] and [Dam et al.]:
 - obtained by restricting B_2 to states (κ, R, κ) (no renaming)
 - complexity drops to $2^{O(n^2 \log n)}$ (time vs. space)

☞ but: do the new conditions provide more proof power?

Games (modal μ-calculus)

☞ generalisation of μ-ν-traces [Walukiewicz]