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Abstract 

This article introduces a new Modelica library, FIR-
lib, developed for the mixed quantitative and qualita-
tive simulation of physical systems.  Qualitative sub-
models are built using the Fuzzy Inductive Reasoning 
(FIR) paradigm. 

Whereas Modelica has been designed for model-
ing physical systems from first principles, some sys-
tems do not lend themselves to this kind of model-
ing, either because they are too poorly understood 
(no meta-knowledge is available yet) or because they 
are so complex that capturing their behavior in a de-
tailed fashion would be a hopeless undertaking. 

Use of the new library is demonstrated by means 
of two examples, a simple hydraulic control system 
(a textbook example) and a model of the human car-
diovascular system. 

Keywords: fuzzy inductive reasoning; inductive 
modeling; qualitative modeling; mixed quantitative 
and qualitative simulation; cardiovascular system 

1 Introduction 

Modelica has been designed as an environment for 
modeling physical systems from first principles in an 
object-oriented fashion. 

Yet, there exist systems that don’t lend them-
selves easily to this type of modeling, either because 
the meta-laws governing their dynamic behavior are 
not fully understood, or because these systems are 
too complex to be described with complete details. 

In both of these cases, we need a tool that can 
capture dynamic behavior inductively, i.e., from ob-
servations, rather than deductively, i.e., from first 
principles. 

Typical tools that are used for such purposes in-
clude artificial neural networks and fuzzy modelers.  
In this paper, we propose the use of a fuzzy model-
ing approach called Fuzzy Inductive Reasoning (FIR) 
[2,5]. 

In FIR, observations of input/output behavior of 
an unknown system are fuzzified (discretized with 
fuzzy membership functions associated with each 
class).  A fuzzy rule base of dynamic relations be-
tween inputs and outputs is then automatically syn-
thesized.  The fuzzy rule base constitutes the qualita-
tive model of the system.  It is subsequently used to 
infer qualitative behavior of the system in a qualita-
tive simulation step.  The qualitative simulation re-
sults, so-called episodes, are then defuzzified (quan-
tified) to trajectory behavior using the information 
contained in the fuzzy membership functions. 

We sometimes encounter systems that are partial-
ly understood, i.e., the meta-laws describing some of 
its subsystems are well-known, whereas those de-
scribing other subsystems are unknown or only in-
completely known. 

In such cases, it is useful to be able to simulate 
such systems using a mixed quantitative and qualita-
tive simulation environment.  A (synthetic) example 
model is shown in Fig.1. 

 

 
Fig.1: Mixed quantitative and qualitative model 

 
The pink boxes of Fig.1 represent quantitative sub-
systems, whereas the yellow boxes represent qualita-
tive subsystems.  Quantitative signals can be con-
verted to qualitative signals (i.e., fuzzified) using the 
green Recode block, whereas qualitative signals can 
be converted to quantitative signals (i.e., defuzzified) 
using the green Regenerate block. 
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2 Qualitative Variables 

Qualitative variables are variables that assume qua-
litative values.  Variables of a dynamical system are 
functions of time.  The behavior of a dynamical sys-
tem is a description of the values of its variables over 
time.  The behavior of quantitative variables is usual-
ly referred to as trajectory behavior, whereas the be-
havior of qualitative variables is commonly referred 
to as episodical behavior.  Qualitative simulation can 
thus be defined as the process of inferring the epi-
sodical behavior of a qualitative dynamical system or 
model. 

Qualitative variables are frequently interpreted as 
an ordered set without distance measure [1].  It is 
correct that ‘warm’ is “larger” (warmer) than ‘cold,’ 
and that ‘hot’ is “larger” (warmer) than ‘warm.’  Yet, 
it is not true that: 

 
‘warm’ – ‘cold’ = ‘hot’ – ‘warm’ 

 
or, even more absurdly, that: 
 

‘hot’ = 2 · ‘warm’ – ‘cold’ 
 

No subtraction operator is defined for qualitative 
variables. 

Whereas many qualitative simulation engines 
treat also the independent variable, time, as a qualita-
tive variable, FIR does not.  FIR simulates the beha-
vior of qualitative states as functions of a quantita-
tive time variable. 

Without this feature, FIR would not be capable of 
dealing with mixed quantitative and qualitative mod-
els. 

3 Fuzzy Inductive Reasoning 

The Fuzzy Inductive Reasoning (FIR) methodology 
consists of four primary modules.  The Recode mod-
ule converts (fuzzifies) quantitative variables into 
qualitative variables; the Optmask module deter-
mines inductively a qualitative model relating sets of 
observations of input and output behavior; the Fore-
cast module performs a qualitative simulation by 
inferring the episodical (qualitative) future behavior 
of a set of output variables given a set of input va-
riables and a qualitative model; and finally the Rege-
nerate module converts (defuzzifies) qualitative va-
riables into quantitative variables. 

3.1 Fuzzification 

Recoding denotes the process of converting a quan-
titative variable to a qualitative variable.  In general, 
some information is lost in the process of recoding.  
Obviously, a temperature value of 97oF contains 
more information than the value ‘hot.’  Fuzzy recod-
ing avoids this problem.  Fig.2 shows the fuzzy re-
coding of a variable called “systolic blood pressure.” 

 

 
Fig.2: Fuzzy recoding 

 
For example, a quantitative systolic blood pres-

sure of 135.0 is recoded into a qualitative class value 
of ‘normal’ with a fuzzy membership value of 0.895, 
and a side value of ‘right.’  Thus, a single quantita-
tive value is recoded into a qualitative triple.  Any 
systolic blood pressure with a quantitative value be-
tween 100.0 and 150.0 will be recoded into the qua-
litative value ‘normal.’  The fuzzy membership func-
tion denotes the value of the bell-shaped curve 
shown on Fig.2, always a value between 0.5 and 1.0, 
and the side function indicates whether the quantita-
tive value is to the left or to the right of the maxi-
mum of the currently active fuzzy membership func-
tion.  Obviously, the qualitative triple contains the 
same information as the original quantitative varia-
ble.  The quantitative value can be regenerated accu-
rately from the qualitative triple, i.e., without any 
loss of information. 

The shape of the fuzzy membership functions can 
be chosen either Gaussian or triangular, and the 
landmarks, i.e., the values of the variable to be re-
coded that separate neighboring classes from each 
other, can be either user-specified, or they can be 
determined by the FIR software itself using a variety 
of different approaches, such as the equal partition-
ing method [8], whereby the landmarks are chosen 
such that each class of the recoded variable contains 
the same number of samples. 

3.2 Fuzzy Modeling 

A qualitative model determines a relationship be-
tween the class values of a set of input variables and 
that of an output variable.  FIR encodes the qualita-
tive model using a so-called optimal mask. 
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A mask denotes a relationship between a set of 
variables.  For example, let us consider the following 
raw data model consisting of five variables, namely 
two input variables, u1 and u2, and three output va-
riables, y1, y2, and y3, that are recorded at different 
instants of time: 

 

 
 

Each column of the raw data model lists the class 
values of one qualitative variable recorded at differ-
ent instants of time, and each row lists the class val-
ues of all qualitative variables recorded simulta-
neously.  The raw data matrix is accompanied by a 
fuzzy membership matrix and a side matrix of iden-
tical dimensions. 

A mask denotes a relationship between these va-
riables.  For example, the mask: 

 

 
 

denotes the following relationship pertaining to the 
five variable system: 
 

y1(t) = f(y3(t-2t),u2(t-t),y1(t-t),u1(t)) 
 

The single positive element in the mask, always lo-
cated in the last row, denotes the position of the 
model output.  The negative elements denote the po-
sitions of the model inputs.  The example mask has 
four inputs.  The sequence in which they are enume-
rated is immaterial.  They are usually enumerated 
from left to right and top to bottom.  Thus, the mask 
is simply a matrix representation of the qualitative 
relationship relating model inputs to the model out-
put. 

The mask must have the same number of columns 
as the raw data matrix.  The number of rows of the 
mask is called the depth of the mask.  The mask can 
be used to map a dynamic relationship onto a static 
relationship.  To this end, the mask is shifted over 
the raw data matrix.  Selected inputs and outputs can 
be read out from the raw data matrix and can be writ-

ten on a single row next to each other.  Fig.3 illu-
strates this process. 

 

 
Fig.3: Flattening dynamic relationships 

 
After the mask has been applied to the raw data ma-
trix, the formerly dynamic episodical behavior has 
become static, i.e., the relationship is now contained 
within a single row: 
 

o1(t) = f(i1(t),i2(t),i3(t),i4(t)) 
 

The resulting matrix is called input/output matrix.  
Each row of the input/output matrix represents a 
fuzzy rule. 

How is the mask selected?  A mask candidate 
matrix is constructed, in which negative elements 
denote positions of potential model inputs, and the 
single positive element denotes the position of the 
model output.  A good mask candidate matrix for the 
aforementioned five variable system might be: 
 

 
 

A mask candidate matrix is an ensemble of all ac-
ceptable masks.  The optimal mask selection algo-
rithm determines the best among all masks that are 
compatible with the mask candidate matrix.  The 
mask shown before is one such mask.  The optimal 
mask is the one mask that maximizes the forecasting 
power of the inductive reasoning process.  To this 
end, the mask selection algorithm optimizes a mask 
quality metric that is a combination of a Shannon 
entropy reduction metric (making the input/output 
matrix as deterministic as possible) and an observa-
tion ratio metric (ensuring that most input/output 
patterns have been observed at least five times) [5]. 
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3.3 Fuzzy Simulation 

Once the optimal mask has been determined, it can 
be applied to the given raw data matrix resulting in a 
particular input/output matrix.  Since the in-
put/output matrix contains functional relationships 
within single rows, the rows of the input/output ma-
trix can now be sorted in alphanumerical order.  The 
result of this operation is called the behavior matrix 
of the system.  The behavior matrix is a finite state 
machine.  For each combination of input values, it 
shows, which output is most likely to be observed. 

Forecasting (simulation) is now a straightforward 
procedure.  The mask is simply shifted further down 
beyond the end of the raw data matrix, future inputs 
are read out from the mask, and the behavior matrix 
is used to determine the future output, which can 
then be copied back into the raw data matrix.  In 
fuzzy forecasting, it is essential that, together with 
the qualitative output, also a fuzzy membership value 
and a side value are forecast.  Thus, fuzzy forecast-
ing predicts an entire qualitative triple, from which a 
quantitative variable can be regenerated whenever 
needed. 

3.4 Defuzzification 

Once the qualitative output episode has been deter-
mined, a quantitative trajectory can easily be con-
structed by the reverse operation of fuzzy recoding.  
The class, membership, and side values are simply 
recombined to produce a real-valued signal. 

4 FIR Software 

Originally, the FIR algorithms had been coded in 
Fortran and were made available as a CTRL-C li-
brary [6].  Mixed quantitative and qualitative simula-
tions were performed in ACSL, which could invoke 
the Fortran routines of the Recode, Forecast, and 
Regenerate subroutines directly, i.e., the qualitative 
models were constructed in CTRL-C, but mixed si-
mulations were run in ACSL [5]. 

When CTRL-C died, the algorithms were re-
coded in C, and CTRL-C was replaced by Matlab as 
the interactive matrix manipulation environment. 

There are currently two separate Matlab toolbox-
es available implementing the FIR algorithms.  
SAPS-II [5] offers a command-driven interface.  The 
user invokes the four blocks of the FIR methodology 
by writing m-files.  Visual-FIR [9] offers a menu-
driven interface.  Here, the user doesn’t write any 
code, but selects combinations of algorithms from a 

set of pull-down menus.  SAPS-II is more general, 
but Visual-FIR is easier and faster to use. 

Both toolboxes can be used to run purely qualita-
tive simulations directly under Matlab.  Yet, mixed 
quantitative and qualitative simulations cannot be 
run in this fashion.  Thus when ACSL died, we lost 
our ability to run mixed simulations. 

This is where the new FIRlib fits in.  The soft-
ware allows us to once again run mixed quantitative 
and qualitative simulations, replacing ACSL by 
Modelica. 

Just like the former ACSL implementation, FIR-
lib currently offers Recode, Forecast, and Regene-
rate modules only.  There is no need to offer an 
Optmask module in the software, as the qualitative 
model is being generated off-line.  Hence also with 
FIRlib, the qualitative models are being created us-
ing either SAPS-II or Visual-FIR.  Future versions of 
FIRlib may offer an Optmask module also for con-
venience. 

FIRlib offers currently two implementations of 
the FIR algorithms.  In one of them (native SAPS), 
the formerly C-coded algorithms were translated into 
Modelica.  The other (external SAPS) invokes C-
coded routines. 

For small examples, there is little difference be-
tween the two versions.  Yet, the cardiovascular sys-
tem model will not run efficiently in Dymola using 
the native SAPS modules.  The FIR algorithms oper-
ate on very large data tables that Dymola converts to 
individual variables.  Hence the cardiovascular sys-
tem model, when using native SAPS, generates 
200,000 scalar variables, whereas only 4000 va-
riables are generated when the external SAPS mod-
ules are invoked. 

5 A Simple Textbook Example 

We shall demonstrate the use of FIRlib by means of 
a simple position control system involving a hydrau-
lic motor with a servo-valve.  The control system is 
shown in Fig.4. 

 

 
Fig.4: A position control system 
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The servo-valve and the hydraulic motor models 
were composed using the hydraulic sub-library of 
BondLib [3].  The hydraulic motor model is shown 
in Fig.5. 
 

 
Fig.5: Hydraulic motor 

 
We want to replace the entire hydraulic part of the 
model by a qualitative model.  We assume that the 
mechanical torque, , of the hydraulic motor is a 
function of the actuator signal, u, and the angular 
velocity of the motor, . 
 

 = f(u,) 
 

Therefore, we need to recode (fuzzify) these three 
signals.  This is done in Modelica using FIRlib, as 
shown in Fig.6. 

 

 
Fig.6: Fuzzification of three signals 

 
The Recode block converts a real-valued signal to a 
qualitative triple.  The FIR connector, at the output 
of the Recode block, contains three signals 
representing the class, membership, and side values 

of the fuzzified signal.  The fuzzified signals were 
immediately defuzzified (regenerated) again so that 
Dymola can then be used to plot the signal and verify 
that fuzzification/defuzzification were done correct-
ly.  This is shown in Fig.7. 

 

 
Fig.7: Torque signal, original and regenerated 

 
The three recoded signals were then exported to Mat-
lab.  In Matlab, the raw data matrix (or rather, the 
three matrices containing the class, membership, and 
side values) was constructed, and the SAPS-II tool-
box was used to generate the optimal mask and, from 
it, the input/output matrix and the behavior matrix. 

The optimal mask and the corresponding beha-
vior matrix (actually three matrices) were then re-
imported into Dymola to be used in a mixed quantit-
ative and qualitative simulation.  The mixed model is 
shown in Fig.8. 
 

 
Fig.8: Mixed quantitative and qualitative model 

 
The yellow FIR block represents the qualitative si-
mulation (forecasting) engine.  It takes the recoded 
(fuzzified) actuator and angular velocity signals and, 
using table look-up and interpolation in the behavior 
matrix, estimates the correct value of the torque in 
the form of a qualitative signal.  The green Regene-
rate block then converts the qualitative triple back to 
a real-valued quantitative signal that can be used by 
regular Modelica models. 

Fig.9 shows the motor angle trajectories of the 
original purely quantitative simulation and the mixed 
quantitative and qualitative simulation. 
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Fig.9: Motor angle trajectories 

 
The (red) motor angle trajectory computed by the 
mixed simulation is a little more sluggish and a little 
less stable than that of the purely quantitative simula-
tion (blue), because we didn’t sample fast enough. 

6 The Cardiovascular System 

The human cardiovascular system is composed of 
two parts. 

The hemodynamics describe the blood flow 
through the heart and the blood vessels.  This part is 
well understood.  It functions like any other hydrau-
lic system with a pump and some pipes, with valves 
and containers of liquid.  The hemodynamics can 
thus be well described by differential equations, and 
consequently, a quantitative model of the hemody-
namics is adequate. 

On the other hand, we need to describe also the 
control signals that operate on the hemodynamics.  
Control signals determine how fast the heart beats, 
how much the chambers contract, etc.  The function-
ing of these nervous control signals is less well un-
derstood, and consequently, a qualitative model of 
the central nervous system control of the cardiovas-
cular system may be more suitable. 

6.1 Hemodynamics 

The hemodynamics model has been presented at a 
previous conference [4].  It is built in BondLib using 
encapsulated bond graphs [3,7].  Although the bond 
graphs themselves are only seen at the bottom layer 
of the hierarchy, whereas all higher layers are built 
using symbols that medical professionals understand, 
the connectors are bond graph connectors every-
where.  In order for this to work, all container mod-
els end in junctions, whereas all transporter models 
end in bonds.  In this way, by following the rule that 
container and transporter models must always toggle, 
there is no need to fully wrap [7] the bond graph 
models, as was done in the hydraulic sub-library. 

The heart model is shown in Fig.10. 

 
Fig.10: Model of the human heart 

 
The model contains four container models 
representing the four heart chambers, as well as five 
transporter models.  Four of them represent the four 
heart valves, the tricuspid and pulmonary valves car-
rying (blue) venous blood, and the mitral and aortic 
valves carrying (red) arterial blood.  Also included is 
a model of the coronary blood vessels that are re-
sponsible for the oxygenation of the heart muscle.  
The yellow sinus rhythm block calculates the trigger 
impulses that lead to the contraction of the four heart 
chambers.  It is controlled by the heart rate control-
ler, one of the central nervous system control func-
tions of the heart. The left chambers are shown on 
the right side of the graph, because this is what a 
heart surgeon experiences when he or she operates 
on a patient. 

The heart is embedded in the thorax, shown in 
Fig.11. 

 

 
Fig. 11: Model of the thorax 
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The thorax model contains the heart and all of its 
external connections.  Also included are models of 
the lungs and the bronchi.  The tabular block at the 
bottom calculates the thoracic pressure that stems 
from the breathing.  As the lungs expand, there is 
less space available for the heart and the blood ves-
sels, and consequently, they experience an external 
pressure. 

The overall hemodynamics model is shown in 
Fig.12. 

 
Fig.11: Model of the hemodynamics 

 
The hemodynamics model contains models of the 
thorax, the head and arms (brain and blood vessels of 
the upper extremities), the lower body (abdomen and 
stomach), as well as the blood vessels of the legs. 

The hemodynamics are controlled by five control 
signals denoting the heart rate, the myocardiac con-
tractility, the peripheric resistance, the venous tone, 
and the coronary resistance. 

It is assumed that all five control signals are func-
tions of the same variable, namely the carotid sinus 
blood pressure, PAC, i.e., the arterial pressure in the 
brain. 

6.2 Central Nervous System Control 

Five separate single-input/single-output (SISO) qua-
litative FIR models are to be identified that each cal-
culate one of the five control signals as a function of 
the carotid sinus blood pressure. 

The data needed for the identification of the five 
FIR models are here not collected from a fully quan-

titative simulation (as in the previous case), but ra-
ther, they are obtained through measurements from 
real patients having a heart catheter for some reason 
or other (invasive procedure).  The patients gave 
their consent to perform a number of so-called Val-
salvæ maneuvers [10,11,12], a breathing test that 
excites the entire cardiovascular system.  Data were 
collected from 10 different patients, each performing 
five Valsalvæ maneuvers.  In the experiments de-
scribed here, we  used the data of one patient only.  
Four of the five Valsalvæ maneuvers (4800 data 
records) were used to identify the five controller 
models, and the final 1200 data records (the final 
maneuver) were used for model validation. 

Fig.12 shows the recorded data of the venous tone 
controller signal of one patient during one Valsalvæ 
maneuver. 

 

 
Fig.12: Venous tone controller signal 

 
The large and low-frequency oscillation is caused by 
the breathing pattern of the Valsalvæ maneuver, 
whereas the superposed small and high-frequency 
oscillation is caused by the beating of the heart. 

The Valsalvæ maneuver shown is the one that 
was not used for model identification.  Superposed 
with the measurement data is the forecast obtained 
by the qualitative FIR model. 

The five models were identified using the SAPS-
II toolbox, and also the simulation was performed 
using the same Matlab toolbox.  As this is a purely 
qualitative simulation, there was no need to perform 
the simulation in Modelica using FIRlib. 

6.3 Mixed Quantitative and Qualitative Simu-
lation of the Human Cardiovascular System 

The top-level model is shown in Fig.13.  The pink 
box on the right-hand side represents the hemody-
namics model, whereas the green box on the left-
hand side represents the central nervous system con-
trol containing the five (yellow) qualitative FIR 
models representing the five controllers. 
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Fig.13: Cardiovascular system model 

 
The green (Recode, Regenerate) and yellow (FIR) 
blocks are those of the external SAPS sub-library, 
i.e., the C-coded FIR algorithms are being used. 

The model was then compiled.  The translation 
log is shown in Fig.14. 

 

 
Fig.14: Translation log 

 
The flattened model contained originally 4364 scalar 
variables and equations.  After code optimization, 22 
state variables and 437 algebraic variables remained. 

Fig.15 shows the simulation log. 
 

 
Fig.15: Simulation log 

 
The simulation took 14.0 seconds of real time to 
complete 50 seconds of simulated time.  Four times 
during the simulation, one of the controllers encoun-
tered a pattern that had not been recorded in the 
training database.  In those cases, no prediction was 
possible, and therefore, the software simply retained 
the previous prediction value. 

Fig.16 shows the thoracic pressure, pTh, generat-
ed by a table look-up function inside the thorax 
model. 

 

 
Fig.16: Thoracic pressure 

 
The graph shows the simulated “Valsalvæ” maneuv-
er.  The “patient” is not breathing during 14 seconds, 
then “he” inhales sharply, holds “his” breath more or 
less for another 14 seconds, then exhales sharply 
again. 

The resulting carotid sinus pressure, PAC, as cal-
culated by the hemodynamics model, is shown in 
Fig.17. 
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Fig.17: Carotid sinus pressure 

 
The high-frequency oscillation is caused by the 
heartbeat, calculated in the sinus rhythm box of the 
heart model.  The low-frequency oscillation is the 
hemodynamic response to the simulated breathing 
pattern. 

Fig.18 shows the venous tone control signal as 
calculated by the corresponding FIR model in re-
sponse to the simulated breathing pattern. 

 

 
Fig.18: Venous tone control signal 

 

7 Conclusions 

In this paper, we have demonstrated how mixed qua-
litative and quantitative models can be simulated in 
Modelica using the new FIRlib library.  The qualita-
tive models make use of fuzzy inductive reasoning, a 
non-parametric inductive approach to modeling con-
tinuous-time systems by means of fuzzy logic.  The 
approach was demonstrated by a small textbook ex-
ample involving a hydraulic position control system.  
A model of the human cardiovascular system served 
as a larger example.  In that model, the hemodynam-
ics were described using quantitative models derived 
from first principle, whereas the nervous central sys-
tem control functions were modeled by use of qualit-
ative FIR models. 
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