

Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred Objects in Videos Denys Rozumnyi^{1,4} Martin R. Oswald^{3,1} Vittorio Ferrari² Marc Pollefeys¹ ¹Department of Computer Science, ETH Zurich ²Google Research Zurich ³University of Amsterdam ⁴Czech Technical University in Prague

Introduction

We jointly estimate the 3D motion, 3D shape, and texture of motionblurred objects by optimizing over multiple motion-blurred frames. **Contributions:**

- \succ First method to optimize over a video instead of a single frame [1-5].
- \succ Better motion modeling, e.g., with bounces and acceleration.
- \succ Explicit exposure gap modeling and its automatic estimation.

Classical motion blur problem formulation for a single frame: Background

Modeling

Mesh Θ : prototype index, vertex offsets, texture map. Fixed mesh parameters: faces, initial vertex positions, texture mapping.

Motion Ω : continuous 3D translation and 3D rotation.

They are modelled by piece-wise polynomials to allow for bounces (abrupt motion changes), acceleration, and other forces.

Exposure gap ϵ : real-valued parameter that denotes fraction of time when camera shutter is closed.

We estimate it automatically as part of the proposed optimization.

Quantitative results

 \succ New state-of-the-art on fast moving object deblurring benchmark [2]. Compared to a single-frame approach [1]:

	TIoU↑	PSNR ↑	SSIM↑	
$\frac{\text{SfB [1]}}{\text{MfB (ours)}}$	0.921 0.927	26.54 26.57	0.722 0.728	
^T ₊ SfB [1]	0.892	21.77	0.628	
ਖ਼ੂ MfB (ours)	0.902	25.01	0.643	
^O ⁺ ₊ SfB [1]	0.863	20.77	0.595	
ਤੂ MfB (ours)	0.889	24.57	0.620	

Table 1: deblurring quality at bounces.

	$e_{\mathbf{t}}\downarrow$	$e_{\mathbf{r}}\downarrow$	$e_{\Theta}\downarrow$
SfB [1]	37.8 %	10.9°	3.0 %
MfB (ours)	20.0 %	6.4 °	2.7 %
SfB [1]	12.8 %	4.8°	2.3 %
MfB (ours)	8.8 %	3.7 °	2.2 %

Table 2: evaluating 3D translation, 3D rotation, and 3D shape on a synthetic dataset.

References

- [1] D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021
- [2] D. Rozumnyi et al.: DeFMO @ CVPR 2021
- [3] D. Rozumnyi et al.: FMODetect @ ICCV 2021
- [4] D. Rozumnyi et al.: TbD-3D @ CVPR 2020

- [6] W. Chen et al.: DIBR @ NeurIPS 2019

Implementation and more results on GitHub:

