Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Tamara Beltrame
Adviser: Prof. François E. Cellier
Responsible: Prof. Walter Gander

9th March 2006
Outline

Goal

Motivation

Quantised State Systems

The DEVS Formalism

The ModelicaDEVS Simulator

The PowerDEVS Simulator

Example/Efficiency

Conclusion
Goal

- Development of a discrete-event systems library for Dymola.
- Enable simulation of continuous systems.

- Implementation of a Modelica version of PowerDEVS.
Motivation

Additional integration method for Dymola.

- Dymola is primarily designed for physical simulations.
- Physical systems are described by DAE’s, need integration.
- QSS and the DEVS formalism are well suited for integration.
 - Idea: computers have to discretise.
 - Use state quantisation instead of time discretisation.
 - State variables evolve individually, no need to update them simultaneously.
 - A simulation of a QSS is numerically stable.
 - Formula for global error bound \Rightarrow mathematical analysis.

In general: enable DEVS simulation within Dymola.

- For common discrete-event systems without integration.
Quantised State Systems (QSS)

- QSS have piecewise constant input and output trajectories.
- Systems with piecewise constant trajectories can be simulated by the DEVS formalism.
- QSS use a quantisation function to transform a continuous system into a system with piecewise constant input and output trajectories.
- Quantisation function is hysteretic in order to avoid illegitimate models.
 - Illegitimate models perform an infinite number of transitions in a finite interval of time.
A quantisation function maps real numbers $x(t)$ into a discrete set of real values $q(t)$.

Problem: $\dot{x}(t) = -\text{sign}(q(t))$

A **hysteretic** quantisation function inhibits infinite oscillations within one time step.
Discretisation of a Continuous System

- Conventional continuous system: \(\dot{x}(t) = f(x(t), u(t), t) \)
- Quantised continuous system: \(\dot{\xi}(t) = f(q(t), u(t), t) \)

- Example: \(\dot{x}(t) = -x(t) + 10\epsilon(t - 1.76) \)
 Used quantisation function: \(q(t) = \text{floor}(\xi(t)) \)
 \(\Rightarrow \dot{\xi}(t) = -\text{floor}(\xi(t)) + 10\epsilon(t - 1.76) \)
 \(\Rightarrow \dot{\xi}(t) = -q(t) + 10\epsilon(t - 1.76) \)

- \(q(t) \) is a piecewise constant, linear or quadratic function.
 - QSS1 \(\Rightarrow \) uses constant function.
 - QSS2 \(\Rightarrow \) uses linear function.
 - QSS3 \(\Rightarrow \) uses quadratic function.
The DEVS Formalism

- Introduced by B. Zeigler in 1976.
- Discrete-event simulation methodology. Other discrete-event techniques: Petri nets, finite state machines, Markov chains, ...
- Particularity: DEVS models have infinite number of states ⇒ useful for numerical integration.
Atomic Models

- Accepts an input trajectory (external events), generates an output trajectory.

Definition: $M = (X, Y, S, \delta_{int}, \delta_{ext}, \lambda, ta)$

- $X =$ set of inputs
- $S =$ set of possible states
- $Y =$ set of outputs
- $\delta_{ext} =$ external transition
- $ta =$ time-advance function, often represented by σ
- $\delta_{int} =$ internal transition
- $\lambda =$ output function
Atomic Models (cont.)

Example:

- **X**
 - \(x_1 \)

- **S**
 - \(s_1 \) to \(s_2 \) to \(s_3 \) to \(s_4 \)
 - \(t_a(s_1) = 3 \) (to \(s_2 \) at \(t_a(s_2) = 4 \)) (to \(s_3 \) at \(t_a(s_3) = 3 \))

- **Y**
 - \(y_1 = \lambda(s_1) \)
 - \(y_2 = \lambda(s_3) \)
Coupled Models

- DEVS is closed under coupling.

- Useful to split a complex model into simpler models.

- The dynamics of the coupled model N:
 1. Evaluate the atomic model d^* that is the next one to execute an internal transition. Let tn be the time when the transition has to take place.
 2. Advance the simulation time to $t = tn$ and let d^* execute the internal transition.
 3. Forward the output of d^* to all connected atomic models and let them execute their external transitions.
Hierarchic Models

- Reuse of coupled models as atomic models.

- The actual task of N is to wrap M_a and M_b, in order to make them look like as if they were one single model.

- The coupled model N features the same transitions as an atomic model, but the transitions of N depend on the transitions of its submodels.
The ModelicaDEVS Simulator

- Modelica models are described by equations.
 - Undirected data-flow: \(x = y \) \(\Rightarrow \) either \(x \) or \(y \) has to be known.
 \[
 2 + 4 = x \Rightarrow \text{ok}
 \]
 - Directed data-flow: \(x := y \) \(\Rightarrow \) \(y \) has to be known.
 \[
 2 + 4 := x \Rightarrow \text{not ok}
 \]
- Simultaneous equation evaluation \(\Rightarrow \) parallel update of variables.
- Modelica is object oriented.
Atomic Models in ModelicaDEVS

- ModelicaDEVS models have one or more input ports and one output port.

- ModelicaDEVS signals/events consist of the following values:
 - Coefficients of Taylor series up to second order of the current function value.
 - Boolean value. Indicates the creation of an event.

- Input event: \(uVal[1], uVal[2], uVal[3] \) and \(uEvent \).
 Output event: \(yVal[1], yVal[2], yVal[3] \) and \(yEvent \).

- Components have two Boolean variables \(dint \) and \(dext \)...
 - \(dint=\text{true} \Rightarrow \) execute internal transition.
 - \(dext=\text{true} \Rightarrow \) execute external transition.

- ... and two real-valued variables \(\text{lastTime} \) and \(\text{sigma} \).
 - \(\text{lastTime} \) stores the time of the last event.
 - \(\text{sigma} \) stores the amount of time that has to elapse before the next internal transition takes place.
Coupled Models in ModelicaDEVS

- Communication between blocks:

 ![Diagram showing communication between SampleBlock_A and SampleBlock_B]

 - When block A executes its internal transition (dint=true) it sends an output to block B (yEvent=true).

 ![Diagram with labeled transitions]

 - When block B receives an event (uEvent=true) it executes its external transition.
Coupled Models in ModelicaDEVS (cont.)

- Benefit of the Dymola simulator:
 - Dynamics of coupled model still determined by its submodels.
 - Performs the same loop as defined by the DEVS formalism...
 - ... but the evaluation of d^* is done implicitly by Modelica’s concept of simultaneous equation evaluation.

- Coupled models are handled implicitly by the Dymola Simulator.
Hierarchic Models in ModelicaDEVS

- A hierarchic model contains a component that consists of other components (submodels).
- Submodels just add a number of equations to the model equation “pool” \(\Rightarrow\) no special treatment required.
- **Hierarchic models are handled implicitly by the Dymola Simulator.**
The PowerDEVS Simulator

- PowerDEVS is written in C++ ⇒ sequential variable updates.
- Hierarchical simulation scheme.

- Coordinators represent coupled models, simulators represent atomic models.
- Coordinators contain simulators or other coordinators.
- Coordinators control the interaction between their children.
 ⇒ Components on the same level do not communicate with each other, but only with their parent coordinator.
The Flyback Converter - Dymola

\[U_0 = \text{constant} \]
\[0 = \text{if } open_1 \text{ then } i_0 \text{ else } u_S \]
\[u_L = L \cdot \frac{di_L}{dt} \]
\[u_R = R \cdot i_R \]
\[0 = \text{if } open_2 \text{ then } i_D \text{ else } u_D \]
\[open_2 = u_D < 0 \text{ and } i_D \leq 0 \]
\[u_T = -u_L \]
\[i_T = -i_D \]
\[i_0 = i_L + i_T \]
\[i_D = i_C + i_R \]
\[u_0 = u_S + i_L \]
\[0 = u_T + u_D + u_R \]
The Flyback Converter - ModelicaDEVS/PowerDEVS

- ModelicaDEVS requires a block diagram representation.
 - ModelicaDEVS contains generic blocks, no electrical components
 - DEVS imposes certain data flow.

- Causalise equations by the Tarjan algorithm \((x=y \Rightarrow x:=y)\).
- Model each (causalised) equation by a compound of blocks.
The Flyback Converter - Results

- Flyback converter simulated with Dymola, PowerDEVS and ModelicaDEVS (2ms of simulation time).
 - PowerDEVS needs 0.018s
 - Dymola (LSODAR) needs 0.062s, generates 738 result points
 - ModelicaDEVS (LSODAR, QSS3) needs 0.656s, generates 2164 result points

- PowerDEVS is faster than Dymola:
 - Dymola “suffers” from the simultaneous equation evaluation: PowerDEVS updates only the variables of the active component, Dymola updates all variables.

- Dymola is faster than ModelicaDEVS:
 - ModelicaDEVS generates a lot more result points than Dymola.
 - ModelicaDEVS models feature more variables (factor 3).
Summary

- Unfortunately, ModelicaDEVS is about 10 times slower than Dymola and about 40 times slower than PowerDEVS.
- Transformation of continuous systems described by equations into block diagrams is time consuming and sometimes problematic.
- ModelicaDEVS enables simulation according to the DEVS formalism within the Dymola environment.
- Possibility to combine standard Dymola simulation with DEVS.
Additional Example Hysteretic Quantisation Function

- Continuous system: \(\dot{x} = -x + 0.5 \), initial condition \(x(0) = 2 \)
- Quantised system: \(\dot{\xi} = -\text{floor}(\xi) + 0.5 \)

Dynamics

\[
\begin{align*}
t = 0 & \quad : \quad \xi = 2 \quad \Rightarrow \quad \dot{\xi} = -1.5 \\
t = 0^+ & \quad : \quad \xi = 1.999 \quad \Rightarrow \quad \dot{\xi} = -0.5 \\
t = 2 & \quad : \quad \xi = 1 \quad \Rightarrow \quad \dot{\xi} = -0.5 \\
t = 2^+ & \quad : \quad \xi = 0.999 \quad \Rightarrow \quad \dot{\xi} = +0.5 \\
t = 2^{++} & \quad : \quad \xi = 1 \quad \Rightarrow \quad \dot{\xi} = -0.5 \\
t = 2^{+++} & \quad : \quad \xi = 0.999 \quad \Rightarrow \quad \dot{\xi} = +0.5
\end{align*}
\]