
Active Cells – A Computing Model for Rapid Construction of On-Chip Multi-Core
Systems

Felix Friedrich, Ling Liu, Jürg Gutknecht
ETH Zürich

Computer Systems Institute
Zürich, Switzerland

{felix.friedrich, ling.liu, gutknecht}@inf.ethz.ch

Abstract—We present a novel computing model that allows
to conveniently construct multi-core systems with different
computer architectures, ranging from homogeneous many-core
architectures to networks of heterogeneous general purpose
processor cores or signal processing engines.

A hardware library implemented on Field Programmable
Gate Arrays (FPGAs) and a compiler provide a platform for
prototyping and constructing distributed systems on a chip.
A number of case studies have been carried out to prove the
concept conveyed by the computing model.

Keywords-Parallel programming; Concurrent computing;
Distributed computing; Multicore processing; FPGA design;
System-level design; Software-hardware co-design;

I. INTRODUCTION

We think that it should be possible for a developer to de-
sign application specific hardware architecture on an FPGA
in a simple and convenient way. However, the huge design
overhead introduced by separate software hardware design
processes, tools and programming models today makes this
difficult. Developers usually purchase a commercial, say
multi-core, processor and develop their systems, also with a
high dependence on the operating system underneath. Then
they are confronted with bottlenecks in communicating over
shared memory, high process synchronization overheads and
all typical complexities in programming a multi-threaded
operating system. In our vision, the implied pecularities of a
specific processor architecture, processor sharing, interrupts,
global shared memory, paging etc. should only be involved
in hardware if such features are strictly necessary or bring
vital performance or energy benefits.

A programming model and a platform that allow on-chip
system developers to automatically build the target hardware
architecture from the structure of the target application is
definitely on demand and helpful. Here we present such a
model. However, it cannot be the goal of our work to solve
all problems of the multi-core computing world. We con-
centrate on the class of data-driven streaming applications
for embedded computing. 1

1We take advantage of the typical problem structure by featuring task
parallelism (simultaneous execution), stream parallelism (pipelined execu-
tion) and data parallelism (vector computing / loop-level parallelism) in the
model and our tools.

In our previous work, we started with research on an
implementation of simple processor cores ([1]) on FPGA
together with a network on chip that was designed to
support distributed applications ([2], [3], [4]). The idea
to set up connections between cores if and only if it is
necessary from the application point of view brought us to
the point where real application-aware hardware could be
built with optimized performance, energy efficiency and use
of hardware resources ([5], [6]).

This work has been brought further and resulted in the
computing model Active Cells, which takes the best of two
worlds: flexibility of software together with the efficiency
of programmable hardware. Paired with the simplicity from
our programming model. The model includes a tool set that
allows system developers to prototype or construct their
systems on programmable hardware. By the provision of a
simple but powerful, consistent, self-contained programming
language, programming environment and all tools necessary
to compile the high-level language down to programmable
hardware, the computing model can abstract away all details
and difficulties from the programmer. Programmers are not
required to have deep knowledge in hardware design. The
following figure summarizes this idea.

System design as
high level
program code

=⇒ Electronic
Circuits
FPGA, ASIC

Active Cells
Program

Compiler
Synthesizer
Simulator

Programmable
Hardware
Description

The rest of this paper is organized as follows: Section
II introduces the FPGA-based hardware components used
to emulate hardware architecture. Section III introduces and
illustrates the programming model. Section IV describes the
implementation. Section V presents the case study results
of applying Active Cells computing model to three different
real-time on-chip systems. Section VI concludes the paper.

II. THE HARDWARE LIBRARY

The hardware library implemented on FPGAs provides
different computing elements, ranging from general purpose
RISC processors and vector processors to digital signal
processing engines. The main components are:

• A tiny RISC machine (TRM), a two address processor
with 18 bit instruction format and 32 bit data path.
Each TRM contains an arithmetic-logic unit (ALU),
a multiplier, a barrel shifter and 8 working regis-
ters. The 2-stage pipelined implementation of a TRM
runs at 116MHz, and takes 2% LUTs of the Virtex-
5XC5VLX50T FPGA. The multiplication in the TRM
takes 5 clock cycles.

• A vector processor VTRM has been developed to sup-
port the data parallelism required by the computation
processes.

• Configurable FIFOs. FIFOs are implemented with
LUTs or BRAMs depending on the depth of the FIFO.

• A DDR2 interface.
• I/O controllers. A compact flash (CF) controller, a

LCD controller and a UART controller have been
implemented for Xilinx ML505 board. They all run at
116MHz. A VGA controller and a DVI controller have
also been implemented. They run at pixel clock.

• Special processing elements such as

– Configurable multiplier and accumulator (MAC).
A MAC is the key component of signal processing
units.

– Configurable two-dimensional convolution engine
(2DConvolver) commonly used in signal process-
ing, especially image processing systems.

To bridge the gap between cycle accurate hardware design
and function centric software design, a set of hardware
interfaces have been implemented in a hardware description
language to allow compilation tools to address the specific
hardware. The following items provide some examples of
the hardware interfaces defined in Verilog code. Notations
following the symbol ”#” describe parameters that can be
configured from an application, for example the instruction
memory block size (IMB).

• TRM interface.
#(IMB, DMB) TRM (input clk, rst, irq0,

irq1, input[31:0] inbus, output[5:0]

ioadr, output iowr, iord, output[31:0]

outbus)

• Channel interface.
#(Width, Depth) ParChannel (input clk,

rst, input[Width-1:0] inData, input

wreq, rdreq, output[Width-1:0] outData,

output[31:0] status)

III. THE ACTIVE CELLS PROGRAMMING MODEL

The programming model Active Cells provides a way
to describe, in an abstract way, a programmable system
composed of computing elements that exchange informa-
tion over message channels. The programming model has
primarily been designed to support the simple definition
and programming of multi-core systems on programmable
hardware, but it has also been envisaged to be applicable to
custom, general purpose multi-core hardware.

Experiences with building multi-core systems on FPGAs
have led to the further requirement that the processor cores
do not immediately share memory and thus form a dis-
tributed system of isolated processes, equipped with local
memory and communicating via message passing.

The herein described programming model features so
called Active Cells, objects with a private state space and
integrated control thread(s). Active Cells can be connected
via channels to enable communication. Moreover, Active
Cells can be aggregated in so called Cell Nets, networks
of communicating cells. Cell nets, i.e. aggregated cells, can
also be connected with cells or other cell nets.

In order to support the concept of Active Cells, the
following features have to be added to a general purpose
programming language:
• Cells: a cell provides the scope of a process that runs

in an isolated environment. Cells are defined as types
in a type declaration section.

• Ports: cells can exchange data via unidirectional chan-
nels. Cells can be connected using channels between
input and output ports of cells. Cells can send or
receive data over ports using built-in primitives send
and receive. Sending and receiving is buffered by
default. Sending is non-blocking. Receiving exists in
a blocking and an unblocking version, decided by the
actual parameters.

• Connections: ports are connected using unidirectional
channels using the connect statement. Channels are not
made explicit in the language.

• Cell nets: a cell net defines a directed graph over
cells or cell nets. Cell nets can provide ports that are
delegated to ports of the contained components using
the primitive delegate.

The programming model that we propose has been in-
spired by many works on data flow languages ([7], [8]),
Kahn Process Networks ([9]), seminal works on parallel
computing (such as [10]) and the actor model ([11], [12]).
The formulation as a compositional framework follows very
much [13].

Although the concept we present here is universal and can
be applied to other programming language, we exemplify our
approach with the language that we use for our development,
Active Math Oberon. Active Oberon is a type safe, object
oriented programming language in the tradition of Pascal and

Modula and provides a concept for concurrent execution as
part of the language ([14], [15]). We have amended Active
Oberon with a Matlab-like syntax for mathematical program-
ming ([16], [17]). It can be used to describe mathematical
algorithms in a high-level notation and make immediate use
of vector capabilities of underlying hardware, a concept that
obviously fits very well to the scope of this work.

A. Cells

A cell provides the scope and environment for a running,
isolated process. Cells do not immediately share memory
but can only communicate via channels. Cells are defined
as types with a scope that can contain variables, procedures
and a body. The body of a cell provides the code for the
primary activity associated with the cell. A number of input
and output ports can be defined as parameters of a cell.
Such ports define the interface of the cell and nothing else
is visible to both the interior scope of the cell and the
connected cells. The direction of the port must be defined
to be in or out.

Listing 1 illustrates this with an implementation of a
cell that receives two incoming values and that returns the
result of some subsequent operation over an outgoing stream.
Note that receiving is blocking in the displayed form. A
non-blocking receive exists and can be expressed using the
ternary form receive(port, value, result).

type F = cell (in1 , in2 : port in ; res : port out);
var i , j : integer ;

procedure SomeOp (x,y: integer): integer ;
begin ... return ...
end SomeOp;

begin
loop

(∗ blocking receive ∗)
receive (in1 , i); receive (in2 , j);
(∗ non−blocking send ∗)
send(res , SomeOp(i,j))

end
end F;

Listing 1. A communicating cell.

Capabilities: Applied to the code of Listing 1, our com-
piler would by default generate a programmable processor
core on a chip with defaults in terms of supported instruction
set, memory sizes, port widths etc. It is possible to override
default values and to configure the component to implement
a different instruction set, to incorporate additional features
such as a vector processing unit or connections to devices
etc. This is accomplished by the specification of capabilities
in the declaration of a cell. The capabilities of a cell can
influence what the synthesized hardware components looks
like and what kind of code is generated by the compiler. 2

Listing 2 contains an example of a cell that is configured
to contain a vector processing unit, a data memory of 2048

2More details on the compilation process are provided in Section IV.

words and a connection to a DDR2 memory controller.
Moreover, the incoming port is configured to be 64-bit wide.

type Filter = cell { Vector , Data(2048), DDR2 }
(data : port in (64); res : port out);

var t : real ; k1, ..., x : array [3] of real ;(∗vectors∗)
begin

...
while t <= tmax do

(∗ vector operations ∗)
k1 := f (t , x); k2 := f (t + dt /2, x + dt /2 ∗ k1); ...
x1 := x + dt/3∗(1/2∗k1 + k2 + k3 + 1/2∗k4); ...

end
end Filter ;

Listing 2. A cell with capabilities

Engines: As indicated before, cells usually represent pro-
grammable processor cores providing control unit, arithmetic
unit and registers. For some tasks, the usage of pure hard-
ware implemented engines is a better choice. For example,
very simple components such as moving average, adder or
threshold filter would waste resources in terms of space and
power consumption on an FPGA if they were implemented
as a fully-fledged processor. Other components, such as more
complex image filters, may provide a higher throughput,
lower latencies and thus a better performance if they are
implemented directly on hardware, cf. the description of
special processing elements in Section II.

Therefore, we provided a way to designate a cell to be
implemented in hardware. We call such a cell an Engine.
Listing 3 provides an example how such an Engine is
defined in Active Cells. The availability of a hardware
implementation of the Engine is checked by the compiler.

type Convolver2D = cell {Engine}
(raw: port in ; filtered : port out);

end Convolver2D;

Listing 3. An Engine cell made from hardware

B. Cell Nets

Single cells can be equipped with capabilities to provide a
connection to the outside world, for example over attached
controllers. However, the interconnection of cells must be
made explicit with a definition in an outer scope. Setting
up connections within the scope of a cell would, in general,
require dynamic composition. And dynamically allocating
hardware resources is a time-consuming procedure in this
context and can thus hardly meet systems’ real-time require-
ments.

Several alternatives were considered, such as the definition
of the graph of cells in an external XML file, a graphical
composition framework etc. The following requirements
have to be met
(1) It must be easy to construct complex, parameterizable

graphs of communicating processes.
(2) The programming model should be applicable to the

development on programmable hardware and to build-
ing solutions on conventional multi-core hardware. It

should thus cover the static construction of hardware
cores and the dynamic construction of threads.

(3) The programming model should be easy to learn and
to teach, consistent and as simple as possible.

To account for (1) and (2), a programming language com-
prising control flow constructs was envisioned for the con-
struction of the graph. To account for (3), we decided that
for the cell net composition the same language should be
used as for programming the cells. With the consequence,
that the compiler had to be able to interpret certain parts of
the code during compilation.

We follow a three phase composition model: instantiate,
connect, initialize. Like cells, cell nets are defined as types
with a body where the configuration of a network of cells
takes place. A terminal cell net, i.e. a cell net that does not
provide any ports can form a compilation and deployment
unit.

1) Wiring Cells in a Cell Net: The new statement is used
on a variable of cell (or cell net) type to instantiate a cell
(or cell net). If there is a constructor available in the cell,
it is possible to pass initialization parameters. The connect
statement can be used to connect an outgoing port of one
component to an ingoing port of another. The depths of two
connected ports, i.e. the sizes of the associated FIFO, can
also be specified as a third parameter of connect.

Listing 4 contains an example of a terminal cell net A
comprising two cells, one user interface cell ifc of type UI
providing communication to the outside world over RS232,
and a communicating cell f of type F. The implementation
of a serial connection is provided in the imported module
RS232.

cellnet A; (∗ terminal∗)
import RS232;
type

F = cell (in1 , in2 : port in ; res : port out);
UI = cell {RS232} (out1, out2: port out; res : port in);

var
ifc : UI; f : F;

begin
(∗ creation ∗)
new(ifc); new(f);
(∗ wiring ∗)
connect(ifc .out1 , f . in1);
connect(ifc .out2 , f . in2);
connect(f . res , ifc . res)

end A.

Listing 4. A terminal cellnet; implementation of F and UI omitted

A compilation of the displayed cell net A results in the
generation of code for the body of the cell type UI, code
for the body of F and a network description that contains
the wiring defined in the body of the cell net. The network
description contains references to linked code being ready
for execution and can be used to deploy the example, either
to hardware or a simulator.

2) Hierarchic Composition: Cell nets constitute the
wiring of cells (and cell nets). To make a connection of a
whole cell net to other cells (or cell nets) possible, cell nets

Figure 1. Topology of the terminal cellnet as defined in Listing 4. We
write types of a cell in parentheses to distinguish from the instance names.
Names are relative to enclosed scopes.

can also provide ports. Ports of a cell net can be delegated to
ports of contained components using the delegate primitive.
Naturally, the scope of a cell net can also contain the
definition of locally used cell types and (sub-) cell nets.
Instances of cells or cell nets are represented as variables in
the cell net. Thus, instances of cell nets can form networks
of instances of cells and instances of cell nets.

Listing 5 contains an example of how components would
be stored to form a reusable library. The contained reusable
cell net ScalarProduct wires two multipliers and an adder
(engines) such that they form a scalar product.

namespace MathLib;

type MovingAverage∗ =cell (in: port in ; res : port out);
procedure &Init(length : integer); (∗ constructor ∗)

... end MovingAverage;

type Adder∗ =cell {engine} (in1 , in2 : port in ;
res : port out);

... end Adder;

type Multiplier ∗ =cell {engine} (in1 , in2 : port in ;
res : port out);

... end Multiplier ;

type ScalarProduct∗ =cellnet (vX,vY,wX,wY: port in;
res : port out)

var
adder: Adder;
mul1,mul2: Multiplier ;

begin
new(mul1); new(mul2); new(adder);
delegate (vX, mul1.in1); delegate (wX, mul1.in2);
delegate (vY, mul2.in1); delegate (wY, mul2.in2);
delegate (res , adder . res);
connect(mul1.res , adder . in1);
connect(mul2.res , adder . in2);

end ScalarProduct ;

end MathLib.

Listing 5. A Library consisting of cells and cell net

IV. IMPLEMENTATION

When an Active Cells program is compiled, parts of it
are necessarily compiled “to hardware”. This means they are

compiled to a hardware specification that can be understood
by hardware synthesis tools to generate components on
programmable hardware. Other parts have to be compiled
to code that is executable on the synthesized processors
amongst the hardware components. The mapping from soft-
ware to hardware plus code is described in this section and
can be summarized as follows:

Cell Net FPGA
Cell Engine or TRM processor

Instruction & Data Memory
Communication
Channel

⇒ FIFO buffer

I/O I/O controllers

A. Hybrid Compilation

A cell stands for a programmable processor (if it is not
tagged as engine). Thus the code of the body of a cell is
compiled to executable code on the processor. The way the
code is compiled can depend on the features of the cell. For
example, if a cell is flagged to contain an FPU unit, the
generated hardware will contain an FPU unit and floating
point operations are compiled to FPU instructions. The front-
end of our compiler generates intermediate code that is
passed to a back-end for the particular architecture. This
usage of intermediate code for the generated code makes
separate compilation at all possible in this context.

A cell net stands for a network of processors and therefore
forms the unit of what is compiled to hardware. We are
not considering the generation of programmable hardware
at runtime but merely have to rely on synthesis tools that
are available on the development machine. Therefore the
bodies of networks have to be interpreted during compilation
in order to generate a hardware specification that can be
understood by synthesis tools.

The automated process for mapping an Active Cells
program onto an FPGA is outlined in Figure 2.

B. Runtime Library

The sending and receiving over channels requires a con-
siderable support by a runtime library. During compilation,
both for the hardware generation and code generation part,
each port of a cell is associated with a number that is used
for addressing the port. In fact, this number stands for the
memory-mapped addresses of the registers that are used to
access the port in hardware. A runtime library is used for
sending and receiving data over the port. The operations
supported by the library are Read(adr, x), Read(adr, x, res)
and Write(adr, x). The two implementations of Read are used
for blocking and non-blocking read, the latter to be able to
model non-determinism in streaming applications.

The runtime library also contains the support of other
devices such as RS232, LCD, DDR memory etc. Moreover it

Figure 2. The automated process for mapping an Active Cells program
onto an FPGA.

is used to support certain programming language constructs
(such as string comparison) and to emulate instructions that
are not offered by the hardware component currently in use
(such as floating point operations if an FPU is absent).

C. Network Flattening

During compilation, in particular after the network topol-
ogy is fixed, the network is flattened by the compiler such
that no cell contains cell nets any more. This means that in
the end all cell nets consist of cells only. In addition, no
delegate (virtual) ports are left after flattening. As scopes
are lost during this process, some renaming takes place.
Flattening all networks is very useful for the hardware
generation phase and for an application of the simulator.

D. Simulation

As described above, the compiler generates a hardware
specification of the hardware as a textual description of the
graph together with the code and data files necessary for
execution on the cores in the network. The specification
file containing the description of the hardware can also be
fed to a cycle-accurate simulator ([18]) to be able to test
implementations without actually having to synthesize and
download to FPGA hardware. The simulator takes over the
role of the synthesizing tool, i.e. it creates instances of the
cores, the FIFOs and channels and device controllers and
wires them accordingly.

As long as the cycle-accuracy is not of importance,
engines that are not yet supported by the simulator can also
be formulated in software and be instantiated as processor
cores in the simulator. By this, the simulator framework does
not have to be adapted for each and every new advent of a
new special hardware component and can serve as testing
environment very well.

V. PROOFS OF CONCEPT

To prove the applicability of the Active Cells program-
ming model and its programming environment, several sys-
tems have been developed on a single FPGA chip. The
granularity of the computation elements ranges from general
purpose processor to vector processor to dedicated signal
processing engines. In this section, three case studies are
presented to illustrate the performance and energy results of
three different computer architectures. All of these systems
are implemented on a Xilinx ML505 board with a Virtext-
5LX50T FPGA chip.

(1) A real-time electrocardiographic (ECG) signal analysis
systems. This ECG system performs the analysis of the
electrical activity of the heart, including detection of the
waves, analysis of their morphology, heart rate variability
(HRV) analysis, detection and classification of disease. The
analyzed signal represents a standard set of 8 physical
channels recorded by a conventional mornitoring device with
a sampling rate of 500 Hz [5].

(2) A motion detection system. In this system, a dedicated
TRM processor loads input images from compact flash (CF)
card and stores them to DDR2 memory. Then the data
from DDR2 is loaded and processed in parallel by vector
processors. The processing results are streamed back to the
DDR2. Using the same I/O process, the resulted data from
DDR2 are stored to CF for checking correctness on a PC
[6].

(3) A real-time edge detection system. In this system, a
VGA input controller samples input RGB video stream at a
pixel speed of 65MHz. Each RGB pixel is converted into a
gray scale pixel by a one-dimensional filter that implements
RGB-to-Y matrix computation. The gray-scale pixels are
filter in parallel via a Sobel X Gradient Filter and a Sobel
Y Gradient filter to compute the horizontal and vertical
gradients in the source video stream. The absolute values
of the horizontal and vertical gradients are summed up to
approximate the magnitude of the gradients. A multiplier and
a comparator following the magnitude function are used to
generate a 1-bit mask to indicate if the pixel is on the edge
of an Object. This mask will be attached to the source video
stream to display the results on a LCD display via a DVI
controller in real-time.

Figures 3 and 4 give the corresponding computer architec-
tures for two of the systems. The systems have very different
hardware architectures, in particular the computation gran-
ularity among them is very different. The ECG system has

Figure 3. Computer architecture of the ECG system

Figure 4. Computer architecture of the Edge Detection system

Table I
PERFORMANCE, SIZE AND POWER CONSUMPTION RESULTS OF ABOVE

THREE SYSTEMS

System Data
bandwidth
(bits/second)

Size Power
consumption
(Watt)

ECG 64K 48% LUTs, 86%
BRAMs, 25% DSPs

0.978

Motion Detec-
tion

186.624M 56% LUTs, 93%
BRAMs, 70% DSPs

4.21

Edge
Detection

1.536G 6% LUTs, 13%
BRAMs, 47%
DSPs

0.766

homogeneous architecture and uses a slow but more flexible
general purpose TRM as the computation unit. The Mo-
tion Detection system has a heterogeneous architecture that
involves vector processors and general purpose processors.
The Edge Detection system uses engines implemented in
pure hardware as computation units, and only uses a TRM
to control the I2C bus to set up the registers in the VGA
and DVI encoders. Table I reflects the results in terms of
data bandwidth, size and power consumption. It is clear
that multiple hardware engines architecture provide better
performance and energy efficiency. However, this computer
architecture is severely application dependent. Depending
on the time-to-market and programmability condition, the
system designers can quickly model and measure the system
and decide which system architecture meets the performance
and energy requirements better.

VI. CONCLUSION

It is challenging to model various systems with different
architectures and performance or energy requirements in a
unified way. And it is even more challenging to automati-
cally produce such a targeted running system based on an
abstract and unified programming model.

In order to provide a modeling environment that has such
capabilities, a full understanding of the class of targeted
applications and of hardware-, language- and compiler-
design is necessary. Our computing model is based on such
an understanding. The results of the case studies and ongoing
working experience (and even its use in commercial product
development) have proven that the Active Cells computing
model is very well applicable to real-world problems with
a short time to market.

Our approach is not about the sole translation of programs
to circuits but rather provides a way to combine a high level
synthesis with an acceptable overhead with respect to usage
of resources and energy consumption on an FPGA, similar
to the introduction of high-level programming languages
replacing pure assembler code some decades ago. To the
best of our knowledge such an approach does not exist yet.

An extension of the Active Cells computing model to
address the automatic system construction for multi-chip
distributed multi-core systems is planned.

ACKNOWLEDGMENT

A substantial part of the work has been funded by
Microsoft in the project ‘Supercomputer in the Pocket’ in the
Microsoft Innovation Cluster for Embedded Software. The
authors would like to thank Florian Negele and Paul Reed for
fruitful discussions and valuable suggestions. Furthermore
we would like to express our gratitude to Alexey Morozov
and Patrick Hunziker from the University Hospital in Basel
for their contribution to the case studies.

REFERENCES

[1] N. Wirth, “The Tiny Register Machine (TRM),” ETH Zürich,
Computer Systems Institute, Tech. Rep. 643, 10 2009.

[2] L. Liu, “A 12-core processor implementation on FPGA,” ETH
Zürich, Computer Systems Institute, Tech. Rep. 646, 10 2009.

[3] L. Liu, “A bus-based on-chip message passing network,” ETH
Zürich, Computer Systems Institute, Tech. Rep. 645, 10 2009.

[4] N. Wirth, “A Token-Ring for the TRM,” ETH Zürich, Com-
puter Systems Institute, Tech. Rep. 647, 10 2009.

[5] L. Liu and O. Morozov, “A process-oriented streaming
system design paradigm for FPGAs,” in Proceedings of the
2010 International Conference on Reconfigurable Computing
and FPGAs, ser. RECONFIG ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 370–375. [Online].
Available: http://dx.doi.org/10.1109/ReConFig.2010.39

[6] L. Liu, O. Morozov, Y. Han, J. Gutknecht, and P. Hunziker,
“Automatic soc design flow on many-core processors:
a software hardware co-design approach for fpgas,”
in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 37–40. [Online].
Available: http://doi.acm.org/10.1145/1950413.1950424

[7] J. B. Dennis, “First version of a data flow procedure
language,” in Programming Symposium, Proceedings
Colloque sur la Programmation. London, UK:
Springer-Verlag, 1974, pp. 362–376. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647323.721501

[8] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances
in dataflow programming languages,” ACM Comput. Surv.,
vol. 36, pp. 1–34, March 2004. [Online]. Available:
http://doi.acm.org/10.1145/1013208.1013209

[9] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information processing, J. L. Rosenfeld,
Ed. Stockholm, Sweden: North Holland, Amsterdam, Aug
1974, pp. 471–475.

[10] C. A. R. Hoare, “Communicating sequential processes,”
Commun. ACM, vol. 21, pp. 666–677, August 1978. [Online].
Available: http://doi.acm.org/10.1145/359576.359585

[11] G. Agha, Actors: a model of concurrent computation in
distributed systems. Cambridge, MA, USA: MIT Press, 1986.

[12] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
actor formalism for artificial intelligence,” in Proceedings
of the 3rd international joint conference on Artificial
intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1624775.1624804

[13] L. Bläser, “A component language for pointer-free concur-
rent programming and its application to simulation,” Ph.D.
dissertation, ETH Zürich, 2007.

[14] P. J. Muller, “The active object system design and multi-
processor implementation,” Ph.D. dissertation, ETH Zürich,
2002.

[15] P. R. C. Reali, “Using oberon’s active objects for language
interoperability and compilation,” Ph.D. dissertation, ETH
Zürich, 2003.

[16] F. Friedrich and J. Gutknecht, “Array-structured object types
for mathematical programming.” in JMLC, ser. Lecture Notes
in Computer Science, D. E. Lightfoot and C. A. Szyperski,
Eds., vol. 4228. Springer, 2006, pp. 195–210.

[17] F. Friedrich, J. Gutknecht, O. Morozov, and P. Hunziker, “A
mathematical programming language extension for multilin-
ear algebra.” in Proc. Kolloqium über Programmiersprachen
und Grundlagen der Programmierung, Timmendorfer Strand,
2007.

[18] R. Stoll, “Development of a multicore simulator framework,”
Master Thesis, ETH Zürich, 2010.

