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Introduction:
Definition: Fast Moving Objects (FMOs) – objects that move over a 
distance larger than their size within the camera exposure time.
Inputs: 

Ø image I with potentially several objects moving fast and appearing blurred, 
Ø background B without the object.

Task: detect all FMOs, estimate their trajectories (H), deblur their 
appearance (F,M). Model:
Contribution: the first learned approach for FMO detection and deblurring.

Detection examples:

The problem of detecting and tracking FMOs has been unnoticed by the 
research community, and such objects are not present in standard tracking 
datasets:

FMO retrieval on YouTube videos by FMODetect in real-time:

Method:
Step one (detection): the network detects all FMOs in the scene using 
a truncated distance field (TDF) to object trajectory.

Step two (matting): solve the matting problem that separates the 
background from the input image. 

- Trained on a new synthetic dataset. 
- Generalizes well to unseen and more difficult real-world data. 
Step three (deblurring): sharp appearance (F,M) estimation. We 
propose a novel energy minimization-based deblurring.

FMODetect steps one and two:

- Trajectories are overlaid on the input image.
- False positives in TDF are usually rejected by the decision decoder.

Experiments:
Trajectory estimation,
compared to previous 
methods such as [TbD] 
and [TbD-NC] and the 
ground truth from the 
high-speed camera:

The proposed detection and trajectory estimation method is much 
faster (runs in real-time) and outperforms the previous methods:

In terms of deblurring quality, the reconstructed object is sharper:

Conclusion:
- The first learning-based, real-time, approach for FMO detection.
- Compared to the previous methods, FMODetect is simpler, does 

not require extensive parameter tuning, and works with the same 
settings for a wide range of scenarios.

- Code is on GitHub: https://github.com/rozumden/FMODetect
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FMO TbD (a) FMODetect (b) + deblurring (c) + NC TbD-NC

Recall" 0.56 0.96 0.97 0.97 0.99 0.99
TIoU" 0.352 0.713 0.519 0.715 0.781 0.779
Runtime [1/s]" 1 fps 0.2 fps 20 fps 0.4 fps N/A N/A

References:
[TbD] Kotera et al. Intra-frame Object Tracking by Deblatting, ICCV VOT 2019
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Fig. 6. Matting and deblurring of fast moving objects in the TbD dataset [13] using
the proposed method, and compared to deblatting [13]. (a) inputs are image and the
background by median, (b) top: estimated truncated distance function (TDF), bottom:
estimated trajectory plotted on the input image, (c) output of the matting decoder,
and then left to right: ground truth, the proposed deblurring, and deblatting [13].

from the ground truth trajectory by the curve loss function Lc which samples
the trajectory at three points and computes an average distance between each
pair. Since the direction is not known, we compute both options and choose the
one with the minimal distance. Parameter ↵c is set to

4
256 , which normalizes the

curve loss to produce one unit when the average distance between trajectories
is 1

4 of the crop width when all crops are rescaled to 256 by 256 pixels. The
last term computes binary cross entropy between the estimated and the ground
truth binary variable b which indicates whether the crop contains an FMO. The
parameter ↵b is empirically set to 0.4. All previous terms are multiplied by the
ground truth binary variable to allow the network to output the best guess of
trajectory and appearance even when there is no fast moving object, penalizing
only for the incorrectly estimated binary variable b.

3.3 Deblurring

We formulate deblurring as an optimization problem. The output of the fitting
decoder Ĉ can not be directly used for the blur kernel H as small inaccuracies in
the blur kernel have negative e↵ect on the quality of deblurring results. Instead,
we use Ĉ only for initialization and include optimization with respect to H in
deblurring. The object appearance and mask are then estimated by solving

min
F,M,H

1

2

⇣
kH ⇤ F � ĤF k22 + kH ⇤M � ĤMk22

⌘
+ ↵F krFk1 + ↵MkrMk1 (5)

s.t. 0  F  M  1, H � 0 and
P

i
Hi = 1. The only deblurring inputs are

ĤF and ĤM , which are the outputs of the matting decoder, and regularization

I = H ∗ F + (1− H ∗M) B

https://github.com/rozumden/

