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Distributed LOCAL Model

unique IDs

synchronous rounds
unbounded message size

complexity = number of rounds = dependency radius

local problems: o(D) complexity

n nodes, maximum degree ∆

unbounded computational power
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Distributed LOCAL Model: Bigger Picture

Four Classic LOCAL Problems (studied since 1980s)

(2∆ − 1)-Edge-Coloring

(∆ + 1)-Vertex-ColoringMaximal Independent Set

Maximal Matching

Maximal Matching in log4 n (by Hańćkowiack, Karoński, Panconesi [PODC’99])

(2∆ − 1)-Edge-Coloring in log8 n (by F., Ghaffari, Kuhn 2017)

completeness of rounding (by Ghaffari, Kuhn, Maus [STOC’17]):

goal: efficient deterministic algorithms for these problems

only obstacle for finding efficient deterministic distributed algorithms is

efficient deterministic distributed rounding method
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Hańćkowiak, Karoński, Panconesi [PODC’99]

Panconesi, Rizzi [DIST’01]



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

Matching Approximation:
State of the Art & Our Result

Fast deterministic O(1)-approximation

O(log4 n)

O(∆ + log∗ n)

O(log2 ∆ + log∗ n) for constant approximation

Our Result [F., Ghaffari 2017]

O(log2 ∆ + log∗ n)
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Fast deterministic O(1)-approximation

O(log4 n)

O(∆ + log∗ n)

O(log2 ∆ + log∗ n) for constant approximation

Our Result [F., Ghaffari 2017]

O(log2 ∆ · log n) for maximal matching (2-approximation)

O(log2 ∆ · log 1
ε + log∗ n) for (2 + ε)-approximation

O(log2 ∆ + log∗ n)

Ω
(

log ∆
log log ∆ + log∗ n

)
Hańćkowiak, Karoński, Panconesi [PODC’99]
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Further Extensions & Corollaries of Our Result

O(log2 ∆ · log 1
ε ) for (2 + ε)-approximate weighted matching

O(log2 ∆ · log 1
ε ) for (2 + ε)-approximate (weighted) b-matching

O(log2 ∆ · log ∆
ε ) for (2 + ε)-approximate minimum edge dominating set

for an ε-almost maximal matchingO(log2 ∆ · log 1
ε )
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(2) How to reduce to simple case?
Iterative Degree Reduction

by a constant factor

by a factor ri in iteration i

for O(log ∆) iterations

iteratively decrease degree (by deleting edges)

while not changing maximum matching size by too much

until maximum degree = O(1)

O(log ∆)-round O(
∏

i ri)-approximation
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... and how to reduce to it?

Our Method:

Matching Approximation

Rounding LPs
via
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Fractional Matching

(Integral) Matching as Integer Program

xe ∈ {0, 1} for all e ∈ E

∑
e∈E(v) xe ≤ 1 for all v ∈ V

max
∑

e∈E xe

s.t.

LinearFractional

[0, 1]

instead of just setting half of edges to 0 and half to 1,

pursue a more gradual approach with fractional matchings

why useful?

x
x

x

x

x
x

2x

2x
2x

lose≈ 2-factor in value

in ideal case: do not lose anything
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(1) Fractional matching

(2) Iterative rounding

Our Matching Approximation Algorithm:
Outline

(3) Final Rounding
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(1) Find Fractional Matching

start with xe = 2−dlog ∆e

repeat

block its edges

mark 1
2 -tight nodes

double value of all other edges

repeat

∈ M∗

≥ 1
2

possible overcounting by 2-factor

until all edges are blocked

4-approximation in O(log ∆) rounds

4-approximation
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(2) Iterative Rounding

graph induced by xe = 2−i

decompose into paths/cycles

deal with each path/cycle separately
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0

for dlog ∆e ≥ i ≥ 5

round values xe = 2−i to 0 or to 2−i+1
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(2) Iterative Rounding

Short Cycles bipartite only!
otherwise can lose O(1)

Long Cycles
& Long Paths

0 loss

3
L

-factor loss when chopping into length-L pieces

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

Short Cycles

chopping done by LongArrows algorithm
by Hańćkowiak, Karoński, Panconesi [PODC99]



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!

for 1
2 -loose nodes

& even-length paths



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!

for 1
2 -loose nodes

& even-length paths

for 1
2 -loose nodes

& odd-length paths



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!

for 1
2 -loose nodes

& even-length paths

for 1
2 -loose nodes

& odd-length paths

for 1
2 -loose nodes

& even-length paths



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

(2) Iterative Rounding

Short Paths
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2−i+1
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for dlog ∆e ≥ i ≥ 5

lose constant factor!

for 1
2 -loose nodes

& even-length paths

for 1
2 -loose nodes

& odd-length paths

for 1
2 -loose nodes

& even-length paths

for 1
2 -tight nodes

& odd-length paths
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overall, lose at most 2−i+3-factor

Long Cycles
& Long Paths

Short Paths

3
L

-factor loss when chopping into length-L pieces

2−i+3 -factor loss
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reduce value to (1− 3
L − 2−i+3)-factor of previous value
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Short Paths
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& Long Paths
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3
L
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L − 2−i+3)-factor of previous value

L = dlog ∆e
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Short Paths

2−i

2−i+1

0round values xe = 2−i to 0 or to 2−i+1

for dlog ∆e ≥ i ≥ 5

lose constant factor!

lose at most 2−i+1 per 1
2 -tight vertex

thus at most 2−i+2 -factor of its value

overall, lose at most 2−i+3-factor

Long Cycles
& Long Paths

Short Paths

3
L

-factor loss when chopping into length-L pieces

2−i+3 -factor loss

no loss at allShort Cycles

reduce value to (1− 3
L − 2−i+3)-factor of previous value

L = dlog ∆e

∑
e∈E x′e ≥

∏dlog ∆e
i=5 (1− 3

L − 2−i+3)
∑

e∈E xe ≥ 1
5
∑

e∈E xe

5-approximation in O(log2 ∆) rounds
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(any maximal matching has size≥ 1

2∆−1 |E|)
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(3) Final Rounding

values in {2−i | 4 ≥ i ≥ 1} ∪ {0}

maximum degree in induced graph ≤ 16

find maximal matching in O(1) by Proposing Algorithm

matches constant fraction of the remaining edges
(any maximal matching has size≥ 1

2∆−1 |E|)

O(1)-approximation in O(1) rounds
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Our Matching Approximation Algorithm:
Recap

(2) Iterative rounding

(3) Final Rounding

(1) Fractional matching
values in {2−i | dlog ∆e ≥ i ≥ 1}

4-approximation

O(log ∆) rounds

values in
{

1
16 , 1

8 , 1
4 , 1

2 , 1, 0
}

5-approximation of fractional matching of (1)

O(log ∆) iterations O(log ∆) rounds: O(log2 ∆) rounds

values in {1, 0}: integral matching

O(1)-approximation of fractional matching of (2)

O(1) rounds

in bipartite graphs
O(1)-approximation in O(log2 ∆) rounds
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(2) Find O(1)-approximate matching MB in B
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degree-2 graph
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From Bipartite to General Graphs

(1) Turn G into auxiliary bipartite graph B

(2) Find O(1)-approximate matching MB in B

(3) Turn MB into a matching MG in G

degree-2 graph

but not bipartite

maximal matching in O(log∗ n)

matching at least 1
3 -fraction of the edges

O(1)-approximation in O(log2 ∆ + log∗ n) rounds

in general graphs
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Improving Approximation Ratio

|M| ≥ 1
c
|M∗|

M∗

G G1

|M∗1 | ≤
(

1 − 1
c

)
|M∗|

|M1| ≥ 1
c
|M∗1 |

inductively: |M∗
i | ≤

(
1− 1

c

)i |M∗|

Observation: matching size in remainder graph reduces by O(1)-factor
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Our Result [F., Ghaffari 2017]

O(log2 ∆ + log∗ n)O(log2 ∆ + log∗ n) for constant approximation

O(log2 ∆ · log 1
ε + log∗ n)

O(log2 ∆ · log n) for maximal matching (2-approximation)

using an O

(
log2 ∆

)
-round O(1)-approximation algorithm for bipartite graphs

O(log4 n) [Hańćkowiak, Karoński, Panconesi 1999]

O(∆ + log∗ n) [Panconesi, Rizzi 2001]

Ω
(

log ∆
log log ∆ + log∗ n

)
[Kuhn, Wattenhofer, Moscibroda 2004, Linial 1987]

O(log2 ∆ + log∗ n)

O(log2 ∆ · log n)

O(log2 ∆ · log 1
ε + log∗ n)

O(log2 ∆ + log∗ n)

O(log4 n)

O(∆ + log∗ n)

Ω
(

log ∆
log log ∆ + log∗ n

)

for constant approximation

for maximal matching (2-approximation)

for (2 + ε)-approximation

Hańćkowiak, Karoński, Panconesi [PODC’99]

Panconesi, Rizzi [DIST’01]

Kuhn, Moscibroda, Wattenhofer [PODC’04], Linial [FOCS’87]



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

Open Questions & Conclusion



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

Open Questions & Conclusion

Deterministic Complexity of Matching



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

Open Questions & Conclusion

lower bound Ω
(

log ∆
log log ∆ + log∗ n

)
for any O(1)-approximation

Deterministic Complexity of Matching



Department of Computer Science, ETH Zurich Manuela Fischer 16.05.2017

Open Questions & Conclusion

lower bound Ω
(

log ∆
log log ∆ + log∗ n

)
for any O(1)-approximation

conjecture: no o(∆) + O(log∗ n) for maximal matching (Göös, Hirvonen, Suomela [PODC’14])
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conjecture: no o(∆) + O(log∗ n) for maximal matching (Göös, Hirvonen, Suomela [PODC’14])

Rounding Method

O(log2 ∆ · log n)

Deterministic Complexity of Matching

prove (or disprove) a lower bound Ω(log n) for deterministic maximal matching (for ∆ = Ω(log n))

completeness of rounding (Ghaffari, Kuhn, Maus [STOC’17])

more general deterministic rounding method?

deterministic poly log n-round algorithm for (2∆ − 1)-edge-coloring (F., Ghaffari, Kuhn (2017))

using deterministic rounding (for hypergraph matching)

matching admits an efficient deterministic algorithm because
matching admits efficient deterministic rounding


