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We introduce coupling from the past, a recently developed method for exact
sampling from a given distribution. Focus is on rigour and thorough proofs.
We stay on an elementary level which requires little or no prior knowledge from
probability theory. This should fill an obvious gap between innumerable intuitive
and incomplete reviews, and few precise derivations on an abstract level.

Abstract
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6.1 Introduction
We introduce a recently developed method for exact sampling from a given

distribution. It is called coupling from the past. This is in contrast to Markov
chain Monte Carlo samplers like the Gibbs, sampler or the family of Metropolis-
Hastings samplers which return samples from a distribution approximating the
target distribution. The drawback is that MCMC methods apply generally and
exact sampling works in special cases only. On the other hand, it is the ob-
ject of current research and the list of possible applications increases rapidly.
Another advantage is that problems like burn in and convergence diagnostics
do not arise where exact sampling works. Exact sampling was proposed in the
seminal paper [J.G. PROPP & D.B. WILSON, 1996]. Whereas these au-
thors called the method exact sampling, some prefer the term perfect sampling
since random sampling never is exact. For background in Markov chains and
sampling, and for examples, we refer to [G. WINKLER, 1995; G. WINKLER,
2003]. The aim of the present paper is a rigorous derivation and a thorough
analysis at an elementary level. Nothing is really new; the paper consists of
a combination of ideas, examples, and techniques from various recent papers,
basically along the lines in [F. FRIEDRICH, 2003]. Hopefully, we can single
out the basic conditions under which the method works theoretically, and what
has to be added for a practicable implementation.

Coupling from the past is closely related to Markov Chain Monte Carlo
sampling (MCMC), which nowadays is a widespread and commonly accepted
statistical tool, especially in Bayesian statistical analysis. Hence we premise
the discussion of coupling to the past with some remarks on Markov Chain
Monte Carlo sampling. Let us first introduce the general framework which
simultaneously gives us the basis for coupling from the past. For background
and a detailed discussion see [G. WINKLER, 1995].

Let X be a finite set of generic elements A probability distri-
bution on X is a function on X taking values in the unit interval [0,1]
such that A Markov kernel or transition probability on X
is a function P : X × X [0,1] such that for each the function

is a probability distribution on X. A prob-
ability distribution on X can be interpreted as a row vector and a
Markov kernel P as a stochastic matrix A right Markov chain
with initial distribution and transition probability P is a sequence of
random variables the law of which is determined by and P via the finite-
dimensional marginal distributions given by

P is called primitive if there is a natural number such that for
all This means that the probability from state to state is
strictly positive for arbitrary and If P is primitive then there is a unique
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probability distribution which is invariant w.r.t. P, i.e. where
is the matrix product of the (left) row vector and the matrix P, and this

invariant probability distribution is strictly positive.
The laws or distributions of the variables of such a process converge to

the invariant distribution, i.e.

cf. [G. WINKLER, 1995], Theorem 4.3.1. Perhaps the most important statis-
tical features to be estimated are expectation values of functions on the state
space X, and the most common estimators are empirical means. Fortunately,
such stochastic processes fulfill the law of large numbers, which in its most el-
ementary version reads: For each function on X, the empirical means along
time converge in probability (and in ) to the expectation of with respect to
the invariant distribution; in formulae this reads

(cf. [G. WINKLER, 1995], Theorem 4.3.2). The symbol denotes the
expectation

of with respect to A sequence of random variables converges to the
random variable in probability if for each the probability

tends to 0 as tends to Plainly, (1.2) implies that for every natural
number averaging may be started from without destroying convergence
in probability; more precisely for each one has

In view of the law of large numbers for identically distributed and independent
variables, the step number should be large enough such that the distributions
of the variables are close to the invariant distribution in order
to estimate the expectation of with respect to properly from the samples
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In fact, according to (1.1), after some time the laws of the should be
close to the invariant distribution although they may be far from during
the initial period. The values during this burn in period are usually discarded
and an average like in (1.3) is computed. In general,
the burn in time can hardly be determined. There are a lot of suggestions rang-
ing from visual inspection of the time series to more formal tools,
called convergence diagnosticsconvergence diagnostics. In this text we are not
concerned with burn in and restrict ourselves to the illustration in Fig. 1. A
Gibbs, sampler (introduced in Section 6.4) for the Ising model is started with
a pepper and salt configuration in the left picture. A typical sample of the in-
variant distribution is the right one which appears after about 8000 steps. The
pictures in-between show intermediate configurations which are pretty improb-
able given the invariant distribution but which are quite stable with respect to
the Gibbs sampler. In physical terms, the right middle configuration is close
to a ‘meta-stable’ state. Since we are interested in a typical configuration of
the invariant distribution we should consider the burn in to be completed
if the sample from the Markov chain looks like the right hand side of Fig. 1,
i.e. after about 8000 steps of the Gibbs sampler. The curve in the next figure

Figure 1. Configurations for Ising Gibbs Sampler with starting in a pepper and salt-
configuration (left), after 150 steps (left middle), after 350 steps (right middle) and after 8000
steps (right).

Fig. 2 displays the relative frequency of equal neighbour pairs. Superficial
visual inspection of this plot suggests that the sampler should be in equilib-
rium after about 300 steps. On the other hand, comparison with Fig. 1 reveals
that the slight ascent at about 7800 steps presumably is much more relevant
for the decision whether burn is completed or not. This indicates that primitive
diagnostic tools may be misleading. The interested reader is referred to the ref-
erences in [W.R. GILKS ET AL., 1996; A. GELMAN, 1996; A.E. RAFTERY

& S.M. LEWIS, 1996], see [W.R. GILKS ET AL., 1996b]. If initial samples
from itself are available, then there is no need for a burn in, and one can
average from the beginning. This is one of the most valuable advantages of
exact sampling.

First, we indicate how a Markov chain can be simulated.
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EXAMPLE 1 (SIMULATING A MARKOV CHAIN) We denote by P the tran-
sition probability of a homogeneous Markov chain. At each time

given the previous state we want
to pick a state at random from

For each we partition
the unit interval (0,1] into intervals
of length and pick uniformly
at random from (0,1]. Given the present
state we search for the state

with and set The picture on the left illustrates this
procedure for where if was or and if

In general, the procedure can be rephrased as follows: Define a
transition rule for P by

More explicitly, enumerate and set
where is the cumulative distribution function
of and its generalized inverse. Let

be independent random variables uniformly distributed over (0,1],
and set and Then is a homogeneous
Markov chain starting at with transition probability P. For inhomogeneous
chains, replace by varying in time. Note that the exclusive source of
randomness are the independent random variables

Figure 2. Convergence Diagnostics for Ising Gibbs Sampler



148 RECENTS ADVANCES IN APPLIED PROBABILITY

6.2 Exact Sampling
The basic idea of coupling from the past is closely related to the law of large

numbers (1.2). According to (1.1), for primitive P with invariant distribution
the corresponding Markov chain converges to ; more precisely

uniformly in all initial distributions and with respect to any norm on
Generalizing the concept of right Markov chains, let us consider now two-

sided Markov chains with transition probabilities given by a Markov kernel P,
i.e. double sequences of random variables taking values in X, and with
law determined by the marginal distributions

for where denotes the law of
If P is primitive, or more generally, if (2.1) holds uniformly, these two-sided

chains are automatically stationary. This important concept means that a time
shift does not change the law of the chain; in terms of the marginal distributions
this reads

for all and and in particular, that all in (2.2) are equal to
In fact, because of (2.2) one has for all By uniformity
in (2.1), this implies and hence in view of (2.2) the process is
stationary.

At a first glance, this does not seem to be helpful since we cannot simulate
the two-sided chain starting at time On the other hand, if we want to start
sampling at some (large negative) time there is no distinguished state to start
in, since stationarity of the chain implies that the initial state necessarily is al-
ready distributed according to The main idea to overcome this problem is to
start chains simultaneously at all states in X and at each time. This means that
a lot of Markov chains are coupled together. The coupling will be constructed
in such a fashion that if two of the chains happen to be in the same state in
X at some (random) time, they will afterwards follow the same trajectory for-
ever. This phenomenon is called coalescence of trajectories. Our definite aim
is to couple the chains in a cooperative way such that after a large time it is
very likely that any two of the chains have met each other at time 0. Then,
at time 0, all chains started simultaneously at sufficiently large negative time
have coalesced, and therefore their common state at time 0 does not dependent
on the starting points in the far past anymore. We will show that after complete
coalescence the unique random state at time 0 is distributed according to the
invariant distribution
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To make this precise we consider the following setup: Let X be a finite
space and let be a strictly positive probability distribution on X. The aim is
to realize a random variable which exactly has law or - in other words - to
sample from Since Markov chains have to be started at each time
and at each state simultaneously, a formal framework is needed into
which all these processes can be embedded. The appropriate concept is that of
iterated random maps or stochastic flows, systematically exploited in [P. DI-
ACONIS & D. FREEDMAN, 1999].

Let be the strictly positive distribution on X from which we want to sam-
ple and let P be a Markov kernel on X for which is the unique invariant
distribution. Let be the set of all maps from X  to itself:

On this space we consider distributions reflecting the action of P on X in
the sense that the that some point is mapped by the random
function to some is given by This connection between and P is
formalized by the condition

EXAMPLE 2 Such a distribution does always exist. A synchronous one is
given by It is a probability distribution since it can
be written as a product of the distributions It also fulfills Condition
(P): Let be the set of all maps from to X. Then

the sum over equals 1 since the summands again define a product measure.

Since we want to mimic Markov processes, we need measures on sets of paths,
and since we will proceed from time to finite times we introduce measures
on the set with one-dimensional marginal measures The simplest
choice are product measures The space consists of double
sequences

If J is a finite subset of then for each choice we have
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Given a double sequence of maps we consider compositions of
the components over time intervals. For each and set

Note that

REMARK Given Condition (P), for each and the process
is a Markov chain starting at and with

transition probability P. Hence the stochastic flow is a common representation
of Markov chains starting at all initial states and at all times; we shall say that
they are coupled from the past.

Coupling from the past at time will work as follows: Pick a double sequence

of maps at random, and fix a number Then decrease until
hopefully does not depend on anymore. If we are successful

and this happens then we say that all trajectories

have coalesced. We shall also say that for there is complete coalescence
at time This works if sufficiently many of the map different elements

to the same image. Going further backwards does not change anything
since holds as well for all This may
be rephrased in terms of sets as follows: Let be a map and

the image of X under For fixed   the sets
decrease as decreases. Complete coalescence means that is a single-
ton Then there is a unique with

If there is no coalescence then is not defined. Let us set

Then all are well defined on F; to complete the definition let
for some fixed if Obviously, independent of the choice of



An Elementary Rigorous Introduction to Exact Sampling 151

This indicates that the random variables have law To exploit this ob-
servation for a sampling algorithm we need almost sure complete coalescence
in finite time. We enforce this by the formal condition

Provided that (F) holds, we call successful. Condition (F) will be verified
below under natural conditions.

LEMMA 3 Under the hypothesis (P) and (F) the process is a sta-
tionary homogeneous Markov process with Markov kernel P.

Proof. Recall that is a homogeneous product measure, and hence for each
all random sequences have the same law.

Hence the stochastic flow is stationary, and the process is stationary
as well. Moreover, depends on only and each de-
pends only on Again, since is a product measure, the
variables and are independent. By (2.4) and (P),

which shows

Hence P is the transition probability of the process Let us put
things together in the first main theorem.

THEOREM 4 (EXACT SAMPLING) Suppose that is      a strictly positive prob-
ability distribution and P a primitive Markov kernel on X such that
Assume further that for all and that

is successful. Then each random variable has law more precisely:

Proof. By stationarity from Lemma 3, all one-dimensional marginal distribu-
tions coincide, and P is the transition probability of If P is primitive
then by [G. WINKLER, 1995], Theorem 4.3.1, its unique invariant distribution
is To sample from only one of the is needed.

COROLLARY 5 Under the assumptions of Theorem 4, the random variable
has law
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The next natural question concerns the waiting time for complete coales-
cence at time zero. The random times of latest coalescence before are
given by

there is such that for every }.

The numbers definitely are finite if outside F they may be finite
or equal Condition (F) is equivalent to

Such a random time is also called successful. To realize one subsequently
and independently picks maps until there is coalescence say
in This element is a sample from For computational reasons,
one usually goes back in time by powers of 2. Clearly, choosing such

that assures coalescence at time 0. Recall that such a
exists for each An example of a stochastic flow coalescing completely
at time is shown in Fig. 3. We are going now to discuss a condition

Figure 3. Latest complete coalescence time before time 0

for (F) to hold. Pairwise coalescence with positive probability is perhaps the
most natural condition and easy to check:

(C) For each pair there is an integer such that

We shall show in Theorem 9 below that (C) and (F) are equivalent. We give
now a simple example where coupling fails.
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EXAMPLE 6 Consider P with invariant    on X = {1,2} given by

Let for the identity map and the flip
map Compositions of and never will couple. On
the other hand the flow is associated to P since

regardless of and and Condition (P) holds.

We shall show now that the coupling condition (C) implies complete coales-
cence (F) (and the converse). The latter condition may be rephrased as follows:
All random times are finite almost surely. By stationarity this boils down
to: The random time is finite almost surely. The simplest, but fairly abstract
way to verify (F) is to use shift invariance of  F and ergodicity of We will
argue along these lines but in a more explicit and elementary way. The first
step is to ensure existence of a finite such that the flow coalesces completely
in less than steps with positive probability.

LEMMA 7  Under condition (C) there is a natural number  such that

Proof. Let If for some
then as well. Hence Condition (C)

implies

Therefore at least with probability if Similarly,
with probability at least if the left set is no singleton.

This holds because and the variables and
are independent and identically distributed. By induction,

at least with probability until the last cardinality becomes 1; this happens
after at most steps. Let Nothing changes if we
renumber the maps as Hence
and the lemma is proved.
The next step is a sub-multiplicativity property of probabilities for coalescence
times.

LEMMA 8 Let be negative integers. Then
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Proof. Suppose that This holds if and only if has
more than one element. Then both, and have more than
one element. Hence

To check whether holds true it is sufficient to know the maps
and similarly, to check only

are needed. Hence the respective sets are independent and the inequality holds.
The remaining identity follows from stationarity. In combination with The-
orem 4, the next result completes the derivation of exact sampling.

THEOREM 9 The Conditions (F) and (C) are equivalent. In particular, the
process governed by is successful under (C), and almost sure coalescence in
Theorem 4 is assured.

Proof. Suppose that (C) holds. By Lemma 7, we have and
Lemma 8 implies

By stationarity, this implies (F). Conversely, suppose that (F) holds, i.e. that
Since F is the intersection of the sets

each of these sets has full measure 1 as well. Fix now. Plainly, the sets

increase to as decreases to Hence there is such that
Choose now in X. Since and are equal

in law, for one has

and (C) holds. This shows that any derivation of coupling from the past
which does not explicitly or implicitly use a hypothesis like (C) or a suitable
substitute is necessarily incomplete or incorrect.

REMARK It is tempting to transfer the same idea to ‘coupling to the future’.
Unfortunately, starting at zero and returning the first state of complete coales-
cence after zero, in general does not give a sample from

The reader may want to check the following simple example from
[F. FRIEDRICH, 2003].
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EXAMPLE 10 Let X = {1,2}. Positive transition probabilities P and their
invariant distributions have the form

Start two independent chains and with transition probability P at time 0
from 1 and 2, respectively. The time of first coalescence in the future is

Denote the common law of and by We will shortly verify that
if and only if Compute first

and

Hence

This is the invariant distribution if and only if

The representation of Markov chains by stochastic flows is closely con-
nected to the actual implementation of coupling from the past. Extending
previous notation, a transition rule will be a map with
some set to be specified. Let now be independent identically
distributed random variables taking values in Then
is a stochastic flow. If, moreover, then the flow
fulfills Condition (P). The remaining problem is to construct a transition rule
such that the associated flow fulfills Condition (C) too.

EXAMPLE 11 Recall from Example 1 how a Markov chain was realized there.
Let again be a deterministic transition rule taking values in X, such that
for a random variable U with uniform distribution on the variable

has law This way we - theoretically - may for an
realize all values and check coalescence. If we go back more
steps in time we need all Since the maps are kept,
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we must work with the same random numbers i.e. realizations
of the as in the preceding run, and only independently generate
additional random numbers For this special coupling there is
complete coalescence at time 0 in finite time. The strength of coupling depends
on the special form of which in turn depends on the concrete implementation.
In Example 1, for each we partitioned [0,1] into intervals of length

and in step took that with The intervals with left end
at 0 have an intersection of length at least

This simultaneously is the probability that U falls into and all states co-
alesce in in one single step, irrespective of We may improve coupling
by a clever arrangement of the intervals. If we put the intervals for which

is maximal, to
the left end of [0,1] then we get the
lower bound for the
coalescence probability. We can im-
prove coupling even further, splitting the
intervals into pieces of length

and their rest, and arrange the
equal pieces on the left of [0,1]. This gives a bound
Note that although all these procedures realize the same Markov kernel P they
correspond to different transition rules, to different stochastic flows, and to
different couplings. Apart from all these modifications, we can summarize:

PROPOSITION 9  Suppose  that  P > 0. Then  all  stochastic  flows
from the present Example 11 fulfill Condition (C).

Note that the distribution of all these random maps definitely is not the syn-
chronous one from Example 2. For this distribution, set use inde-
pendent copies of and let
for on X × [0,1] constructed like above. Condition (C) is obviously fulfilled
and coupling from the past works also for this method.

REMARK  In Example 11 we found several lower bounds for the probability
that states coalesce in one step. An upper bound is given by

This is closely related to DOBRUSHIN’S contraction technique, which in the fi-
nite case is based on Dobrushin ’s contraction coefficient

cf. [G. WINKLER, 1995], Chapter 4. The relation is
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This upper bound is not sharp.

6.3 Monotonicity
Checking directly whether there is complete coalescence at time 0 starting at

more and more remote past times and at all possible states is time consuming,
and even impossible if the state space is large (as it is in the applications we
have in mind). If coalescence of very few states enforces coalescence of all
other states then the procedure becomes feasible. One of the concepts to make
this precise is monotonicity. We are now going to introduce this concept on an
elementary level.

DEFINITION 12   A partial order on a set X is a relation between
elements with the two properties

(ii) and implies (transitivity).

Recall that a total order requires the additional condition that any two elements
are comparable, i.e or

EXAMPLE 13  (a) The usual relation   on is a total order. In the
component-wise order on if and only if

for each It is a partial but no total order since elements like (0,1)
and (1,0) are not related, (b) If then in the component-wise or-
der from (a), the constant configurations and are maximal and
minimal, respectively, i.e. and for every This will be
exploited in exact sampling for the Ising field in Section 6.4.

Next we want to lift partial orderings to the level of probability distributions.
Call a subset I of X an order ideal if and imply

EXAMPLE 14  (a) The order ideals in with the usual order are the rays
and

(b) In the binary setting of Example 13(b), if each black pixel of is
also black in (if we agree that means that the colour of pixel is
black). The order ideals are of the form

DEFINITION 15 Let be a finite partially ordered set, and let and
be probability distributions on X. Then in stochastic order, if and only
if  for each order ideal I.

EXAMPLE 16 Let  and be distributions on with cumulative distribution
functions and respectively. Then   if  and only if

if and only if for every

(i)  for each (reflexivity)
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This means that ‘the mass of is more on the left than the mass of For
Dirac distributions if and only if

The natural extension to Markov kernels reads

DEFINITION 17 We call a Markov kernel P on a partially ordered space
stochastically monotone, if and only if whenever

In Example 11 we constructed transition rules for homogeneous Markov
chains, or rather Markov kernels P. A transition rule is called monotone if

for each whenever Plainly, a monotone transition
rule induces a monotone Markov kernel. Conversely, a monotone kernel is
not necessarily induced by a monotone transition rule, even in very simple
situations. [D.A. Ross, 1993], see [J.A. FILL & M. MACHIDA , 2001],
p. 2., gives a simple counterexample:

EXAMPLE 18 Consider the space and let and
Define a Markov kernel P by

The order ideals are and X, and
it is readily checked that P is monotone. Suppose now
that there are random variables with

almost surely and with laws and respectively.
We shall argue that

The two events are disjoint and hence in contradiction to
We finally indicate how for example the first identity can be

verified: Since one has Since
we conclude Now repeat

this argument two times.

Suppose now that the partially ordered space contains a minimal
element and a maximal element i.e. for every Suppose
further that the stochastic flow is induced by a monotone transition rule, i.e.

and if Then
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and for each as soon as
The previous findings can be turned into practicable algorithms.

PROPOSITION 10 Suppose that P is monotone and    has a minimum
and maximum Then coalescence for and enforces complete coalescence.

6.4 Random Fields and the Ising Model
Random fields serve as flexible models in image analysis and spatial statis-

tics. In particular, any full probabilistic model of textures with random fluc-
tuations necessarily is a random field. Recursive (auto-associative) neural net-
works can be reinterpreted in this framework as well, cf. e.g. [G. WINKLER,

1995]. To understand the phenomenology of these models, sampling from their
Gibbs distribution provides an important tool. In the sequel we want to show
how the concepts developed above serve to establish exact sampling from the
Gibbs distribution of a well known random field - the Ising model.

Let a pattern or configuration be represented by an array of
‘intensities’  in ‘pixels’ or ‘sites’ with finite sets and S. S
might be a finite square grid or - in case of neural networks - an undirected
finite graph. A (finite) random field is a strictly positive probability measure
on the space of all configurations Taking logarithms shows
that is of the Gibbsian form

with a function K on X. It is called a Gibbs fields with energy function K and
partition function Z. These names remind of their roots in statistical physics.

For convenience we restrict ourselves to the Gibbs,sampler with random
visiting scheme. Otherwise we had slightly to modify the setup of Section 6.2.
Let be the projection For a Gibbs field let

denote the single-site conditional probabilities. The Gibbs sampler with ran-
dom visiting scheme first picks a site at random from a probability dis-
tribution D on S, and then picks an intensity at random from the conditional
distribution (4.2) on Given a configuration this results in a new
configuration which equals everywhere except possibly at site
The procedure is repeated with the new configuration and so on and so on.
This defines a homogeneous Markov chain on X with Markov kernel
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where if and are equal off and
otherwise. These transition probabilities are called the

local characteristics. D is called the proposal or exploration distribution.
We assume that D is strictly positive; frequently it is the uniform distri-

bution on S. Then P is primitive since is strictly positive. In fact, in
each step each site and each intensity in the site has positive probability to be
chosen, and thus each can be reached from each in steps with positive
probability. It is easily checked - verifying the detailed balance equations - that

is the invariant distribution of P, and thus the invariant distribution of the
homogeneous Markov chain generated by P.

EXAMPLE 19 (THE ISING MODEL) Let us give an example for exact sam-
pling by way of the Ising model. The ferromagnetic Ising model with magnetic
field is a binary random field with and energy
function

where and indicates that and are neighbours. For
the random visiting scheme in (4.3) the Markov chain is homogeneous and fits
perfectly into the setting of Section 6.2. The formula from [G. WINKLER,
1995], Proposition 3.2.1 (see also [G. WINKLER, 1995], Example 3.1.1) for
the local characteristics boils down to

This probability increases with the set Hence
if in the component-wise partial order introduced in

Example 13. The updates and preserve all the black sites off and pos-
sibly create an additional black one at We conclude that P from (4.3) is
monotone and fulfills the hypotheses of Proposition 10. Hence for complete
coalescence one only has to check whether the completely black and the com-
pletely white patterns coalesce. For transition rules like in Example 11 the
Condition (C) on page 152 is also fulfilled and coupling from the past works.

6.5 Conclusion

The authors are not aware of other mathematical fields, where so many in-
sufficient arguments, ranging from incomplete or misleading, to completely
wrong, have been published (mainly in the Internet). In particular, Condi-
tion (C) or a substitute for it, are missing in a lot of presently available texts.
A rigorous treatment is [S.G. FOSS & R.L. TWEEDIE, 1998]. These au-
thors do not use iterated random maps. These are exploited systematically in
[P. DIACONIS & D. FREEDMAN, 1999]. [J.A. FILL, 1998] introduces ‘in-
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terruptible’ perfect sampling based on acceptance/rejection sampling. Mean-
while there is a body of papers on exact sampling. On the other hand, the
field still is in the state of flux and hence it does not make sense to give fur-
ther references; a rich and up to date source is the home-page of D.B. WIL-
SON, http://www.dbwilson.com/exact/. The connection between tran-
sition probabilities and random maps was clarified in [H.V. WEIZSCKER,
1974].
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