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Abstract: We study the asymptotics in L2 for complexity penalized1

least squares regression for the discrete approximation of finite-2

dimensional signals on continuous domains - e.g. images - by3

piecewise smooth functions. We introduce a fairly general setting4

which comprises most of the presently popular partitions of signal-5

or image- domains like interval-, wedgelet- or related partitions, as6

well as Delaunay triangulations. Then we prove consistency and derive7

convergence rates. Finally, we illustrate by way of relevant examples8

that the abstract results are useful for many applications.9
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1. Introduction11

We are going to study consistency of special complexity penalized Least12

Squares estimators for noisy observations of finite-dimensional signals on multi-13

dimensional domains, in particular of images. The estimators discussed in14

the present paper are based on partitioning combined with piecewise smooth15

approximation. In this framework, consistency is proved and convergence rates16

are derived in L2. Finally, the abstract results are applied to a couple of17

relevant examples, including popular methods like interval-, wedgelet- or related18

partitions, as well as Delaunay triangulations. Fig. 1 illustrates a typical wedgelet19

representation of a noisy image.20

Consistency is a strong indication that an estimation procedure is meaningful.21

Moreover, it allows for structural insight since a sequence of discrete estimation22

procedures is embedded into a common continuous setting and the quantitative23

behaviour of estimators can be compared. It is frequently used as a substitute or24

approximation for missing or vague knowledge in the real finite sample situation.25

Plainly, one must be aware of various shortcomings and should not rely on26

asymptotics in case of small sample size. Nevertheless, consistency is a broadly27

accepted justification of statistical methods. Convergence rates are of particular28

importance, since they indicate the quality of discrete estimates or approximations29

and allow for comparison of different methods.30

Observations or data will be governed by a simple regression model with
additive white noise: Let Sn = {1, . . . , n}d be a finite discrete signal domain,
interpreted as the discretization of the continuous domain S∞ = [0, 1)d. Data
y = (ys)s∈Sn are available for the discrete domains at all levels n and generated by
the model

Y n
s = f̄ns + ξns , n ∈ N, s ∈ Sn, (1)

where (f̄ns )s∈Sn is a discretisation of an original or ‘true’ signal f on S∞ and31

(ξns )s∈Sn is white (sub-)Gaussian noise.32
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Figure 1. A noisy image (left) and (right) a fairly rough wedgelet representation
for n = 256. The (middle) picture also shows the boundaries of the smoothness
regions.

The present approach is based on a partitioning of the discrete signal domain into33

regions on each of which a smooth approximation of noisy data is performed. The34

choice of a particular partition is obtained by a complexity penalized least squares35

estimation, dependent on the data. Between the regions, sharp breaks of intensity36

may happen, which allows for edge-preserving piecewise smoothing. In one37

dimension, a natural way to model jumps in signals is to consider piecewise regular38

functions. This leads naturally to representations based on partitions consisting of39

intervals. The number of intervals on a discrete line of length n is of polynomial40

order n2.41

In more dimensions, however, the definition of elementary fragments is much42

more involved. For example, in a discrete square of side-length n, the number43

of all subregions is of the exponential order 2n
2 . When dealing with images, one44

of the difficulties consists in constructing reduced sets of fragments which, at the45

same time, take into account the geometry of images and lead to computationally46

feasible algorithms for the computation of estimators.47

The estimators adopted here are minimal points of complexity penalized least
squares functionals: if y = (ys)s∈Sn is a sample and x = (xs)s∈Sn a tentative
representation of y, the functional

Hn(x, y) = γ|P(x)|+
∑
s∈Sn

(ys − xs)2 (2)
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has to be minimized in x given y; the penalty γ|P(x)| is the number of subdomains48

into which the entire domain is divided and on which x is smooth in a sense to be49

made precise by the choice of suitable function spaces (see Sections 2.1 and 5);50

γ is a tuning parameter. This automatically results in a sparse representation of51

the function. Due to the non-convexity of L0-type penalty one has to solve hard52

optimization problems in general.53

These are not computationally feasible, if all possible partitions of the signal54

domain are admitted. A most popular attempt to circumvent this nuisance is55

simulated annealing, see for instance the seminal paper S. GEMAN and D. GEMAN56

[23]. This paper had a considerable impact on imaging; the authors transferred57

models from statistical physics to image analysis as prior distributions in the58

framework of Bayesian statistics. This approach was intimately connected with59

Markov Chain Monte Carlo Methods like Metropolis Sampling and Simulated60

Annealing, cf. G. WINKLER [36].61

On the other hand, transferring spatial complexity to time complexity like in62

such metaheuristics, does not remove the basic problem; it rather transforms it.63

Such algorithms are not guaranteed to find the optimum or even a satisfactory64

near-optimal solution, cf. G. WINKLER [36], Section 6.2. All metaheuristics will65

eventually encounter problems on which they perform poorly.66

Moreover, if the number of partitions grows at least exponentially, it is difficult67

to derive useful uniform bounds on the projections of noise onto the subspaces68

induced by the partitions. Reducing the search space drastically allows to design69

exact and fast algorithms. Such a reduction basically amounts to restrictions on70

admissible partitions of the signal domain. There are various suggestions, some of71

them mentioned initially.72

In one dimension, regression onto piecewise constant functions was proposed73

by the legendary J.W. TUKEY [34] who called respective representations regres-74

sograms. The functional (2) is by some (including the authors) referred to as the75

Potts functional. It was introduced in R.B. POTTS [33] as a generalization of the76

well-known Ising model, E. ISING [25], from statistical physics from two to more77

spins. It was suggested by W. LENZ [29] and penalizes the length of contours78

between regions of constant spins. In fact, in one dimension a partition P into say79

k intervals on which the signal is constant admits k − 1 jumps and therefore has80

contour-length k − 1.81
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The one-dimensional Potts model for signals was studied in detail in a82

series of theses and articles, see F. FRIEDRICH [20], F. FRIEDRICH et al.83

[22], A. KEMPE [27], V. LIEBSCHER and G. WINKLER [30], G. WINKLER et al.84

[37], G. WINKLER and V. LIEBSCHER [38], G. WINKLER et al. [39], O. WITTICH85

et al. [40]. Consistency was first adressed in A. KEMPE [27] and later on86

exhaustively treated in L. BOYSEN et al. [3] and L. BOYSEN et al. [4]. Partitions87

consist there of intervals. Our study of the multi-dimensional case started with the88

thesis F. FRIEDRICH [20], see also F. FRIEDRICH et al. [21].89

In two or more dimensions, the model (2) differs substantially from the classical90

Potts model. The latter penalizes the length of contours - locations of intensity91

breaks - whereas (2) penalizes the number of regions. This allows for instance to92

perform well on filamentous structures, albeit they have long borders compared to93

their area.94

Let us give an informal introduction into the setting. The aim is to estimate a95

function f on the d-dimensional unit cube S∞ = [0, 1)d from discrete data. To96

this end, S∞ and f are discretized to cubic grids Sn = {1, . . . , n}d, n ∈ N, and97

functions f̄n on Sn. On each stage n, data yns , s ∈ Sn, is available, i.e. noisy98

observations of the f̄ns . We will prove L2-convergence of complexity penalized99

least squares estimators f̂n(y), corresponding to minimal points of (2) (Section100

2.2) for the f̄n and derive convergence rates, first in the general setting. We are101

faced with three kinds of error: the error caused by noise, the approximation and102

the discretization error. Noise is essentially controlled regardless of the specific103

form of f . For the approximation and the discretisation error special assumptions104

on the function classes in question are needed.105

Because of the approximation error term, there are deep connections to106

approximation theory. In particular, when dealing with piecewise regular images,107

non linear approximation rates obtained by wavelet shrinkage methods are known108

to be suboptimal, as discussed in R. KOROSTELEV and TSYBAKOV [28] or109

D. DONOHO [16]. In the last decade, the challenging problem to improve upon110

wavelets has been addressed in very different directions.111

The search for a good paradigm for detecting and representing curvilinear112

discontinuities of bivariate functions remains a fundamental issue in image113

analysis. Ideally, an efficient representation should use atomic decompositions114

which are local in space (like wavelets), but also possess appropriate directional115
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properties (unlike wavelets). One of the most prominent examples is given116

by curvelet representations, which are based on multiscale directional filtering117

combined with anisotropic scaling. E. CANDÈS and D. DONOHO [8] proved that118

thresholding of curvelet coefficients provides estimators which yield the minimax119

convergence rate up to a logarithmic factor for piecewise C 2 functions with C 2
120

boundaries. Another interesting representation is given by bandelets as proposed in121

E. LE PENNEC and S. MALLAT [31]. Bandelets are based on optimal local warping122

in the image domain relatively to the geometrical flow and C. DOSSAL et al. [17]123

proved also optimality of the minimax convergence rates of their bandelet-based124

estimator, for a larger class of functions including piecewise C α functions with C α
125

boundaries.126

In Section 5 we apply the abstract framework proposed in Section 4 to127

bidimensional examples that rely on explicit geometrical constructions: in128

particular, the corresponding approaches are aimed at avoiding the pseudo-Gibbs129

artifacts produced by the above methods.130

Wedgelet partitions were introduced by D. DONOHO [16] and belong to the131

class of shape-preserving image segmentation methods. The decompositions are132

based on local polynomial approximation on some adaptively selected leaves of a133

quadtree structure. The use of a suitable data structure allowed for the development134

of fast algorithms for wedgelet decomposition, see F. FRIEDRICH et al. [21].135

An alternative is provided by anisotropic Delaunay triangulations, which have136

been proposed in the context of image compression in L. DEMARET et al. [10]. The137

flexible design of the representing system allows for a particularly fine selection138

of triangles fitting the anisotropic geometrical features of images. In contrast to139

curvelets, such representations preserve the advantage of wavelets and are still able140

to approximate point singularities optimally, see L. DEMARET and A. ISKE [13].141

Both wedgelet representations and anisotropic Delaunay triangulations lead
to optimal non linear approximation rates for some classes of piecewise smooth
functions. In the present paper, we prove optimality also for the convergence rates
of the estimators. More precisely, we prove strong consistency rates of

O(ε2α/(α+1)
n log(εn)), εn = σ2/nd,

where σ2 is the variance of noise and α is a parameter controlling piecewise142

regularity. Such rates are known to be optimal up to the logarithmic factor.143
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L. BIRGÉ and P. MASSART [2] showed recently that, in a similar setting,144

optimal rates without the log factor may be achieved with penalties slightly145

different from those in (2), and not merely proportional to the number of pieces. In146

the present work, we explicitly restrict our attention to the classical penalty given147

by the number of pieces as in (2), noting that this corresponds to the sparse ansatz148

which is currently popular in the signal community. We refer to M. ELAD [19] for149

a comprehensive review on sparsity. The generalization of the proofs in this paper150

is straightforward but would be rather technical and thus might obscure the main151

ideas.152

We address first noise and its projections to the approximation spaces, see153

Section 3. In Section 4, we derive convergence rates in the general context.154

Finally, in Section 5, we illustrate the abstract results by specific applications.155

Dimension 1 is included, thus generalizing the results from L. BOYSEN et al.156

[3] to piecewise polynomial regression and piecewise Sobolev classes. Our157

two-dimensional examples, wedgelets and Delaunay triangulations, both rely on a158

geometric and edge-preserving representation. Our main motivation are the optimal159

approximation properties of these methods, the key feature to apply the previous160

framework being an appropriate discretization of these schemes.161

2. The Setting162

In this section we introduce the formal framework for piecewise smooth163

representations, the regression model for data, and the estimation procedure.164

2.1. Regression and Segmentations165

Image domains will generically be denoted by S. We choose S∞ = [0, 1)d,
d ∈ N, as the continuous and Sn = {1, . . . , n}d as the generic discrete image
domain. Let f ∈ L2(S∞) represent the ‘true’ image which has to be reconstructed
from noisy discrete data. For the latter, we adopt a simple linear regression model
of the form

Y n
s = f̄ns + ξns , n ∈ N, s ∈ Sn. (3)
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The noise variables ξns in the regression model are random variables on a common
probability space (Ω,F ,P). f̄n = (f̄ns)s∈Sn is a discretisation of f . To be definite,
divide S∞ into nd semi-open cubes

Ini1,...,id =
∏

1≤j≤d

[(ij − 1)/n, ij/n), 1 ≤ ij ≤ n,

of volume 1/nd and for g ∈ L2(S∞) take local means

ḡns = nd
∫
Is

g(u) du, s ∈ Sn.

This specifies maps δn from L2(S∞) to RSn by

δng = (ḡns )s∈Sn . (4)

Conversely, embeddings of RSn into L2(S∞) are defined by

z = (zs)s∈Sn 7−→ ιnz =
∑
s∈Sn

zs1Is . (5)

As an aid to memory, keep the following chain of maps in mind:

L2(S∞)
δn−→ RSn ιn−→ L2(S∞).

In absence of noise, f is approximated by the functions ιnf̄n = ιnδnf in any166

precision. Thus, the main task will be to control noise. In fact, the function ιnδnf =167

ιnf̄n is the conditional expectation of f w.r.t. the (σ)-algebra A n generated by the168

cubes Ins and convergence can be seen by a martingale argument.169

We are dealing with estimates of f or rather of f̄n on each level n. An170

image domain S will be partitioned by the method into sets, on which the future171

representations are members of initially chosen spaces of smooth functions. To172

keep control, we choose a class R ⊂ 2S of admissible fragments and later on,173

these will be rectangles, wedges or triangles. A subset P ⊂ 2S is a partition if (a)174

the elements in P are mutually disjoint, and (b) S is the union of all P ∈ P . In175

the following, we choose a subset P of the set of all partitions P ⊂ R. We call176

elements of P admissible partitions.177

For each fragment P ∈ R, we choose a finite dimensional linear space FP of178

real functions on S which vanish off P . Examples are spaces of constant functions179
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or polynomials of higher degree. This space is determined by the maximal local180

smoothness of f . If P ∈ P and fP = (fP )P∈P is a family of such functions, we181

also denote by fP the function defined on all of S and whose restriction to P is182

equal to fP for each P ∈P . The pair (P, fP) is a segmentation and each element183

(P, fP ) is a segment.184

For each partition P , define the linear space FP = span{FP : P ∈ P}. A
family of segmentations is called a segmentation class. In particular, let

S(P,F) := {(P, f) : P ∈ P, f ∈ FP}

with partitions in P and functions in F = {FP : P ∈ P}.185

2.2. Complexity Penalized Least Squares Estimation186

We want to produce appropriate discrete representations or estimates of the187

underlying function f on the basis of random data Y from the regression model188

(3). We are watching out for a segmentation which is in proper balance between189

fidelity to data and complexity.190

We decide in advance on a class S of (admissible) segmentations which should
contain the desired representations. The segmentations, given data Y n, are scored
by the functional

Hn
γ : Sn × RSn −→ R, Hn

γ ((P, fP), Y n) = γ|P|+ ‖fP − Y n‖2, (6)

with γ ≥ 0 and |P| the cardinality of P . The symbol ‖ · ‖ denotes the `2-norm191

on RSn . The last term measures fidelity to data. The other term is a rough measure192

of overall smoothness. As estimators for f given data Y we choose minimisers193

(P̂n, f̂n) of (6). Note that both P̂n and f̂n are random since Y n is random.194

The definition makes sense since minimal points of (6) do always exist. This
can easily verified by the reduction principle, which relies on the decomposition

min
P∈Pn,fP∈FP

Hn
γ ((P, fP), Y ) = min

P∈Pn

(
γ|P|+ min

fP∈FP

‖fP − Y ‖2
)
.

Given P , the inner minimisation problem has as unique solution the orthogonal195

projection f̂nP of Y to FP . The outer minimisation problem is finite and hence a196

minimum of (6) exists. Let us pick one of the minimal points f̂n.197
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3. Noise and its Projections198

For consistency, resolutions at infinitely many levels are considered simulta-199

neously. Frequently, segmentations are not defined for all n ∈ N but only for a200

cofinal subset of N. Typical examples are all dyadic quad-tree partitions or dyadic201

wedgelet segmentations where only indices of the form n = 2p appear. Therefore202

we adopt the following convention:203

The symbol M denotes any infinite subset of N endowed with the natural order ≤.204

(M,≤) is a totally ordered set and we may consider nets (xn)n∈M. For example205

xn → x, n ∈M, means that xn convergences to x along M. We deal similarly with206

notions like lim sup etc. Plainly, we might resort to subsequences instead but this207

would cause a change of indices which is notationally inconvenient.208

3.1. Sub-Gaussian Noise and a Tail Estimate We introduce now the main209

hypotheses on noise accompanied by a brief discussion. The core of the arguments210

in later sections is the tail estimate (8) below.211

As Theorem 2 will show, the appropriate framework are sub-Gaussian random212

variables. A random variable ξ enjoys this property if one of the following213

conditions is fulfilled:214

Theorem 1 The following two conditions on a random variable ξ are equivalent:215

(a) There is a ∈ R such that

E(exp (tξ)) ≤ exp(a2t2/2) for t > 0 (7)

(b) ξ is centred and majorized in distribution by some centred Gaussian variable η,
i.e.

there is c0 ≥ 0 such that P(|ξ| ≥ c) ≤ P(|η| ≥ c) for all c > c0.

This and most other facts about sub-Gaussian variables quoted in this paper are216

verified in the first few sections of the monograph V.V. BULDYGIN and YU.V.217

KOZACHENKO [6]; one may also consult V.V. PETROV [32], Section III.§4.218

The definition in (a) was given in the celebrated paper Y.S. CHOW [9] which219

uses the term generalized Gaussian variables. The closely related concept of220
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semi-Gaussian variables - which requires symmetry of ξ - seems to go back to221

J.P. KAHANE [26].222

The class of all sub-Gaussian random variables living on a common probability
space (Ω,A ,P) is denoted by Sub(Ω). The sub-Gaussian standard is the number

τ(η) = inf{a ≥ 0 : a is feasible in (7)}.

The infimum is attained and hence is a minimum. Sub(Ω) is a linear space, τ is a223

norm on Sub(Ω) if variables differing on a null-set only are identified. (Sub(Ω), τ)224

is a Banach space. It is important to note that Sub(Ω) is strictly contained in225

all spaces Lp0(Ω), p ≥ 1, the spaces of all centred variables with finite pth order226

absolute moments.227

Remark 1 The most prominent sub-Gaussians are centred Gaussian variables η228

with standard deviation σ and τ(η) = σ. For them inequality (7) is an equality229

with a = σ. The specific characteristic of sub-Gaussian variables are tails lighter230

than those of Gaussians, as expressed in (b) of Theorem 1.231

The following theorem is essential in the present context.232

Theorem 2 For each n ∈ M, suppose that the variables ξns , s ∈ Sn, are233

independent. Then234

(a) Suppose that there is a real number β > 0 such that for each n ∈ M and real
numbers µs, s ∈ Sn, and each c ∈ R+, the estimate

P

(∣∣∣∣∣∑
s∈Sn

µsξ
n
s

∣∣∣∣∣ ≥ c

)
≤ 2 · exp

(
− c2

β
∑

s∈Sn µ
2
s

)
(8)

holds. Then all variables ξns are sub-Gaussian with a common scale factor β.235

(b) Let all variables ξns be sub-Gaussian. Suppose further that

β = 2 · sup{τ 2(ξns ) : n ∈M, s ∈ Sn} <∞. (9)

Then (a) is fulfilled with this factor β.236

This is probably folklore and we skip the proof. A detailed proof can be found in237

the extended version L. DEMARET et al. [11].238

Remark 2 For white Gaussian noise one has τ(ξns ) = σ and hence β = 2σ2.239
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3.2. Noise Projections240

In this section, we quantify projections of noise. Choose for each n ∈M a class241

Rn ⊂ 2S
n of admissible segments over Sn and a set Pn of admissible partitions. As242

previously, for each P ∈ Rn, a linear function space FP is given. We shall denote243

orthogonal L2-projections onto the linear spaces FP = span{FP : P ∈ P} by244

πP .245

The following result provides L2-estimates for the projections of noise to these246

spaces, as there are more and more admissible segments.247

Proposition 1 Suppose that dim FP ≤ D for all n ∈ M and each P ∈ Rn.
Assume in addition that there is a number M > 0 such that for some κ > 0

|Rn| ≥M · nκ eventually.

Then for each C > (1/κ+ 1)βD and for almost all ω ∈ Ω

‖πPnξn(ω)‖2 ≤ C|Pn| ln(|Rn|) for eventually all n ∈M and each Pn ∈ Pn.

This will be proven at a more abstract level. No structure of the finite sets Sn is248

required. Nevertheless, we adopt all definitions from Section 1 mutatis mutandis.249

All Euclidean spaces Rk will be endowed with their natural inner products 〈 ·, · 〉250

and respective norms. Projections onto linear subspaces H will be denoted by πH .251

Theorem 3 Suppose that the noise variables ξns fulfill (8) accordingly. Consider
finite nonempty collections Hn of linear subspaces in RSn and assume that the
dimensions of all subspaces H ∈ Hn, n ∈ M, are uniformly bounded by some
number D ∈ N. Assume in addition that there is a number M > 0 such that for
some κ > 0

|Hn| ≥M · nκ eventually.

Then for each C > (1/κ+ 1)βD and for almost all ω ∈ Ω

‖πH ξn(ω)‖2 ≤ C ln(|Hn|) for eventually all n ∈M, and each H ∈ Hn .

Note that ‖ · ‖ is Euclidean norm in the spaces RSn , since each ξn(ω) is simply a252

vector. The assumption in the theorem can be reformulated as |Hn|−1 = O(n−κ)|.253
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Proof. Choose n ∈ M and H ∈ Hn with dim H = dn. Let ei, 1 ≤ i ≤ dn be
some orthonormal basis of H . Observe that for any real number c > 0,

dn∑
i=1

|〈ξn(ω), ei〉|2 > c2 ln |Hn|

implies that

|〈ξn(ω), ei〉|2 >
c2

dn
ln |Hn| for at least one i = 1, . . . , dn.

We derive a series of inequalities:254

P
(
‖πH ξn‖2 > c2 ln |Hn|

)
= P

(
dn∑
i=1

|〈ξn, ei〉|2 > c2 ln |Hn|

)

≤ P

(
dn⋃
i=1

{|〈ξn, ei〉|2 >
c2

dn
ln |Hn|}

)
≤

dn∑
i=1

P
(
|〈ξn, ei〉|2 >

c2

dn
ln |Hn|

)

=
dn∑
i=1

P

(∣∣∣∣∣∑
s∈Sn

ξns ei,s

∣∣∣∣∣ > c (ln |Hn|/dn)1/2
)
,

where the first inequality holds because of the introductory implication. By (8) we
may continue with

≤ 2 · dn exp

(
−c2 ln |Hn|

βdn
∑

s∈Sn e
2
i,s

)
≤ 2 ·D · |Hn|

−c2
βD .

Therefore255 ∑
n∈M,H ∈Hn

P
(
‖πH ξn‖2 > c2 ln |Hn|

)
≤ 2D

∑
n∈M,H ∈Hn

|Hn|
−c2
βD ≤ 2D

∑
n∈M

|Hn||Hn|
−c2
βD

≤ 2D
∑
n∈M

(
1

M
· n−κ

) c2

βD
−1

= 2D ·M1−c2/(βD)
∑
n∈M

n−κ(
c2

βD
−1).

For C = c2 > (1/κ + 1)βD the negative exponent becomes larger than 1 and the
sum becomes finite. Enumeration of each Hn and subsequent concatenation yields
a sequence of events. The Borel-Cantelli lemma yields

P(‖πH ξn‖ > C ln |Hn| for finitely many (n,H ) with H ∈ Hn) = 1.
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This implies the assertion. �256

Now let us prove the desired result.257

Proof of Proposition 1. We apply Theorem 3 to the collections Hn = {F n
R : R ∈

Rn}. Then |Hn| = |Rn|. Since for each Pn ∈ Pn the spaces F n
P , P ∈ Pn, are

mutually orthogonal, one has for z ∈ RSn that

‖πPnz‖2 =
∑
P∈Pn

‖πFn
P
z‖2

and hence for almost all ω ∈ Ω

‖πPnξn(ω)‖2 ≤
∑
P∈Pn

C · ln |Rn| = C · |Pn| · ln |Rn| for eventually all n ∈M.

This completes the proof. �258

Let us finally illustrate the above concept in the classical case of Gaussian white259

noise.260

Remark 3 Continuing from Remark 2, we illustrate the behaviour of the lower261

bound for the constant C in Proposition 1 and Theorem 3 in the case of white262

gaussian noise and polynomially growing number of fragments, i.e. |Rn| is263

asymptotically equivalent to nκ. In this case the estimate for the norm of noise264

projections takes the form265

‖πPnξn(ω)‖2 ≤
(

1

κ
+ 1

)
κ2σ2D|Pn| lnn = (1 + κ)2σ2D|Pn| lnn,

for almost each ω eventually.

This underlines the dependency between the noise projections, the number of266

fragments, the noise variance, the dimension of the regression spaces and the size267

of the partitions.268

3.3. Discrete and Continuous Functionals269

We want to approximate functions f on the continuous domain S∞ = [0, 1)d by
estimates on discrete finite grids Sn. The connections between the two settings are
provided by the maps ιn and δn, introduced in (4) and (5). Note first that

〈ιnx, ιny〉 = 〈x, y〉/|Sn| and ‖ιnx‖2 = ‖x‖2/|Sn| for x, y ∈ RSn , (10)
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where the inner product and norm on the respective left hand sides are those on270

L2(S∞) and on the right hand sides one has the Euclidean inner product and norm.271

Furthermore, one needs appropriate versions of the functionals (6). Let now Sn be272

segmentation classes on the domains Sn and S ⊃ ιnSn a segmentation class on273

S∞. Set274

Hn
γ : RSn ×Sn, Hn

γ (z, (Pn, gnPn)) = γ|Pn|+ ‖z − gPn‖2/|Sn|

H̃n
γ : L2(S∞)×S, H̃n

γ (f, (P, gP)) =

{
γ|P|+ ‖f − gP‖2 if (P, gP) ∈ ιnSn,

∞ otherwise.

The two functionals are compatible.275

Proposition 2 Let n ∈M and (Pn, gPn) ∈ Sn and zn ∈ RSn . Then

Hn
γ (zn, (Pn, gnPn)) = H̃n

γ (ιnzn, ιn(Pn, gnPn)).

If, moreover, f ∈ L2(S∞) then

(Pn, gnPn) ∈ argminHn
γ (δnf, ·) if and only if ιn(Pn, gnPn) ∈ argmin H̃n

γ (f, ·)

Proof. The identity is an immediate consequence of (10). Hence let us turn to
the equivalence of minimal points. The key is a suitable decomposition of the
functional H̃n

γ (f, ·). The map ιnδn is the orthogonal projection of L2(S∞) onto the
linear space H n = span{1Iij :1≤i,j≤n}, and for any (P, h) ∈ ιnSn the function h
is in H n. Hence

‖f − h‖2 + γ|P| = ‖f − ιnδnf‖2 + ‖ιnδnf − h‖2 + γ|P|.

The quantity ‖f − ιnδnf‖2 does not depend on (P, h). Therefore a pair (P, h)

minimises
‖f − ιnδnf‖2 + ‖ιnδnf − h‖2 + γ|P|

if and only if it minimises

‖ιnδnf − h‖2 + γ|P| = H̃n
γ (ιnδnf, ιn(P, h)).

Setting zn = δnf in (2), this completes the proof. �276
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3.4. Upper Bound for Projective Segmentation Classes277

We compute an upper bound for the estimation error in a special setting: Choose
in advance a finite dimensional linear subspace G of L2(S∞). Discretization
induces linear spaces δnG = {δnf : f ∈ G } and G n

P = {1P · g : g ∈ δnG },
for any P ⊂ Sn, of functions on Sn. Let further for each n ∈ M, a set Rn of
admissible fragments and a family Pn of partitions with fragments in Rn be given.
Set Gn := {GP : P ∈ Pn}. The induced segmentation class

Sn(Pn,Gn) = {(Pn, f) : P ∈ Pn, f ∈ GP}

will be called projective (G -) segmentation class at stage n.278

The following inequality is at the heart of later arguments since it controls the279

distance between the discrete M -estimates and the ‘true’ signal.280

Lemma 1 Let for n ∈ M a G -projective segmentation class Sn over Sn be given
and choose a signal f ∈ L2(S∞) and a vector ξn ∈ RSn . Let further

(P̂n, f̂n) ∈ argmin
(Q,h)∈Sn

Hn
γ (δnf + ξn, (Q, h))

and (Q, h) ∈ Sn. Then

‖ιnf̂n−f‖2 ≤ 2γ(|Q|−|P̂n|)+3‖ιnh−f‖2+
16

nd
(
‖πP̂nξ

n‖2 + ‖πQξ
n‖2
)
. (11)

Proof. Since (P̂n, f̂n) is a minimal point of Hn
γ (δnf + ξn, ·)) the embedded

segmentation ιn(P̂n, f̂n) is a minimal point of H̃n
γ (f + ιnξn, ·)) by Proposition

2 and hence

γ|P̂n|+ ‖(ιnf̂n − f)− ιnξn‖2 ≤ γ|Q|+ ‖(ιnh− f)− ιnξn‖2.

Expansion of squares yields that281

γ|P̂n|+ ‖ιnf̂n − f‖2 + 2〈ιnf̂n − f, ιnξn〉+ ‖ιnξn‖2

≤ γ|Q|+ ‖ιnh− f‖2 + 2〈ιnh− f, ιnξn〉+ ‖ιnξn‖2

and hence

‖ιnf̂n − f‖2 ≤ γ(|Q| − |P̂n|) + ‖ιnh− f‖2 + 2〈ιnh− ιnf̂n, ιnξn〉. (12)
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By definition h ∈ FQ and f̂n ∈ FP̂n which implies that h − f̂n ∈ F ′ =282

span(P̂n,FQ) and hence πF ′(f̂
n − h) = f̂n − h. We proceed with283

|〈ιnh− ιnf̂n, ιnξn〉| = |Sn|−1|〈πF ′(f̂
n − h), ξn〉| = |Sn|−1|〈h− f̂n, πF ′ξ

n〉|
≤ ‖ιnf̂n − ιnh‖ · |Sn|−1/2 · ‖πF ′ξ

n‖
≤ |Sn|−1/2‖πF ′ξ

n‖ · ‖ιnf̂n − f‖+ |Sn|−1/2‖πF ′ξ
n‖ · ‖f − ιnh‖.

Since ab ≤ a2 + b2/4, we conclude284

|〈ιnh− ιnf̂n, ιnξn〉| ≤ ‖ιnf̂n − ιnh‖2/4 + ‖f − ιnh‖2/4 + 2‖πF ′ξ
n‖2/|Sn|

≤ ‖ιnf̂n − ιnh‖2/4 + ‖f − ιnh‖2/4 + 4
(
‖πP̂nξ

n‖2 + ‖πQξ
n‖2
)
/|Sn|

Putting this into inequality (12) results in285

‖ιnf̂n − f‖2 ≤ γ(|Q| − |P̂n|) + ‖ιnh− f‖2 + ‖ιnf̂n − f‖2/2 + ‖f − ιnh‖2/2
+ 8

(
‖πP̂nξ

n‖2 + ‖πQξ
n‖2
)
/|Sn|,

which implies the asserted inequality. �286

4. Consistency287

In this section we complete the abstract considerations and summarize the288

preliminary work in two theorems on consistency. The first one concerns the289

desired L2-convergence of estimates to the ‘truth’, and the second one provides290

convergence rates.291

4.1. L2-Convergence292

We will prove now that the estimates of images converge almost surely to293

the underlying true signal in L2(S∞) for almost all observations. We adopt the294

projective setting introduced in Section 3.4. Let us make some agreements in295

advance.296

Hypothesis 1 Assume that297

(H1.1) there are κ > 0 and C > 0 such that |Rn| ≥ C · nκ eventually,298
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(H1.2) the random variables ξns are sub-Gaussian and are such that

β = 2 · sup{τ 2(ξns ) : n ∈M, s ∈ Sn} <∞,

(H1.3) the positive sequence (γn)n∈N satisfies

γn → 0 and γn > C · ln |Rn|
|Sn|

, for eventually all n

with C = βD(κ+ 1)/κ, and D is, like in Proposition 1, an upper bound for299

the dimension of the linear spaces FP .300

Remark. Note that the condition γn · |Sn|/ lnn → ∞ implies the second part of301

(H1.3) by (H1.1). It was used for example in F. FRIEDRICH [20] or L. BOYSEN302

et al. [34].303

Given a signal f ∈ L2(S∞) we must assure that our setting actually allows for304

good approximations of f at all. If so, least squares estimates are consistent.305

Theorem 4 Assume that Hypothesis 1 holds. Let f ∈ L2(S∞) and suppose

lim
k→∞

lim sup
n→∞

inf
(Q,h)∈Sn,|Q|≤k

‖ιnh− f‖2 = 0. (13)

Then
‖ιnf̂n(ω)− f‖2 −→ 0 as n→∞ for almost all ω ∈ Ω.

We formulate part of the proof separately, since it will be needed later once more.306

Lemma 2 We maintain the assumptions of Theorem 4. Then, given k > 0,

‖ιnf̂n(ω)− f‖2 ≤ 3γn · k + 3‖ιnh− f‖2for all (Q, h) ∈ Sn such that |Q| ≤ k

(14)
eventually for all n ∈ N and for almost all ω ∈ Ω.307

Proof. Lemma 1 yields

‖ιnf̂n(ω)− f‖2 ≤ 2γn (|Q| − |Pn|) + 3‖ιnh− f‖2 +
16

nd
(
‖πP̂nξ‖2 + ‖πQξ‖2

)
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and application of Proposition 1 implies that for any real number C ′ > κ+1
κ
βD, the308

following inequality holds for almost all ω ∈ Ω309

‖ιnf̂n(ω)− f‖2 ≤ 2γnk + 3‖ιnh− f‖2 + 16C ′
(

ln(|Rn|)
nd

)
·
(
|Q|+ |P̂n|

)
− 2γn · |P̂n|

≤ 2γnk + 3‖ιnh− f‖2 + 16C ′
ln |Rn|
nd

k + |Pn|
(

8C ′
ln |Rn|
nd

− 2γn

)
For γn satisfying Hypothesis (H1.3), the term in parenthesis is negative. Therefore310

(14) holds and the assertion is proved. �311

Theorem 4 follows now easily.312

Proof of Theorem 4. The following formulae hold almost surely. Lemma 2
implies that, for

‖ιnf̂n − f‖2 ≤ 3γn · k + 3 · inf
(Q,h)∈Sn,|Q|≤k

(
‖ιnh− f‖2

)
eventually

Therefore313

lim sup
n→∞

‖ιnf̂n − f‖2 ≤ lim sup
n→∞

(
3γn · k + 3 · inf

(Q,h)∈Sn,|Q|≤k

(
‖ιnh− f‖2

))
= 0 + 3 · lim sup

n→∞
inf

(Q,h)∈Sn,|Q|≤k

(
‖ιnh− f‖2

)
By assumption (13), the right hand side converges to 0 as k tends to∞. Hence

lim sup
n→∞

‖ιnf̂n − f‖2 = 0,

which completes the proof. �314

4.2. Convergence Rates The final abstract result provides almost sure convergence315

rates in the general setting.316

Theorem 5 Suppose that Hypothesis 1 holds and assume further that there are317

real numbers α,C > 0, % ≥ 0, and a sequence (Fn)n∈N with limn→∞ Fn = ∞318

such that319

‖ιnh− f‖ ≤ C ·
(
k%

Fn
+

1

kα

)
(15)

for all n ∈M and k, and some (Q, h) ∈ Sn with |Q| ≤ k.
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Then

‖ιnf̂n(ω)− f‖2 = O

(
γ

2α
2α+1
n

)
+O

(
F
− 2α
α+%

n

)
for almost all ω ∈ Ω. (16)

Proof. Let (kn)n∈M be a sequence in R+. Recall from Lemma 2 that

‖ιnf̂n − f‖2 ≤ 2γn · kn + 3 · ‖ιnh− f‖22

for sufficiently large n ∈ M and any (Q, h) ∈ Sn with |Q| ≤ kn on a set of ω of320

full measure. The following arguments hold for all such ω. We will write C for321

constants; hence the C below may differ.322

Since (a+ b)2 ≤ 2(a2 + b2), assumption (15) implies that

‖ιnf̂n − f‖2 ≤ C

(
γn · kn +

k2%n
F 2
n

+
1

k2αn

)
. (17)

This decomposition of the error can be interpreted as follows: the first term323

corresponds to an estimate of the error due to the noise, the second term324

corresponds to the discretization while the third term can be directly related to325

the approximation error of the underlying scheme, in the continuous domain.326

One has free choice of the parameters kn. We enforce the same decay rate for
the first and third term setting γnkn = k−2αn Then, in view of (17),

‖ιnf̂n − f‖2 ≤ C

γ 2α
2α+1
n +

γ
− 2%

2α+1
n

F 2
n

 . (18)

To get the same rate for the discretisation and the approximation error set

k2%n
F 2
n

=
1

k2αn
or equivalently kn = F

1
%+α
n ,

which, together with estimate (17), yields

‖ιnf̂n − f‖2 ≤ C

(
γnF

1
%+α
n + F

− 2α
α+%

n

)
. (19)

Straightforward calculation gives

γ
2α

2α+1
n ≥ γ

− 2%
2α+1

n

F 2
n

if and only if γnF
1

α+%
n ≥ 1

F
2α
α+%
n
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Hence, the first term on the right hand side of inequality (18) dominates the second
one if and only this holds in inequality (19). We discriminate between the two cases
≥ and <. The first one is

γ
2α

2α+1
n ≥ γ

− 2%
2α+1

n

F 2
n

. (20)

Combination with (18) results in

‖ιnf̂n − f‖22 ≤ C · γ
2α

2α+1
n (21)

for some C > 0. In view of the equivalence, replacement of≥ by < in (20), results
in

γnF
1

α+%
n < F

− 2α
α+%

n .

which, together with estimate (19), gives for some C > 0 that

‖ιnf̂n − f‖2 ≤ C · F
− 2α
α+%

n . (22)

Combination of (22) and (21) completes the proof of (16). �327

Remark 4 Let us continue from Remark 3. If |Rn| ∼ nκ and noise is white
Gaussian with β = 2σ2 then Hypothesis (H1.3) boils down to

γn −→ 0 and γn > 2(κ+ 1)σ2D · lnn

nd
.

Setting εn = σ/nd/2, the estimate (16) then reads

‖ιnf̂n(ω)− f‖2 = O
((
ε2n |ln εn|

) 2α
2α+1

)
,

as long as the growth of Fn is sufficient. This is strongly connected with the optimal328

minimax rates from model selection, which bound the expectations of the left hand329

side, see for instance L. BIRGÉ and P. MASSART [1].330

5. Special Segmentations331

We are going now to exemplify the abstract Theorem 5 by way of typical332

partitions and spaces of functions. On the one hand, this extends a couple of already333

existing results and, on the other hand, it illustrates the wide range of possible334

applications.335
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5.1. One Dimensional Signals - Interval Partitions336

Albeit focus of this paper is on two or more dimensions, we start with one337

dimension. There are at least two reasons for that: illustration of the abstract338

results by choices of the (seemingly) most elementary example, and to generalize339

results like some of those in L. BOYSEN et al. [34] to classes of piecewise Sobolev340

functions.341

To be definite, let Sn = {1, . . . , n} and let Rn = {[i, j] : 1 ≤ i ≤ j ≤ n}342

be the discrete intervals of admissible fragments. Then Pn is the collection of343

partitions of Sn into intervals. Plainly, |Rn| = (n + 1)n/2 and |Pn| = 2n−1. We344

deal with approximation by local polynomials. To this end and in accordance with345

Section 3.4, we choose the finite dimensional linear subspace Fp ⊂ L2([0, 1)) of346

polynomials of maximal degree p. The induced segmentation classes Sn(Pn,Fn)347

consist of piecewise polynomial functions relative to partitions in Pn.348

The signals to be estimated will be members of the fractional Sobolev space349

Wα,2((0, 1)) of order α > 0. The main task is to verify Condition (15). Note that350

this class of functions is slightly larger than the classical Hölder spaces of order351

α usually treated. For results in the case of equidistant partitioning, we refer, for352

instance, to L. GYÖRFI et al. [24] Section 11.2.353

For the following lemma, we adopt classical arguments from approximation354

theory.355

Lemma 3 For any f ∈ Wα,2((0, 1)), with p < α < p + 1, there is C > 0 such
that for all k ≤ n ∈ N, there is (Pn

k , h
n
k , ) ∈ Sn, such that |Pn

k | ≤ k and which
satisfies

‖f − ιnhnk‖ ≤ C ·
(

1

kα
+
k

n

)
(23)

For the proof, let us introduce partitions Ik = {[(i− 1)/k, i/k) : i = 1, · · · , k}356

of [0, 1) into k intervals, each of length 1/k.357

Proof. Let f ∈ Wα,2((0, 1)). From classical approximation theory (see e.g. [15],
Chapter 12, Thm. 2.4), we learn that there is C > 0 such that there is a piecewise
polynomial function hk of degree at most p such that

‖f − hk‖ ≤
C

kα
.
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For each i = 1, . . . , k, let hk,i denote the restriction of hk to Ii = ((i− 1)/k, i/k).
We consult the Bramble-Hilbert lemma (for a version corresponding to our needs,
we refer to Thm. 6.1 in [18]) and find C > 0, such that

|f − hk,i|W 1,2(Ii) ≤ C · |f |W 1,2(Ii) for each i = 1, . . . , k.

This yields for some C > 0, independent of k and n, that

|hk,i|W 1,2(Ii) ≤ |f − hk,i|W 1,2(Ii) + |f |W 1,2(Ii) ≤ C · |f |W 1,2(Ii) for all i = 1, · · · , k.

We turn now to the piecewise constant approximation on the partition In. We split
[0, 1) into the union Jnk of those intervals in In which do not contain knots i/k and
the union Kn

k of those intervals in In which do contain knots i/k. For I ∈ Ik and
I ⊂ Jnk , we have

|hk,i|W 1,2(I) ≤ C|f |W 1,2(I)| if and only if |h′k,i|2L2(I) ≤ C2 · |f ′|2L2(I).

This implies ∑
I⊂Jkn

|h′k,i|2L2(I) ≤ C2
∑
I⊂Jkn

|f ′|2L2(I) ≤ C2|f ′|L2([0,1]),

which in turn leads to

|hk|W 1,2(Jkn)
≤ C2|f |W 1,2((0,1)).

Hence we are ready to conclude that for some constant C > 0,

‖hk − ιnδnhk‖L2(Jnk )
≤ C/n. (24)

For I ∈ Ik and I ⊂ Kn
k , we use the fact that hnk ≤ 2C · ‖f‖L∞([0, 1]) and deduce

‖hk − ιnδnhk‖L2(I) ≤ 2C‖f‖L∞(I)/n.

Summation over all intervals included in Kn
k results in

‖hk − ιnδnhk‖L2(Kn
k )
≤ C · k/n.

This yields for the entire interval [0, 1) that

‖f − ιnδnhk‖ ≤ ‖f − hk‖+ ‖hk − ιnδnhk‖ ≤ C

(
k

n
+

1

kα

)
.
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With hnk = δnhk, this completes the proof. �358

Piecewise smooth functions have only a very low Sobolev regularity. Indeed,359

recall that piecewise smooth functions belong to Wα,2((0, 1)) only for α > 1/2. In360

order to overcome this limitation, we consider a larger class of functions, the class361

of piecewise Sobolev functions.362

Definition 1 Let α > 1/2 be a real number, J ∈ N, and x0 = 0 < x1 < · · · <
xJ+1 = 1. A function f is said to be piecewise Wα,2([0, 1]) with J jumps, relative
to the partition {[xi, xi+1) : i = 1, · · · , J} if

f |(xi,xi+1) ∈ Wα,2 ((xi, xi+1))

Remark 5 Definition 1 is consistent, due to the Sobolev embedding theorem. For363

an open interval I of R, Wα,2(I) is continuously embedded into C (Ia), the space364

of uniformly continuous functions on the closure Ia of I .365

We conclude from Lemma 3:366

Lemma 4 Let f be piecewise-Wα,2([0, 1)) with J jumps and with p < α < p+ 1.
Then there are C > 0 and (Pn

k , h
n
k) ∈ Sn, such that |Pn| ≤ k and

‖f − hnk‖ ≤ C ·
(

1

kα
+
k

n
+
J

n

)
. (25)

Proof. With the same arguments as in the proof of Lemma (3) we just have to367

incorporate the error made at each jump of the original piecewise regular function.368

More precisely, we use a similar splitting into Jnk and Kn
k where Kn

k also contains369

the intervals containing xi for i = 1, · · · , J . Since there are at most k+ J intervals370

in Kn
k , this gives estimate (25). �371

By Lemma 4, a piecewise Sobolev function satisfies Condition (15) with ρ = 1372

and Fn = n and therefore Theorem 5 applies. In summary373

Theorem 6 Let α ∈ (0, p+ 1) where p is the maximal degree of the approximating
polynomials and let f be piecewise Wα,2([0, 1]). We assume further that (H1.3)
holds and that the noise variables ξns from Section 2.1 satisfy (8). Then

‖ιnf̂n(ω)− f‖2 = O

(
γ

2α
2α+1
n

)
, for almost all ω ∈ Ω. (26)
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Proof. Let us check the assumption in Theorem 5. Since |R | = (n − 1)n/2,374

Hypothesis (H1.1) holds with κ = 2. Hypothesis (H1.2) and (H1.3) were required375

separately. Finally, Condition (15) holds with % = 1 and Fn = n by Lemma 4.376

Finally, Hypothesis (H1.3) completes the proof. �377

Let C 1([0, 1]) denote the set of continuously differentiable functions. For p ∈ N,
α ∈ (p, p + 1], a function f ∈ C p([0, 1]) is said to be α-Hölder if there is C > 0

such that

|f (p)(x)− f (p)(y)| ≤ C|x− y|α−p for any x, y ∈ [0, 1], x 6= y.

The linear space of α-Hölder functions will be denoted by C α([0, 1]) if α ∈ N and378

C α−1,1([0, 1]) if α ∈ N.379

Remark. Choose γn = C lnn/n with large enough C, independently of f . Then
the almost sure estimates (26) of the estimation error simplifies to

‖ιnf̂n(ω)− f‖2 = O

(
lnn

n

) α
2α+1

for almost all ω ∈ Ω. (27)

These convergence rates are, up to the logarithmic factor, the optimal rates for380

mean square error in the Hölder classes C α([0, 1]). Thus, our estimate adapts381

automatically to the smoothness of the signal.382

5.2. Wedgelet Partitions383

Wedgelet decompositions are content-adapted partitioning methods based on384

elementary geometric atoms, called wedgelets. A wedge results from the splitting385

of a square into two pieces by a straight line and in our setting a wedgelet will be a386

piecewise polynomial function over a wedge partition. The discrete setting requires387

a careful treatment. We adopt the discretization scheme from F. FRIEDRICH et al.388

[21], which relies on the digitalization of lines from J. BRESENHAM [5]. This389

discretization differs from that in D. DONOHO [16], where all pairs of pixels on390

the boundary of a discrete square are used as endpoints of line segments. One391

of the main reasons for our special choice is an efficient algorithm which returns392

exact solutions of the functional (6). It relies on rapid moment computation, based393

on lookup tables, cf. F. FRIEDRICH et al. [21].394
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5.2.1. Wedgelet partitions395

Let us first recall the relevant concepts and definitions. Only the case of dyadic396

wedgelet partitions will be discussed. Generalizations are straightforward but397

technical.398

We start from discrete dyadic squares Sm = {1, . . . ,m}2 with m ∈M = {2p :

p ∈ N0}. Admissible fragments are dyadic squares of the form

[(i− 1) · 2q, i · 2q)× [(j − 1) · 2q, j · 2q), 1 ≤ i, j ≤ 2p−q, 0 ≤ q ≤ p.

The collection of dyadic squares can be interpreted as the set of leaves of a quadtree399

where each internal node has exactly four children obtained by subdividing one400

square into four.401

Digital lines in Z2 are defined for angles ϑ ∈ (−π/4, 3π/4]. Let

d(ϑ) = max{| cosϑ|, | sinϑ|}, v(ϑ) =

{
(− sinϑ, cosϑ) if | cosϑ| ≥ | sinϑ|
(sinϑ,− cosϑ) otherwise

.

The digital line through the origin in direction ϑ is defined as

L0
ϑ = {s ∈ Z2 : −d(ϑ)/2 < 〈s, v(ϑ)〉 ≤ d(ϑ)/2}.

Lines parallel to L0
ϑ are shifted versions

Lrϑ = {s ∈ Z2 : (r − 1/2)d(ϑ) < 〈s, v(ϑ)〉 ≤ (r + 1/2)d(ϑ)}

with the line numbers r ∈ Z. One distinguishes between flat lines where cosϑ ≥402

sinϑ and steep lines where cosϑ < sinϑ. For x ∈ R, set round(x) = max{i ∈403

Z : i ≤ x + 1/2}, let yϑ(x) = round(x · tanϑ) and xϑ(x) = round(y · cotϑ).404

According to Lemma 2.7 in F. FRIEDRICH et al. [21],405

Lrϑ = (0, r) + {(x, yϑ(x) : x ∈ Z)} for flat lines,

Lrϑ = (r, 0) + {(xϑ(y), y : y ∈ Z)} for steep lines.

By Lemma 2.8 in the same reference, all parallel lines partition Z2. We are now
ready to define wedgelets. Let Q be a square in Z2 and Lrϑ a line with Lrϑ ∩Q 6= ∅
and Lr+1

ϑ ∩ Q 6= ∅. A wedge split is a partition of Q into the lower and upper
wedge, respectively, given by

W r,l
ϑ =

⋃
k≤r

Lkϑ ∩Q, W r,u
ϑ =

⋃
k>r

Lkϑ ∩Q. (28)
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Let Q be a partition of some domain Sm into squares. Then a wedge partition406

of Sm is obtained replacing some of these squares by the two wedges of a wedge407

split. It is called dyadic if m ∈M, and the squares Q ∈ Q are dyadic.408

We assume that a finite set Θ of angles is given. The set Rm of admissible409

segments consists of wedges obtained by wedge splits of dyadic squares, given by410

(28) and for θ ∈ Θ, or by dyadic squares.411

Focus is on piecewise polynomial approximation of low order. The induced412

segmentation classes Sm consist of piecewise polynomial functions relative to413

a wedgelet partition. The cases of piecewise constant (original wedgelets) and414

piecewise linear polynomials (platelets) will be treated explicitly.415

5.2.2. Wedgelets and approximations416

We first recall some approximation results for wedgelets. They stem from417

D. DONOHO [16] and R. WILLETT and R. NOWAK [35]. Since we are not418

working with the same discretization we rewrite them for the continuous setting419

and provide elementary self-contained proofs. The discussion of the discretization420

is postponed to Section 5.2.3. . We start with the definition of horizon functions,421

like in D. DONOHO [16].422

Definition 2 (Horizon functions) Let α ∈ (1, 2] and h ∈ C α([0, 1]) if α < 2 or
C 1,1([0, 1]) if α = 2. Let further f be a bivariate function which is piecewise
constant relative to the partition of [0, 1]2 in an upper and a lower part induced by
h:

f(x, y) =

c1 if y ≤ h(x),

c2 if y > h(x),

with real numbers c1 and c2. Such a function is called an α-horizon function;423

the set of such functions will be denoted by Horα([0, 1]2). h is called the horizon424

boundary of f .425

Discretization at various levels of a typical horizon function is plotted in Fig. 2,426

left column. In the right column respective noisy versions are shown.427
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Lemma 5 Let α ∈ [1, 2] and f ∈ Horα([0, 1]2) with boundary function h. Then
there are C,C ′ > 0 - independent of k - and for each k a continuous wedge
partition Wk of the unit square [0, 1]2, such that |Wk| ≤ C ′k and

‖f − fk‖L2([0,1]2) ≤
C

kα/2
,

where fk is the L2-projection of f on the space of piecewise constant functions428

relative to the wedge partition Wk.429

Proof. Let us first approximate the graph of h by linear pieces. We consider the
uniform partition induced by xi = i/k. We denote by Sk(h) the continuous linear
spline interpolating h relatively to the uniform subdivision:

Sk(h)(x) = h(xi) + (x− xi)
(
h(xi+1)− h(xi)

xi+1 − xi

)
for i = 0, . . . , k − 1 and x ∈ Ii

where Ii = [xi, xi+1]. Therefore, we have

|h(x)− Sk(h)(x)| =
∣∣∣∣h(x)− h(xi)−

h(xi+1)− h(xi)

xi+1 − xi
(x− xi)

∣∣∣∣ for each x ∈ Ii.

(29)
Since h′ ∈ C 0,α−1([0, 1]), there exists C > 0 such that∣∣∣∣h(xi+1)− h(xi)

xi+1 − xi
− h′(xi)

∣∣∣∣ ≤ C|xi+1 − xi|α−1 =
C

kα−1
.

This implies that

|h(x)− Sk(h)(x)| =
∣∣∣∣h(x)− h(xi)−

(
h′(xi) +O

(
1

kα−1

))
(x− xi)

∣∣∣∣ for x ∈ Ii.

On the other hand,

h(x) = h(xi) + h′(xi)(x− xi) +O(|x− xi|α).

Hence, Equation (29) can be rewritten as

|h(x)− Sk(h)(x)| = O(|x− xi|α) +O

(
1

kα

)
and there is a constant C > 0 (independent of k) such that

‖h− Sk(h)‖L∞([0,1]) ≤
C

kα
.
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Now we will use this estimate to derive error bounds for the optimal wedge
representation. As a piecewise approximation of f we propose

fk(x, y) =

c1 if y < Sk(h)(x);

c2 if y > Sk(h)(x).

We bound the error by the area between the horizon h and its piecewise affine
reconstruction:

‖f − fk‖L2([0,1]2) ≤ |c1 − c2|
(∫ 1

0

|h(x)− Sk(h)(x)| dx
)1/2

≤ |c1 − c2|
(
‖h− Sk(h)‖L∞([0,1])

)1/2 ≤ C

kα/2
.

It remains to bound the size of the minimal continuous wedgelet partition Wk, such430

that fk ∈ FWk . A proof is given in Lemma 4.3 in D. DONOHO [16]; it uses431

h ∈ C 1([0, 1]). �432

Remark. For an arbitrary horizon function, the approximation rates obtained by
non-linear wavelet approximation (with sufficiently smooth wavelets) can not be
better than

‖f − fk‖L2([0,1]2) = O

(
1

k1/2

)
,

where fk is the non-linear k-term wavelet approximation of f . This means that433

for such a function the asymptotical behaviour in terms of approximation rates is434

strictly better for wedgelet decompositions than for wavelet decompositions. For a435

discussion on this topic, see Section 1.3 in E. CANDÈS and D. DONOHO [8].436

Piecewise constant wedgelet representations are limited by the degree 0 of437

the regression polynomials on each wedge. This is reflected by the choice of438

the horizon functions which are not only piecewise smooth but even piecewise439

constant. A similar phenomenon arises also in the case of approximation by Haar440

wavelets.441

R. WILLETT and R. NOWAK [35] extended the regression model to piecewise442

linear functions on each leaf of the wedgelet partition and called the according443

representations platelets. This allows for an improved approximation rate for larger444

classes of piecewise smooth functions.445
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Let h be a function in C ([0, 1]). We define the two subdomains S+ and S−,
respectively, as the hypograph and the epigraph of h restricted to (0, 1)2. In other
words:

S+ =
{

(x, y) ∈ (0, 1)2 | y > h(x)
}
, S− =

{
(x, y) ∈ (0, 1)2 | y < h(x)

}
. (30)

Let us introduce the following generalised class of horizon functions:

Horα1 ([0, 1]2) := {f : [0, 1]2 → R| f |S+ and f |S− ∈ C α(S±), h ∈ C α([0, 1])}.
(31)

The following result from R. WILLETT and R. NOWAK [35] gives approximation446

rates by platelet approximations for Horα.447

Proposition 3 Let f ∈ Horα1 ([0, 1]) for 1 < α ≤ 2. Then the k-term platelet
approximation error hk satisfies

‖f − hk‖L2([0,1]2) = O

(
1

kα/2

)
. (32)

Proof. A sketch of the proof is given by the following two steps: (1) the boundary448

between the two areas is approximated uniformly like in D. DONOHO [16]; (2) in449

the rest of the areas we use also uniform approximation with dyadic cubes, together450

with the corresponding Hölder bounds. The partition generated consists of squares451

of sidelength at least O(1/k1/2). There are at most O(k) such areas. �452

5.2.3. Wedgelets and consistency453

Now we apply the continuous approximation results to the consistency problem454

of the wedgelet estimator based on the above discretization. Note that, due to our455

specific discretization, the arguments below differ from those in D. DONOHO [16].456

Two ingredients are needed: pass over to a suitable discretisation and bound457

the number of generated discrete wedgelet partitions polynomially in n, in order458

to apply the general consistency results. Let us first state a discrete approximation459

lemma:460
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Lemma 6 Let f be an α horizon function inHorα1 with 1 < α < 2. There isC > 0

such that for all k ≤ n ∈ N, there is (Pn
k , h

n
k , ) ∈ Sn, such that |Pn

k | ≤ k and
which satisfies

‖f − ιnhnk‖ ≤ C ·
(

1

kα/2
+
k1/2

n1/2

)
. (33)

Proof. The triangular inequality yields the following decomposition of the error

‖f − ιnδnhk‖ ≤ ‖f − hk‖+ ‖hk − ιnδnhk‖.

The first term may be approximated by (32), whereas the second term corresponds461

to the discretisation. Let us estimate the error induced by discretisation.462

One just has to split [0, 1)2 into Jkn , the union of those squares in Qn which
do not intersect the approximating wedge lines and Kk

n the union of such squares
meeting the approximating wedge lines. We obtain the following estimates:

‖hk − ιnδnhk‖2L2(Q) ≤
C

n2
for any Q ∈ Kk

n, and for some constant C > 0.

Since there are at most C ′kn such squares, for some constant C ′ not depending on
k and n, this implies that

‖hk − ιnδnhk‖2L2(Kk
n)
≤ Ckn

n2
=
C

n
and ‖hk − ιnδnhk‖2L2(Jnk )

≤ Ck

n
,

where C > 0 is a constant. Taking hnk = δnhk completes the proof. �463

Finally, the following lemma provides an estimate of the number of fragments464

in Rn.465

Lemma 7 There is a constant C > 0 such that for all n ∈ M the number |Rn| of
fragments used to form the wedgelet partitions is bounded as follows:

|Rn| ≤ Cn4.

Proof. In a dyadic square of size j, there are at most j4 possible digital lines. For
dyadic n ∈M one can write n = 2J and therefore we have

|Rn| ≤
J∑
i=0

22(J−i)·22·2i = n2

J∑
i=0

22i = n2·2
2J+2 − 1

22 − 1
≤ C·n4 for some constant C > 0.
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This completes the proof. �466

Note that the discretization of the continuous approximation hk leads to a467

wedgelet partition composed of fragments in Rn. Therefore, combination of the468

Lemmata 7 and 6 yields:469

Theorem 7 Let α ∈ (1, 2) and let f be an α horizon function in Horα1 ([0, 1]2).
Assume further that the noise is such that (H1.2) holds and suppose that the
parameters γn satisfy (H1.3) with κ = 4. Then

‖f̂nγn − f‖
2 = O

(
γ

α
α+1
n

)
+O

(
n−

α
α+1

)
, for almost all ω ∈ Ω, (34)

where f̂nγn is the wedgelet-platelet estimator.470

Remark 6 Choosing γn of the order lnn/n2, estimate (34) reads

‖f̂nγn − f‖
2 = O

(
(lnn)

2α
α+1

n
2α
α+1

)
+O

(
1

n
α
α+1

)
for almost all ω ∈ Ω. (35)

Whereas the first term on the right-hand size consists of the best compromise471

between approximation and noise removal, the second term on the right-hand size472

corresponds to the discretization error. Note that, in contrast to the 1D-case the473

discretization error asymptotically dominates the first term. This is related to the474

piecewise constant nature of the discretization. In concrete applications, this may475

severly limit the actual quality of the estimation. Neglecting this discretization476

problem, the decay rates given by (35) are the usual optimal rates for the function477

class under consideration.478

On the left column of Fig. 3, wedgelet estimators for a typical noisy horizon479

function are shown.480

5.3. Triangulations481

Adaptive triangulations have been used since the emergence of early finite482

element methods to approximate solutions of elliptic differential equations.483

They have been also used in the context of image approximation; we refer to484

L. DEMARET and A. ISKE [12] for an account on recent triangulation methods485
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applied to image approximation. The idea to use discrete triangulations leading486

to partitions based on a polynomially growing number of triangles has been487

proposed in E. CANDÈS [7] in the context of piecewise constant functions over488

triangulations. In the present example, we deal with a different approximation489

scheme, where the triangulations are Delaunay triangulations and were the490

approximating functions are continuous linear splines. One key ingredient is the491

use of recent approximation results, L. DEMARET and A. ISKE [13], that show492

the asymptotical optimality of approximations based on Delaunay triangulations493

having at most n vertices. Due to this specific approximation context, a key feature494

for the proof of the consistency is a suitable discretization scheme, which still495

preserves the approximation property.496

5.3.1. Continuous and discrete triangulations497

Let us start with some definitions. We begin with triangulations in the498

continuous settings:499

Definition 3 A conforming triangulation T of the domain [0, 1]2 is a finite set500

{T}T∈T of closed triangles T ⊂ [0, 1]2 satisfying the following conditions.501

(i) The union of the triangles in T covers the domain [0, 1]2;502

(ii) for each pair T, T ′ ∈ T of distinct triangles, the intersection of their interior503

is empty;504

(iii) any pair of two distinct triangles in T intersects at most in one common505

vertex or along one common edge.506

We denote the set of (conforming) triangulations by T ([0, 1]2). We will use the507

term triangulations for conforming triangulations.508

Accordingly we define the following discrete sets, relatively to partitions Qk =509

{[(i−1)/k, i/k)× [(j−1)/k, j/k) : i, j = 1, · · · , k} of [0, 1)2 into k squares each510

of side length 1/k.511

For a, b ∈ [0, 1]2 we denote by [a, b] the line segment with endpoints a and b.512

Definition 4 For a triangle T ⊂ [0, 1]2, with vertices a, b and c, we define the513

following discrete sets:514
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(i) for each p ∈ {a, b, c} the square Q ∈ Qn such that Q 3 p is called a discrete515

vertex of T ;516

(ii) for each edge e ∈ {[ab], [bc], [ca]}, the set of squares Q ∈ Qn such that517

Q ∩ e 6= ∅ and Q is not a discrete vertex is called a discrete (open) edge of518

the triangle T ;519

(iii) the set of squares Q ∈ Qn such that Q ∩ T 6= ∅ and Q is neither a discrete520

vertex nor belongs to a discrete open edge is called a discrete open triangle.521

5.3.2. Piecewise polynomials functions on triangulations522

We take Sn = {1, · · · , n}2 and the set of fragments Rn is given as the set of
discrete vertices, open edges and open triangles

Rn = Sn ∪ {([ab]) : a, b ∈ Sn} ∪ {([abc]) : a, b, c ∈ Sn} .

We let Pn then be the collection of partitions of Sn into discrete triangles, obtained523

from a continuous triangulations, and assuming that there is a rule deciding to524

which triangle discrete open segments and discrete vertices belong. Each such525

discrete triangle is then the union of elementary digital sets in Rn. We remark526

that |Rn| = n + n(n − 1)/2 + n(n − 1)(n − 2)/6 and therefore |Rn| ∼ n3/6.527

Like in the one-dimensional case, as described in Section 5.1, we choose the finite528

dimensional linear subspace Fp ⊂ L2([0, 1)) of polynomials of maximal degree529

p. The induced segmentation classes Sn(Pn,Fn) consist of piecewise polynomial530

functions relative to partitions in Pn.531

We have the following approximation lemma532

Lemma 8 Let f ∈ C α([0, 1]2), with p < α < p + 1. There is C > 0 such that for
all k ≤ n ∈ N, there is (Pn

k , h
n
k) ∈ Sn, such that |Pn

k | ≤ k and which satisfies

‖f − ιnhnk‖ ≤ C ·

(
1

kα/2
+

(
k

n

)1/2
)
. (36)

Proof. We first use classical aproximation theory which tells us the existence of a
function hk : [0, 1]2 7→ R, piecewise polynomial relatively to a triangulation with
k triangles and such that the error on the whole domain is bounded by

‖f − hk‖ ≤
C

kα/2
.
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As in the 1-D case we split [0, 1)2 into the union Jkn of those squares in Qn which
do not meet the continuous triangulation, and Kk

n the set of such squares meeting
the triangulation, i.e. which intersects with some edge of the triangulation. For
each small square Q ∈ Qn and Q ⊂ Kk

n, the following estimate holds:

‖hk − ιnδnhk‖2L2(Q) ≤
C

n2
for any Q ∈ Kk

n, and some constant C > 0

and there are at most 3 ·
√

2kn such squares. Altogether we obtain:

‖hk − ιnδnhk‖L2(Kk
n)
≤ Ck1/2

n1/2
, for some constant C > 0.

Now for each square Q ∈ Qn and Q ⊂ Jkn , an argumentation similar to that in the
1D-proof yields

‖hk − ιnδnhk‖L2(Jnk )
≤ C

n
.

This completes the proof. �533

Due to Lemma 8, (15) is satisfied: a function in C α satisfies (15) with ρ = 1/2534

and Fn = n1/2 and therefore Theorem 5 applies.535

5.3.3. Continuous linear splines536

We turn now to the more subtle case of continuous linear splines on Delaunay537

triangulations. Anisotropic Delaunay triangulations have been recently applied538

successfully to the design of a full image compression/decompression scheme,539

L. DEMARET et al. [10], L. DEMARET et al. [14]. Here we investigate the behavior540

of such triangulation schemes in the context of image estimation.541

To this end, we first introduce the associated function space in the continuous542

setting. We restrict the discussion to the case of piecewise affine functions, i.e.543

p = 1.544

Definition 5 Let T be a conforming triangulation of [0, 1]2. Let

S0
T =

{
f ∈ C

(
[0, 1]2

)
: f
∣∣
T
∈ F1, T ∈ T

}
,

be the set of piecewise affine and continuous functions on T .545

The following piecewise smooth functions generalise the horizon functions from546

(31).547
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Definition 6 Let α ∈ (1, 2) and g ∈ C α([0, 1]). Let S+ and S− be two subdomains
defined as in (30). A generalised α-horizon function is an element of the set

H α,2([0, 1]2) :=
{
f ∈ L2([0, 1]2) | f |S+ , f |S− ∈ Wα,2(S±)

}
where Wα,2(S±) is the Sobolev space of regularity α relative to the L2-norm on548

S±.549

In order to obtain convergence rates of the triangulation-based estimators for550

this class of functions we need the following recent result, Thm.4 in L. DEMARET551

and A. ISKE [13]:552

Theorem 8 Let f be an α-horizon function in Horα1 , with α ∈ (1, 2), such that
f |S± ∈ Wα,2(S±). Then there is C > 0, such that for all k ∈ N there is a
Delaunay triangulation Dk with k vertices and such that

‖f − πS0Dkf‖L2([0,1]2) ≤
C

kα/2
.

Using arguments as in the proof of Lemma 8, we obtain the following lemma:553

Lemma 9 Let f ∈ H α,2([0, 1]2), with 1 < α < 2 there is C > 0 such that for
all k ≤ n ∈ N, there is (Pn

k , h
n
k), such that Pn

k ∈ Pn is a discretization of a
continuous Delaunay triangulation Dk, |Pn

k | ≤ k, hnk = δnhk, where hk ∈ S0
Dk

and which satisfies

‖f − ιnhnk‖ ≤ C ·
(

1

kα/2
+
k1/2

n1/2

)
.

The previous machinery cannot be applied directly without an explanation:554

since we are dealing with the space of continuous linear splines, our scheme is555

not properly a projective F -segmentation class. However, for each fixed partition,556

P ∈ P with elements in Rn, S0
T a subspace of FP . Observe that all arguments557

in Lemma 1 remain valid if we replace FP by subspaces and consider also the558

minimisation of the functional Hn
γ over functions in these subspaces. We can thus559

apply Theorem 5 to obtain the equivalent of Theorem 6.560
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Theorem 9 Let α ∈ (1, 2) and let f be a generalized horizon function in
H α([0, 1]2). Let further assume that noise in (3) is such that (H1.2) holds. Assume
further that γn satisfy (H1.3) with κ = 3. Then

‖f̂nγn − f‖
2 = O

(
γ

α
α+1
n

)
+O

(
n−

α
α+1

)
for almost all ω ∈ Ω, (37)

where f̂nγn is the Delaunay estimator.561

Proof. We check the assumptions in Theorem 5. Since |Rn| is of the order (n2)3,562

Hypothesis (H1.1) holds with κ = 3. Hypothesis (H1.2) and (H1.3) were required563

separately. Finally, (15) holds with % = 1/2 and Fn = n1/2 by Lemma 9. This564

completes the proof. �565

Remark 7 Similarly to Remark 6 and choosing γn of the order lnn/n2, estimate
(37) reads

‖f̂nγn − f‖
2 = O

(
(lnn)

2α
α+1

n
2α
α+1

)
+O

(
1

n
α
α+1

)
for almost all ω ∈ Ω.

As in Remark 6, we observe that the discretization error asymptotically dominates566

over the other term: the discussion of Remark 6. Again, neglecting the567

discretization term, we have obtained optimal rates for a class of piecewise smooth568

images by using estimation by Delaunay triangulations and where we used the569

numbers of vertices as penalization.570

Whereas the first term on the right-hand size consists of the best compromise571

between approximation and noise removal, the second term on the right-hand size572

corresponds to the discretization error. Note that, in contrast to the 1D-case the573

discretization error asymptotically dominates the first term. This is related to the574

piecewise constant nature of the discretization. In concrete applications, this may575

severly limit the actual quality of the estimation. Neglecting this discretization576

problem, the decay rates given by (35) are the usual optimal rates for the function577

class under consideration.578

On the right column of Fig. 3, estimators by Delaunay triangulation are shown,579

for the same noisy horizon function as in the wedgelet case.580

The rates in Theorem 9 are, up to a logarithmic factor, similar to the minimax581

rates obtained in E. CANDÈS and D. DONOHO [8] with curvelets for α = 2 and582
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more recently in C. DOSSAL et al. [17] with bandelets for general α. This is583

in contrast to isotropic approximation methods, e.g. shrinkage of tensor product584

wavelet coefficients, which only attain the rate for α = 1.585
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29. W. Lenz. Beiträge zum Verständnis der magnetischen Eigenschaften in festen654

Körpern. Physikalische Zeitschrift, 21:613–615, 1920.655

30. V. Liebscher and G. Winkler. A Potts model for segmentation and656

jump-detection. In V. Benes, J. Janacek, and I. Saxl, editors, Proceedings657

S4G International Conference on Stereology, Spatial Statistics and Stochastic658

Geometry, Prague June 21 to 24, 1999, pages 185–190, Prague, 1999. Union659

of Czech Mathematicians and Physicists.660

31. E. Le Pennec and S. Mallat. Sparse geometrical image approximation using661

bandelets. IEEE Trans. Image Processing, 14(4):423–438, 2005.662

32. V.V. Petrov. Sums of Independent Random Variables. Springer Verlag, New663

York, 1975.664

33. R.B. Potts. Some generalized order-disorder transitions. Proc. Camb. Phil.665

Soc., 48:106–109, 1952.666

34. J.W. Tukey. Curves as parameters, and touch estimation. In Proc. 4th667

Berkeley Sympos. Math. Statist. and Prob., volume I, pages 681–694,668

Berkeley, Calif., 1961. Univ. California Press.669

35. R. Willett and R. Nowak. Platelets: a multiscale approach for recovering670

edges and surfaces in photon-limited medical imaging. IEEE Transations in671

Medical Imaging, 22(3):332–350, 2003.672

36. G. Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo673

Methods. A Mathematical Introduction, volume 27 of Stochastic Modelling674

and Applied Probability. Springer Verlag, Berlin, Heidelberg, New York,675

second edition, 2003. Completely rewritten and revised, Corrected 3rd676

printing 2006.677

37. G. Winkler, A. Kempe, V. Liebscher, and O. Wittich. Parsimonious678

segmentation of time series by Potts models. In D. Baier and K.-D. Wernecke,679

editors, Innovations in Classification, Data Science, and Information Systems.680

Proc. 27th Annual GfKl Conference, University of Cottbus, March 12 - 14,681

2003., Studies in Classification, Data Analysis, and Knowledge Organization,682

pages 295–302, Heidelberg-Berlin, 2004. Gesellschaft für Klassifikation,683

Springer-Verlag.684

41



38. G. Winkler and V. Liebscher. Smoothers for discontinuous signals. J. Nonpar.685

Statist., 14(1-2):203–222, 2002.686

39. G. Winkler, O. Wittich, V. Liebscher, and A. Kempe. Don’t shed tears over687

breaks. Jahresbericht der Deutschen Mathematiker-Vereinigung, 107(2):57–688

87, 2005.689

40. O. Wittich, A. Kempe, G. Winkler, and V. Liebscher. Complexity penalized690

least squares estimators: Analytical results. Mathematische Nachrichten, 281691

(4):1–14, 2008.692

c© February 13, 2013 by the authors; submitted to Axioms for possible open access693

publication under the terms and conditions of the Creative Commons Attribution694

license http://creativecommons.org/licenses/by/3.0/.695

42



Figure 2. Left: δnf , for n = 64, 128, 256, respectively, where f is a horizon
function, according to Definition 2. Here, the horizon boundary is in C α((0, 1))

and α = 1.5. Right: Respective noisy images δnf + ξn.
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Figure 3. Estimators of the noisy images of Fig 2. Left: piecewise linear wedgelet
estimator. Right: piecewise linear and continuous Delaunay estimators.
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